Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Chemistry ; 30(5): e202302565, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877539

RESUMO

Lix MoS2 is not only a lithium battery material, but is also an important precursor for the synthesis of MoS2 nanomaterials. Current syntheses of MoS2 , such as in n-butyllithium/LiBH4 or electrochemically, are not satisfying in terms of defined stoichiometry and crystallinity, so an accurate experimental crystal structure determination of this important and widely used material has been long awaited. A high-pressure/high-temperature synthesis yielded highly crystalline 1T''-Lix MoS2 (x=1, 1.333). 1T''-LiMoS2 crystallizes in the space group P 1 ‾ $\bar 1$ with a=6.2482(3) Å, b=6.6336(3) Å, c=6.7480(3) Å, α=119.321(2)°, ß=90.010(2)° and γ=90.077(2)°. The arrangement of Mo atoms within the b-c-plane confirmed a predicted Peierls distortion. A similar atom distribution pattern to that of Mo is also observed for the lithium atoms. Calculation of bond valence site energies gave an activation barrier of 1.244 eV for 2D lithium-ion migration. For x=1.333, a phase-pure synthesis was achieved.

2.
Chemistry ; 30(7): e202303489, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37942708

RESUMO

We present a comprehensive account on our efforts behind the recently published synthesis of waixenicin A. Our approach for constructing the dihydropyran ring relied on an Achmatowicz rearrangement. For the assembly of the nine-membered ring, four distinct strategies were investigated. Our initial attempts using radical-based addition/fragmentation reactions targeting the C7-C11 bond proved unsuitable for accessing the 6/9-bicycle. By employing anionic fragmentation conditions at the furfuryl alcohol stage, we successfully reached a 5/9-bicycle. However, subsequent ring-expansion was unsuccessful. Alternative approaches, such as Nozaki-Hiyama-Kishi or Heck reactions to connect the C6-C7 bond, also encountered difficulties, with no nine-membered ring formation observed. Our first breakthrough came from our attempts to install the C5-C6 bond via an intramolecular alkylation. Surprisingly, subsequent functional group modifications proved unexpectedly challenging, necessitating a redesign of our synthetic route. Drawing from all our investigations, we concluded that construction of the C9-C10 bond would enable efficient nine-membered ring alkylation and would facilitate the installation of the desired substitution pattern along the southern periphery. Exploration of this strategy yielded further surprises but ultimately led to the successful synthesis of waixenicin A and 9-deacetoxy-14,15-deepoxyxeniculin. For the latter compound, a bioinspired one-step rearrangement to xeniafauranol A was achieved.

3.
Tetrahedron Lett ; 140: 155041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665383

RESUMO

A 9-step synthetic route to a protected form of the C3-epimer of virenose from D-fucose is described. C3-epi-virenose is the carbohydrate unit of the bioactive polyketide elsamicin B and part of the carbohydrate unit of elsamicin A. The developed route enabled preparation of anomerically activated forms of this unique C6-deoxy sugar, including derivatives with 1-acetyl, 1-acetylthio, 1-trichloroacetimidate, 1-bromo, and 1-fluoro substituents.

4.
J Am Chem Soc ; 145(21): 11811-11817, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192136

RESUMO

The first asymmetric total synthesis of the Xenia diterpenoid waixenicin A, a potent and highly selective TRPM7 inhibitor, is reported. The characteristic trans-fused oxabicyclo[7.4.0]tridecane ring system was constructed via a diastereoselective conjugate addition/trapping sequence, followed by an intramolecular alkylation to forge the 9-membered ring. While a ß-keto sulfone motif enabled efficient ring-closure, the subsequent radical desulfonylation suffered from (E)/(Z)-isomerization of the C7/C8-alkene. Conducting the sequence with a trimethylsilylethyl ester allowed for a fluoride-mediated decarboxylation that proceeded without detectable isomerization. The acid-labile enol acetal of the delicate dihydropyran core was introduced at an early stage and temporarily deactivated by a triflate function. The latter was critical for the introduction of the side chain. Diverting from a common late-stage intermediate provided access to waixenicin A and 9-deacetoxy-14,15-deepoxyxeniculin. A high-yielding base-mediated dihydropyran-cyclohexene rearrangement of 9-deacetoxy-14,15-deepoxyxeniculin led to xeniafaraunol A in one step.

