Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 103(4): 100014, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870293

RESUMO

Although linked to esophageal carcinogenesis, the mechanisms by which cigarette smoke mediates initiation and progression of esophageal adenocarcinomas (EAC) have not been fully elucidated. In this study, immortalized esophageal epithelial cells and EAC cells (EACCs) were cultured with or without cigarette smoke condensate (CSC) under relevant exposure conditions. Endogenous levels of microRNA (miR)-145 and lysyl-likeoxidase 2 (LOXL2) were inversely correlated in EAC lines/tumors compared with that in immortalized cells/normal mucosa. The CSC repressed miR-145 and upregulated LOXL2 in immortalized esophageal epithelial cells and EACCs. Knockdown or constitutive overexpression of miR-145 activated or depleted LOXL2, respectively, which enhanced or reduced proliferation, invasion, and tumorigenicity of EACC, respectively. LOXL2 was identified as a novel target of miR-145 as well as a negative regulator of this miR in EAC lines/Barrett's epithelia. Mechanistically, CSC induced recruitment of SP1 to the LOXL2 promoter; LOXL2 upregulation coincided with LOXL2 enrichment and concomitant reduction of H3K4me3 levels within the promoter of miR143HG (host gene for miR-145). Mithramycin downregulated LOXL2 and restored miR-145 expression in EACC and abrogated LOXL2-mediated repression of miR-145 by CSC. These findings implicate cigarette smoke in the pathogenesis of EAC and demonstrate that oncogenic miR-145-LOXL2 axis dysregulation is potentially druggable for the treatment and possible prevention of these malignancies.


Assuntos
Adenocarcinoma , Fumar Cigarros , Neoplasias Esofágicas , MicroRNAs , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Nicotiana/efeitos adversos , Nicotiana/genética , Nicotiana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Regulação Neoplásica da Expressão Gênica
2.
Proc Natl Acad Sci U S A ; 115(4): E812-E821, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311298

RESUMO

Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct and predominant types of human lung cancer. IκB kinase α (IKKα) has been shown to suppress lung SCC development, but its role in ADC is unknown. We found inactivating mutations and homologous or hemizygous deletions in the CHUK locus, which encodes IKKα, in human lung ADCs. The CHUK deletions significantly reduced the survival time of patients with lung ADCs harboring KRAS mutations. In mice, lung-specific Ikkα ablation (IkkαΔLu ) induces spontaneous ADCs and promotes KrasG12D-initiated ADC development, accompanied by increased cell proliferation, decreased cell senescence, and reactive oxygen species (ROS) accumulation. IKKα deletion up-regulates NOX2 and down-regulates NRF2, leading to ROS accumulation and blockade of cell senescence induction, which together accelerate ADC development. Pharmacologic inhibition of NADPH oxidase or ROS impairs KrasG12D-mediated ADC development in IkkαΔLu mice. Therefore, IKKα modulates lung ADC development by controlling redox regulatory pathways. This study demonstrates that IKKα functions as a suppressor of lung ADC in human and mice through a unique mechanism that regulates tumor cell-associated ROS metabolism.


Assuntos
Adenocarcinoma/genética , Quinase I-kappa B/fisiologia , Neoplasias Pulmonares/genética , Acetofenonas , Acetilcisteína , Adenocarcinoma/metabolismo , Animais , Proliferação de Células , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Epigênese Genética , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , NADPH Oxidase 2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Pharm Biol ; 58(1): 1044-1054, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33027592