5.
Chemistry ; 29(6): e202202448, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36239983

RESUMO

Single-crystals of Li2 Ba4 Al2 Ta2 N8 O:Eu2+ were synthesized from Ba3 N2 , Al2 O3 , Li3 N, Eu2 O3 , and lithium metal by a high-temperature solid-state reaction in a weld shut tantalum ampule. The crystal structure of Li2 Ba4 Al2 Ta2 N8 O was determined by single-crystal X-ray diffraction and it crystallizes in the orthorhombic space group Pnnm (no. 58) with the lattice parameters a=1006.71(3), b=1026.58(3), c=607.10(2) pm, and a volume of V=0.62742(3) nm3 . The compound is built up from AlN4 and TaN4 tetrahedra, which form a three-dimensional network corresponding to the BCT-zeolite type structure. Li2 Ba4 Al2 Ta2 N8 O is homeotypic to Li2 Sr4 Si4 N8 O and Li2 Sr4 Al2 Ta2 N8 O but, additionally, it could be successfully doped with the activator ion Eu2+ and hence features an experimental observed overall emission at λmax =565 nm (fwhm=89 nm) consisting of a superposition of two adjusted emission bands at λmax =557 nm (fwhm=69 nm) and at λmax =604 nm (fwhm=102 nm).

6.
Inorg Chem ; 62(1): 213-223, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36525562

RESUMO

The new compound Ba4Al7Li28.08O26.92N1.08 consists of AlO4/AlO3N tetrahedra, 10-fold coordinated Ba2+ cations, and a highly condensed edge- and corner-sharing LiO4 tetrahedra framework, which leads to a degree of condensation greater than 1. The first barium oxonitridolithoaluminate was synthesized by a high-temperature solid-state reaction in a weld-shut tantalum ampoule and the crystal structure has been determined by single-crystal X-ray diffraction. Ba4Al7Li28.08O26.92N1.08 crystallizes in the monoclinic space group P21/m (no. 11) with the lattice parameters a = 1052.41(3), b = 615.93(2), c = 1088.45(4) pm, ß = 98.86(1)°, and a volume of V = 0.69712(4) nm3. In addition, Ba4Al7Li28.08O26.92N1.08 doped with the activator ion Eu2+, exhibits a broad band emission with a maximum at λmax = 524 nm (2.34 eV) with a fwhm of 112 nm (4373 cm-1/0.54 eV), which can be described by a superposition of two adjusted emission bands at λmax = 515 nm (2.41 eV) with a fwhm of 70 nm (2704 cm-1/0.34 eV), and at λmax = 574 nm (2.18 eV) with a fwhm of 127 nm (4127 cm-1/0.51 eV).

7.
Eur J Inorg Chem ; 26(26): e202300368, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38505780

RESUMO

New clathrochelate complexes of manganese, iron and cobalt containing peripheral organometallic manganese moieties cymantrene or tromancenium were synthesized via self-assembly from di/tri-topic dioximes, metal templates and cymantrene/tromancenium boronic acid pinacol esters. These air-stable, highly colored, oligometallic complexes are composed of various combinations of MnIFeIIMnI, MnICoIIMnI, MnIMnIIMnIIMnI and MnICoIICoIIMnI metal assemblies with corresponding complicated magnetic and electrochemical properties. Full spectroscopic and structural characterization by 1H/11B/13C NMR, HRMS, IR, UV-vis, single crystal XRD and CV (cyclic voltammetry) is provided. Tetrametallic complexes containing tromanceniumyl substituents with two CoII or MnII central metals exhibit promising anticancer properties against different tumor cell lines.

8.
Angew Chem Int Ed Engl ; 62(32): e202307719, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37318945

RESUMO

We present a concise asymmetric total synthesis (5-8 steps) of nine sesquiterpenoid alkaloids featuring four different tetra-/pentacyclic scaffolds. To this end, a novel, bioinspired indole N-terminated cationic tricyclization has been developed, enabling the divergent synthesis of greenwayodendrines and polysin. Subtle variation of the C2-substituted indole cyclization precursor allowed switching between indole N- and C-termination. For the latter, a subsequent Witkop oxidation enabled conversion of the cyclopentene-fused indole into the eight-membered benzolactam to directly furnish the family of greenwaylactams. In addition, a diastereomeric C-termination product has been elaborated to provide access to polyveoline.

9.
Angew Chem Int Ed Engl ; 62(30): e202304490, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159530

RESUMO

Dynamic covalent chemistry (DCC) has, in recent years, provided valuable tools to synthesize molecular architectures of increasing complexity. We have also taken advantage of imine DCC chemistry to prepare TPMA-based supramolecular cages for molecular recognition applications. However, the versatility of this approach has as a major drawback the intrinsic hydrolytic lability of imines, which hampers some applications. We present herein a synthetic strategy that combines the advantages of a thermodynamic-driven formation of a supramolecular structure using imine chemistry, together with the possibility to synthetize chiral hydrolytically stable structures through a [3,3]-sigmatropic rearrangement. A preliminary mechanistic analysis of this one-pot synthesis and the scope of the reaction are also discussed.