RESUMO

CONTEXT: Aaptamine is a potent ocean-derived non-traditional drug candidate against human cancers. However, the underlying molecular mechanisms governing aaptamine-mediated repression of lung cancer cells remain largely undefined. OBJECTIVE: To examine the inhibitory effect of aaptamine on proliferation and progression of non-small cell lung carcinoma (NSCLC) and dissect the potential mechanisms involved in its anticancer functions. MATERIALS AND METHODS: In vitro assays of cell proliferation, cell cycle analysis, clonal formation, apoptosis and migration were performed to examine the inhibitory effects of aaptamine (8, 16 and 32 µg/mL) on NSCLC cells. The expression levels of proteins were analysed using western blotting analysis when cells were treated with a single drug or a combination treatment for 48 h. RESULTS: Aaptamine significantly inhibited A549 and H1299 cells proliferation with IC50 values of 13.91 and 10.47 µg/mL. At the concentrations of 16 and 32 µg/mL, aaptamine significantly reduced capacities in clonogenicity, enhanced cellular apoptosis and decreased the motile and invasive cellular phenotype. In addition, aaptamine arrested cell cycle at G1 phase via selectively abating cell cycle regulation drivers (CDK2/4 and Cyclin D1/E). Western blotting results showed that aaptamine attenuated the protein expression of MMP-7, MMP-9 and upregulated the expression of cleaved-PARP and cleaved-caspase 3. Moreover, aaptamine inhibited PI3K/AKT/GSK3ß signalling cascades through specifically degrading the phosphorylated AKT and GSK3ß. DISCUSSION AND CONCLUSIONS: Aaptamine retarded the proliferation and invasion of NSCLC cells by selectively targeting the pathway PI3K/AKT/GSK3ß suggesting it as a potential chemotherapeutic agent for repressing tumorigenesis and progression of NSCLC in humans.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Naftiridinas/farmacologia , Células A549 , Antineoplásicos/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/patologia , Naftiridinas/administração & dosagem , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Biochim Biophys Acta ; 1839(7): 592-603, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24859470

RESUMO

Many mammalian genes are composed of bidirectional gene pairs with the two genes separated by less than 1.0kb. The transcriptional regulation and function of these bidirectional genes remain largely unclear. Here, we report that bidirectional gene pair HspB2/αB-crystallin, both of which are members of the small heat shock protein gene family, is a novel direct target gene of p53. Two potential binding sites of p53 are present in the intergenic region of HspB2/αB-crystallin. p53 up-regulated the bidirectional promoter activities of HspB2/αB-crystallin. Actinomycin D (ActD), an activator of p53, induces the promoter and protein activities of HspB2/αB-crystallin. p53 binds to two p53 binding sites in the intergenic region of HspB2/αB-crystallin in vitro and in vivo. Moreover, the products of bidirectional gene pair HspB2/αB-crystallin regulate glucose metabolism, intracellular reactive oxygen species (ROS) level and the Warburg effect by affecting metabolic genes, including the synthesis of cytochrome c oxidase 2 (SCO2), hexokinase II (HK2), and TP53-induced glycolysis and apoptosis regulator (TIGAR). The ROS level and the Warburg effect are affected after the depletion of p53, HspB2 and αB-crystallin respectively. Finally, we show that both HspB2 and αB-crystallin are linked with human renal carcinogenesis. These findings provide novel insights into the role of p53 as a regulator of bidirectional gene pair HspB2/αB-crystallin-mediated ROS and the Warburg effect.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Choque Térmico HSP27/genética , Proteína Supressora de Tumor p53/genética , Cadeia B de alfa-Cristalina/genética , Sítios de Ligação/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Espécies Reativas de Oxigênio/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(14): 5626-31, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21427231

RESUMO

DNA methylation is critical for normal development and plays important roles in genome organization and transcriptional regulation. Although DNA methyltransferases have been identified, the factors that establish and contribute to genome-wide methylation patterns remain elusive. Here, we report a high-resolution cytosine methylation map of the murine genome modulated by Lsh, a chromatin remodeling family member that has previously been shown to regulate CpG methylation at repetitive sequences. We provide evidence that Lsh also controls genome-wide cytosine methylation at nonrepeat sequences and relate those changes to alterations in H4K4me3 modification and gene expression. Deletion of Lsh alters the allocation of cytosine methylation in chromosomal regions of 50 kb to 2 Mb and, in addition, leads to changes in the methylation profile at the 5' end of genes. Furthermore, we demonstrate that loss of Lsh promotes--as well as prevents--cytosine methylation. Our data indicate that Lsh is an epigenetic modulator that is critical for normal distribution of cytosine methylation throughout the murine genome.


Assuntos
Citosina/metabolismo , DNA Helicases/metabolismo , Metilação de DNA , Epigenômica , Animais , Southern Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Genômica , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Estatísticas não Paramétricas
6.
J Hazard Mater ; 467: 133713, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335607

RESUMO

As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.


Assuntos
Fibrose Pulmonar , Silicose , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Monócitos , Neutrófilos , Ligantes , Lipossomos , Fibrose , Quimiocina CCL3
7.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618952

RESUMO

N6-Methyladenosine (m6A) is the most abundant posttranscriptional modification, and its contribution to cancer evolution has recently been appreciated. Renal cancer is the most common adult genitourinary cancer, approximately 85% of which is accounted for by the clear cell renal cell carcinoma (ccRCC) subtype characterized by VHL loss. However, it is unclear whether VHL loss in ccRCC affects m6A patterns. In this study, we demonstrate that VHL binds and promotes METTL3/METTL14 complex formation while VHL depletion suppresses m6A modification, which is distinctive from its canonical E3 ligase role. m6A RNA immunoprecipitation sequencing (RIP-Seq) coupled with RNA-Seq allows us to identify a selection of genes whose expression may be regulated by VHL-m6A signaling. Specifically, PIK3R3 is identified to be a critical gene whose mRNA stability is regulated by VHL in a m6A-dependent but HIF-independent manner. Functionally, PIK3R3 depletion promotes renal cancer cell growth and orthotopic tumor growth while its overexpression leads to decreased tumorigenesis. Mechanistically, the VHL-m6A-regulated PIK3R3 suppresses tumor growth by restraining PI3K/AKT activity. Taken together, we propose a mechanism by which VHL regulates m6A through modulation of METTL3/METTL14 complex formation, thereby promoting PIK3R3 mRNA stability and protein levels that are critical for regulating ccRCC tumorigenesis.


Assuntos
Adenina , Carcinoma de Células Renais , Neoplasias Renais , Adulto , Humanos , Carcinogênese/genética , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Expressão Gênica , Neoplasias Renais/genética , Metiltransferases/genética , Fosfatidilinositol 3-Quinases/genética
8.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36166308

RESUMO

Pulmonary fibrosis is a chronic and progressive interstitial lung disease associated with the decay of pulmonary function, which leads to a fatal outcome. As an essential epigenetic regulator of DNA methylation, the involvement of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) in fibroblast activation remains largely undefined in pulmonary fibrosis. In the present study, we found that TGF-ß1-mediated upregulation of UHRF1 repressed beclin 1 via methylated induction of its promoter, which finally resulted in fibroblast activation and lung fibrosis both in vitro and in vivo. Moreover, knockdown of UHRF1 significantly arrested fibroblast proliferation and reactivated beclin 1 in lung fibroblasts. Thus, intravenous administration of UHRF1 siRNA-loaded liposomes significantly protected mice against experimental pulmonary fibrosis. Accordingly, our data suggest that UHRF1 might be a novel potential therapeutic target in the pathogenesis of pulmonary fibrosis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Fibrose Pulmonar , Camundongos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , RNA Interferente Pequeno/genética , Ubiquitina-Proteína Ligases/genética , Fibroblastos
9.
Cell Death Dis ; 13(12): 1070, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566325

RESUMO

Pulmonary fibrosis (PF), as an end-stage clinical phenotype of interstitial lung diseases (ILDs), is frequently initiated after alveolar injury, in which ferroptosis has been identified as a critical event aggravating the pathophysiological progression of this disease. Here in, a comprehensive analysis of two mouse models of pulmonary fibrosis developed in our lab demonstrated that lung damage-induced ferroptosis of alveolar epithelial Type2 cells (AEC2) significantly accumulates during the development of pulmonary fibrosis while ferroptosis suppressor genes GPX4 and FSP1 are dramatically inactivated. Mechanistically, upregulation of de novo methylation regulator Uhrf1 sensitively elevates CpG site methylation levels in promoters of both GPX4 and FSP1 genes and induces the epigenetic repression of both genes, subsequently leading to ferroptosis in chemically interfered AEC2 cells. Meanwhile, specific inhibition of UHRF1 highly arrests the ferroptosis formation and blocks the progression of pulmonary fibrosis in both of our research models. This study first, to our knowledge, identified the involvement of Uhrf1 in mediating the ferroptosis of chemically injured AEC2s via de novo promoter-specific methylation of both GPX4 and FSP1 genes, which consequently accelerates the process of pulmonary fibrosis. The above findings also strongly suggested Uhrf1 as a novel potential target in the treatment of pulmonary fibrosis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Repressão Epigenética , Ferroptose , Regulação Neoplásica da Expressão Gênica , Peroxidases , Fibrose Pulmonar , Proteína A4 de Ligação a Cálcio da Família S100 , Ubiquitina-Proteína Ligases , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ferroptose/genética , Pulmão/patologia , Fibrose Pulmonar/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Peroxidases/genética
10.
Cell Death Dis ; 13(10): 885, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270982

RESUMO

Tumor necrosis factor receptor 1 (TNFR1), encoded by TNFRSF1A, is a critical transducer of inflammatory pathways, but its physiological role in human cancer is not completely understood. Here, we observed high expression of TNFR1 in many human lung squamous cell carcinoma (SCCs) samples and in spontaneous lung SCCs derived from kinase-dead Ikkα knock-in (KA/KA) mice. Knocking out Tnfrf1a in KA/KA mice blocked lung SCC formation. When injected via tail vein, KALLU+ lung SCC cells that highly expressed TNFR1/TNF, Sox2, c-Myc, Twist1, Bcl2, and UBCH10, generated dedifferentiated spindle cell carcinomas with epithelial-mesenchymal transition markers in mouse lungs. In contrast, KALLU+ cells with silenced TNFR1 and KALLU- cells that expressed low levels of TNFR1 generated well-differentiated lung SCCs and were less tumorigenic and metastatic. We identified a downstream effector of TNFR1: oncogenic UBCH10, an E2 ubiquitin-conjugating enzyme with targets including Twist1, c-Myc, and Sox2, which enhanced SCC cell dedifferentiation. Furthermore, Tg-K5.TNFR1;KA/KA mice, which expressed transgenic TNFR1 in keratin 5-positve epithelial cells, developed more poorly differentiated and metastatic lung SCCs than those found in KA/KA mice. These findings demonstrate that an overexpressed TNFR1-UBCH10 axis advances lung carcinogenesis and metastasis through a dedifferentiation mechanism. Constituents in this pathway may contribute to the development of differentiation-related therapies for lung SCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Quinase I-kappa B/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Queratina-5 , Receptores Tipo I de Fatores de Necrose Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinogênese , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-bcl-2 , Pulmão/metabolismo
11.
Biol Reprod ; 84(6): 1235-41, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21349825

RESUMO

Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.


Assuntos
DNA Helicases/metabolismo , Meiose , Espermatócitos/citologia , Espermatócitos/metabolismo , Animais , DNA Helicases/genética , Regulação Enzimológica da Expressão Gênica , Masculino , Camundongos , Espermatogênese/fisiologia
12.
JTO Clin Res Rep ; 2(7): 100181, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34790904

RESUMO

INTRODUCTION: Although communal smoking of hookah by means of water pipes is perceived to be a safe alternative to cigarette smoking, the effects of hookah smoke in respiratory epithelia have not been well characterized. This study evaluated epigenomic and transcriptomic effects of hookah smoke relative to cigarette smoke in human respiratory epithelial cells. METHODS: Primary normal human small airway epithelial cells from three donors and cdk4 and hTERT-immortalized small airway epithelial cells and human bronchial epithelial cells were cultured for 5 days in normal media with or without cigarette smoke condensates (CSCs) or water pipe condensates (WPCs). Cell count, immunoblot, RNA sequencing, quantitative real-time reverse-transcriptase polymerase chain reaction, methylation-specific polymerase chain reaction, and quantitative chromatin immunoprecipitation techniques were used to compare effects of hookah and cigarette smoke on cell proliferation, global histone marks, gene expression, and promoter-related chromatin structure. RESULTS: CSC and WPC decreased global H4K16ac and H4K20me3 histone marks and mediated distinct and overlapping cancer-associated transcriptome signatures and pathway modulations that were cell line dependent and stratified across lung cancer cells in a histology-specific manner. Epiregulin encoding a master regulator of EGFR signaling that is overexpressed in lung cancers was up-regulated, whereas FILIP1L and ABI3BP encoding mediators of senescence that are repressed in lung cancers were down-regulated by CSC and WPC. Induction of epiregulin and repression of FILIP1L and ABI3BP by these condensates coincided with unique epigenetic alterations within the respective promoters. CONCLUSIONS: These findings support translational studies to ascertain if hookah-mediated epigenomic and transcriptomic alterations in cultured respiratory epithelia are detectable and clinically relevant in hookah smokers.

13.
J Ethnopharmacol ; 265: 113295, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32841701

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellariabarbata D. Don extraction (SBE), a traditional Chinese medicine, has been proved effective against various malignant disorders in clinics with tolerable side-effects when administered alone or in combination with conventional chemotherapeutic regimens. AIM OF THIS STUDY: Multi-drug resistance of cancer is attributed to existence of cancer stemness-prone cells that harbor aberrantly high activation of Sonic Hedgehog (SHH) cascade. Our previous study has demonstrated that SBE sensitized non-small cell lung cancer (NSCLC) cells to Cisplatin (DDP) treatment by downregulating SHH pathway. Yet, whether SBE could prohibit proliferation of cancer stemness-prone cells and its underlying molecular mechanisms remain to be investigated. In this article, we further investigated intervention of SBE on NSCLC cell stemness-associated phenotypes and its potential mode of action. MATERIALS AND METHODS: CCK-8 and clonal formation detection were used to measure the anti-proliferative potency of SBE against NSCLC and normal epithelial cells. Sphere formation assay and RQ-PCR were used to detect proliferation of cancer stemness cells and associated marker expression upon SBE incubation. Mechanistically, DARTS-WB and SPR were used to unveil binding target of SBE. Immunodeficient mice were implanted with patient derived tumor bulk for in vivo validation of anti-cancer effect of SBE. RESULTS: SBE selectively attenuated proliferation and stemness-like phenotypes of NSCLC cells rather than bronchial normal epithelial cells. Drug-protein interaction analysis revealed that SBE could directly bind with stem cell-specific transcription factor sex determining region Y-box 2 (SOX2) and interfere with the SOX2/SMO/GLI1 positive loop. In vivo assay using patient-derived xenografts (PDXs) model further proved that SBE diminished tumor growth and SOX2 expression in vivo. CONCLUSION: Our data indicate that SBE represses stemness-related features of NSCLC cells via targeting SOX2 and may serve as an alternative therapeutic option for clinic treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Células A549 , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Scutellaria , Receptor Smoothened/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/metabolismo
14.
J Thorac Oncol ; 16(1): 89-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927122

RESUMO

INTRODUCTION: Ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) encodes a master regulator of DNA methylation that has emerged as an epigenetic driver in human cancers. To date, no studies have evaluated UHRF1 expression in malignant pleural mesothelioma (MPM). This study was undertaken to explore the therapeutic potential of targeting UHRF1 in MPM. METHODS: Microarray, real-time quantitative reverse transcription-polymerase chain reaction, immunoblot, and immunohistochemistry techniques were used to evaluate UHRF1 expression in normal mesothelial cells (NMCs) cultured with or without asbestos, MPM lines, normal pleura, and primary MPM specimens. The impact of UHRF1 expression on MPM patient survival was evaluated using two independent databases. RNA-sequencing, proliferation, invasion, and colony formation assays, and murine xenograft experiments were performed to evaluate gene expression and growth of MPM cells after biochemical or pharmacologic inhibition of UHRF1 expression. RESULTS: UHRF1 expression was significantly higher in MPM lines and specimens relative to NMC and normal pleura. Asbestos induced UHRF1 expression in NMC. The overexpression of UHRF1 was associated with decreased overall survival in patients with MPM. UHRF1 knockdown reversed genomewide DNA hypomethylation, and inhibited proliferation, invasion, and clonogenicity of MPM cells, and growth of MPM xenografts. These effects were phenocopied by the repurposed chemotherapeutic agent, mithramycin. Biochemical or pharmacologic up-regulation of p53 significantly reduced UHRF1 expression in MPM cells. RNA-sequencing experiments exhibited the pleiotropic effects of UHRF1 down-regulation and identified novel, clinically relevant biomarkers of UHRF1 expression in MPM. CONCLUSIONS: UHRF1 is an epigenetic driver in MPM. These findings support the efforts to target UHRF1 expression or activity for mesothelioma therapy.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Camundongos , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/genética , Ubiquitina-Proteína Ligases
15.
Stem Cells ; 27(11): 2691-702, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19650037

RESUMO

Transcriptional control of stem cell genes is a critical step in differentiation of embryonic stem cells and in reprogramming of somatic cells into stem cells. Here we report that Lsh, a regulator of repressive chromatin at retrotransposons, also plays an important role in silencing of stem cell-specific genes such as Oct4. We found that CpG methylation is gained during in vitro differentiation of several stem cell-specific genes (in 11 of 12 promoter regions) and thus appears to be a common epigenetic mark. Lsh depletion prevents complete silencing of stem cell gene expression and moreover promotes the maintenance of stem cell characteristics in culture. Lsh is required for establishment of DNA methylation patterns at stem cell genes during differentiation, in part by regulating access of Dnmt3b to its genomic targets. Our results indicate that Lsh is involved in the control of stem cell genes and suggest that Lsh is an important epigenetic modulator during early stem cell differentiation.


Assuntos
DNA Helicases/metabolismo , Metilação de DNA , Inativação Gênica , Animais , Southern Blotting , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/genética , Fator de Crescimento Epidérmico/genética , Fator 3 de Diferenciação de Crescimento/genética , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Camundongos , Proteína Homeobox Nanog , Proteínas de Neoplasias/genética , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/genética , DNA Metiltransferase 3B
16.
Sci Rep ; 10(1): 18511, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093558

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Oncogene ; 39(4): 877-890, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31570787

RESUMO

Barrett's esophagus (BE) is associated with reflux and is implicated the development of esophageal adenocarcinoma (EAC). Apoptosis induces cell death through mitochondrial outer membrane permeabilization (MOMP), which is considered an irreversible step in apoptosis. Activation of MOMP to levels that fail to reach the apoptotic threshold may paradoxically promote cancer-a phenomenon called "Minority MOMP." We asked whether reflux-induced esophageal carcinogenesis occurred via minority MOMP and whether compensatory resistance mechanisms prevented cell death during this process. We exposed preneoplastic, hTERT-immortalized Barrett's cell, CP-C and CP-A, to the oncogenic bile acid, deoxycholic acid (DCA), for 1 year. Induction of minority MOMP was tested via comet assay, CyQuant, annexin V, JC-1, cytochrome C subcellular localization, caspase 3 activation, and immunoblots. We used bcl-2 homology domain-3 (BH3) profiling to test the mitochondrial apoptotic threshold. One-year exposure of Barrett's cells to DCA induced a malignant phenotype noted by clone and tumor formation. DCA promoted minority MOMP noted by minimal release of cytochrome C and limited caspase 3 activation, which resulted in DNA damage without apoptosis. Upregulation of the antiapoptotic protein, Mcl-1, ROS generation, and NF-κB activation occurred in conjunction with minority MOMP. Inhibition of ROS blocked minority MOMP and Mcl-1 upregulation. Knockdown of Mcl-1 shifted minority MOMP to complete MOMP as noted by dynamic BH3 profiling and increased apoptosis. Minority MOMP contributes to DCA induced carcinogenesis in preneoplastic BE. Mcl-1 provided a balance within the mitochondria that induced resistance complete MOMP and cell death. Targeting Mcl-1 may be a therapeutic strategy in EAC.


Assuntos
Apoptose , Esôfago de Barrett/patologia , Ácidos e Sais Biliares/farmacologia , Carcinogênese/patologia , Neoplasias Esofágicas/patologia , Mitocôndrias/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Esôfago de Barrett/tratamento farmacológico , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Citocromos c/metabolismo , Dano ao DNA , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Esôfago/efeitos dos fármacos , Esôfago/metabolismo , Esôfago/patologia , Fármacos Gastrointestinais/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais
18.
Clin Cancer Res ; 14(23): 7682-90, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19047094

RESUMO

PURPOSE: Signal transducer and activator of transcription 5 (STAT5) is activated in squamous cell carcinoma of the head and neck (SCCHN), where targeting of STAT5 inhibits tumor growth in vitro and in vivo. The role of STAT5 activation in carcinogenesis, tumor progression, and response to therapy remains incompletely understood. In this study, we investigated the effects of STAT5 activation on squamous epithelial carcinogenesis and response to therapy. EXPERIMENTAL DESIGN: The functional consequences of STAT5 activation in squamous epithelial carcinogenesis were examined using cells derived from normal (Het-1A) and transformed mucosal epithelial cells engineered to express constitutive-active mutants of STAT5. RESULTS: The growth rate of stable clones derived from both normal and transformed squamous epithelial cells expressing the constitutive-active STAT5 was increased. In SCCHN xenografts, tumor volumes were increased in constitutive-active STAT5 mutant cells compared with vector-transfected controls. Constitutive activation of STAT5 significantly increased cell migration and invasion through Matrigel, as well as the transforming efficiency of SCCHN cells in vitro, as assessed by soft agar assays. The constitutive-active STAT5 clones derived from SCCHN cells showed changes consistent with an epithelial-mesenchymal transition including decreased expression of E-cadherin and increased vimentin in comparison with control transfectants. In these cells, STAT5 activation was associated with resistance to cisplatin-mediated apoptosis and growth inhibition induced by the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. CONCLUSIONS: These results suggest that constitutive STAT5 signaling enhances tumor growth, invasion, and epithelial-to-mesenchymal transition in squamous epithelial carcinogenesis and may contribute to resistance to epidermal growth factor receptor tyrosine kinase inhibitor and chemotherapy.


Assuntos
Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Cabeça e Pescoço/patologia , Fator de Transcrição STAT5/metabolismo , Animais , Apoptose , Carcinoma de Células Escamosas/metabolismo , Movimento Celular/fisiologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Camundongos , Camundongos Nus , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT5/genética , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Chemother Pharmacol ; 81(5): 885-895, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29546459

RESUMO

PURPOSE: Sodium selenite (SS) has been widely reported to induce apoptosis in various cancer cell types. However, the underlying molecular mechanisms governing SS-mediated repression of lung cancer stem cells remain largely undefined. METHODS: In vitro assays of cell proliferation, clonal formation, apoptosis, migration and cancer stemness cell sphere formation were performed to examine the inhibitory effects of SS on lung adenocarcinoma (LAD) cells with or without the overexpression of SRY-related high-mobility-group box 2 (SOX2). RESULTS: SS significantly inhibited cell growth and induced apoptosis in LAD cells in a dose-dependent manner with marginal effects on normal epithelial cell HBEC. SS dramatically repressed expression of SOX2 and its upstream regulator GLI1 and strongly decreased stemness sphere formation in LAD cells at 10 µM. Forced expression of SOX2 significantly buffered anti-cancer effects of SS. CONCLUSIONS: Our results demonstrate that SS attenuates lung adenocarcinoma progression by repressing SOX2 and its upstream regulator GLI1, which suggests that SS may be a potential therapeutic drug candidate for lung cancer patients.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Selenito de Sódio/farmacologia , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Selenito de Sódio/uso terapêutico , Esferoides Celulares , Proteína GLI1 em Dedos de Zinco/metabolismo
20.
EBioMedicine ; 35: 204-221, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30146342

RESUMO

Cisplatin (DDP) resistance has become the leading cause of mortality in non-small cell lung cancer (NSCLC). miRNA dysregulation significantly contributes to tumor progression. In this study, we found that miR-495 was significantly downregulated in lung cancer tissue specimens. This study aimed to elucidate the functions, direct target genes, and molecular mechanisms of miR-495