10.
J Am Chem Soc ; 144(43): 19704-19708, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270001

RESUMO

We report a general synthetic entry to dihydrooxepine-spiroisoxazoline (DOSI) natural products that culminated in the first racemic total synthesis of psammaplysin A. For the synthesis of the unique spirocyclic fragment we employed a strategy that features two key transformations: (1) a diastereoselective Henry reaction/cyclization sequence to access the C7 hydroxylated isoxazoline scaffold in one step and (2) a regioselective Baeyer-Villiger ring expansion to install the fully substituted dihydrooxepine and avoid the risk of a previously observed oxepine-arene oxide rearrangement. The overall synthesis proceeds in 13 steps from an inexpensive starting material.


Assuntos
Produtos Biológicos , Compostos de Espiro , Estereoisomerismo , Ciclização
11.
Angew Chem Int Ed Engl ; 61(3): e202113829, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34762359

RESUMO

Herein, we present our studies to construct seven ent-trachylobane diterpenoids by employing a bioinspired two-phase synthetic strategy. The first phase provided enantioselective and scalable access to five ent-trachylobanes, of which methyl ent-trachyloban-19-oate was produced on a 300 mg scale. During the second phase, chemical C-H oxidation methods were employed to enable selective conversion to two naturally occurring higher functionalized ent-trachylobanes. The formation of regioisomeric analogs, which are currently inaccessible via enzymatic methods, reveals the potential as well as limitations of established chemical C-H oxidation protocols for complex molecule synthesis.

12.
J Am Chem Soc ; 143(2): 1216-1223, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399454

RESUMO

Despite the many methods available for the synthesis of furans, few methods remain that allow for the custom-made assembly of fully substituted furans. Here we report a powerful protocol to rapidly construct tetrasubstituted, orthogonally functionalized furans under mild reaction conditions. The developed method involves the regioselective ring-opening of readily available 2,5-dihydrothiophenes followed by an oxidative cyclization to provide the heterocycle. The selective oxidation at sulfur is promoted by N-chlorosuccinimide as an inexpensive reagent and proceeds at ambient temperature in high yield within 30 min. The obtained furans serve as exceptionally versatile intermediates and were shown to participate in a series of valuable postmodifications. The fate of the initial sulfonium intermediate was investigated by mechanistic experiments, and computational studies revealed the existence of an unprecedented Pummerer-type rearrangement. The potential for organic synthesis is highlighted by the total synthesis of bisabolene sesquiterpenoids (pleurotins A, B, and D).

13.
J Am Chem Soc ; 143(24): 9002-9008, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106724

RESUMO

We present a modular, synthetic entry to polysubstituted pyrroles employing readily available 2,5-dihydrothiophenes. Ring-opening of the heterocycle provides access to a panel of 1,3-dienes which undergo pyrrole formation in the presence of inexpensive chloramine-T trihydrate. The transformation is conducted in an open flask and proceeds at ambient temperatures (23 °C) in nondry solvents. A careful adjustment of the electronics and sterics of the 1,3-diene precursor allows for the isolation of key intermediates. DFT studies identified a reaction mechanism that features a 6π-electrocyclization of a sulfilimine intermediate followed by spontaneous ring-contraction to reveal the pyrrole skeleton.

14.
Chemistry ; 27(48): 12410-12421, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34213030

RESUMO

Polyene cyclizations generate molecular complexity from a linear polyene in a single step. While methods to initiate these cyclizations have been continuously expanded and improved over the years, the majority of polyene substrates are still limited to simple alkyl-substituted alkenes. In this study, we took advantage of the unique reactivity of higher-functionalized bifunctional alkenes. The realization of a polyene tetracyclization of a dual nucleophilic aryl enol ether involving a transannular endo-termination step enabled the total synthesis of the tricyclic diterpenoid pimara-15-en-3α-8α-diol. The highly flexible and modular route allowed for the preparation of a diverse library of cyclization precursors specifically designed for the total synthesis of the tetracyclic nor-diterpenoid norflickinflimiod C. The tetracyclization of three diversely substituted allenes enabled access to complex pentacyclic products and provided a detailed insight into the underlying reaction pathways.


Assuntos
Produtos Biológicos , Abietanos , Ciclização , Polienos , Estereoisomerismo
15.
Chemistry ; 27(47): 12181-12189, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34105834

RESUMO

Herein is given a full account of the evolution of the first total synthesis of (+)-cornexistin. Initial efforts were based on masking the reactive maleic anhydride moiety as a 3,4-substituted furan and on forming the nine-membered carbocycle in an intramolecular Conia-ene or Nozaki-Hiyama-Kishi (NHK) reaction. Those strategies suffered from low yields and were jeopardized by a late-stage installation of the Z-alkene, as well as the stereocenters along the eastern periphery. These issues were addressed by employing a chiral-pool strategy that involved construction of the crucial stereocenters at C2, C3 and C8 at an early stage with installation of the maleic anhydride as late as possible. The successful approach featured an intermolecular NHK coupling to install the Z-alkene, a syn-Evans-aldol reaction to forge the stereocenters along the eastern periphery, an intramolecular allylic alkylation to close the nine-membered carbocycle, and a challenging stepwise hydrolysis of a ß-keto nitrile to furnish the maleic anhydride.


Assuntos
Alcenos , Furanos
16.
Inorg Chem ; 60(20): 15421-15434, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34590834

RESUMO

We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.

17.
Eur J Inorg Chem ; 2021(32): 3305-3313, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34588921

RESUMO

In continuation of our exploration of metallocenium chemistry we report here on innovative ways toward monofunctionalized rhodocenium salts applying half-sandwich capping reactions of cyclopentadienyl rhodium(III) halide synthons with cyclopentadienyl ylides containing pyridine, phosphine or dinitrogen leaving groups, followed by Zincke and Sandmeyer reactions. Thereby amino, diazonio, bromo, azido and iodo rhodocenium salts containing valuable functional groups are accessible for the first time. Target compounds were characterized by spectroscopic (1H/13C/103Rh-NMR, IR, HR-MS), structural (single crystal XRD) and electrochemical (CV) methods and their properties were compared to those of isoelectronic cobaltocenium compounds. These new functionalized rhodocenium complexes significantly expand the so far extremely limited chemical space of rhodocenium salts with promising options for the future development in the area of rhodocenium chemistry.

18.
Eur J Inorg Chem ; 2021(27): 2784-2786, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34413703

RESUMO

Cobaltoceniumselenolate is an unusual, highly air-sensitive, mesoionic compound containing a very soft anionic selenium donor atom. Here we explore its coordination chemistry with Au(I) metal centers and show that its hetero- and homoleptic gold complexes are highly colored, air-stable compounds, which were characterized by 1H/13C/31P/77Se NMR, IR, UV-Vis, HR-MS and single crystal XRD. Cytotoxicity of these polar, water-soluble complexes was studied against various standard cancer cell lines (A549MDA-MB-231, HT-29) revealing good anticancer activity of all three complexes.

19.
Angew Chem Int Ed Engl ; 60(10): 5407-5413, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247479

RESUMO

Self-assembly relies on the ability of smaller and discrete entities to spontaneously arrange into more organized systems by means of the structure-encoded information. Herein, we show that the design of the media can play a role even more important than the chemical design. The media not only determines the self-assembly pathway at a single-component level, but in a very narrow solvent composition, a supramolecular homo-aggregate can be non-covalently wrapped by a second component that possesses a different crystal lattice. Such a process has been followed in real time by confocal microscopy thanks to the different emission colors of the aggregates formed by two isolated PtII complexes. This coating is reversible and controlled by the media composition. Single-crystal X-ray diffraction and molecular simulations based on coarse-grained (CG) models allowed the understanding of the properties displayed by the different aggregates. Such findings could result in a new method to construct hierarchical supramolecular structures.

20.
Inorg Chem ; 59(20): 15312-15323, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33006470

RESUMO

N-Heterocyclic carbene (NHC) gold(I) complexes offer great prospects in medicinal chemistry as antiproliferative, anticancer, and antibacterial agents. However, further development requires a thorough understanding of their reaction behavior in aqueous media. Herein, we report the conversion of the bromido[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(I) ((NHC)AuIBr, 1) complex in acetonitrile/water mixtures to the bis[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(I) ([(NHC)2AuI]+, 7), which is subsequently oxidized to the dibromidobis[3-ethyl-4-(4-methoxyphenyl)-5-(2-methoxypyridin-5-yl)-1-propylimidazol-2-ylidene]gold(III) ([(NHC)2AuIIIBr2]+, 9). By combining experimental data from HPLC, NMR, and (LC-)/HR-MS with computational results from DFT calculations, we outline a detailed ligand scrambling reaction mechanism. The key step is the formation of the stacked ((NHC)AuIBr)2 dimer (2) that rearranges to the T-shaped intermediate Br(NHC)2AuI-AuIBr (3). The dissociation of Br- from 3 and recombination lead to (NHC)2AuI-AuIBr2 (5) followed by the separation into [(NHC)2AuI]+ (7) and [AuIBr2]- (8). [AuIBr2]- is not stable in an aqueous environment and degrades in an internal redox reaction to Au0 and Br2. The latter in turn oxidizes 7 to the gold(III) species 9. The reported ligand rearrangement of the (NHC)AuIBr complex differs from that found for related silver(I) analogous. A detailed understanding of this scrambling mechanism is of utmost importance for the interpretation of their biological activity and will help to further optimize them for biomedical and other applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA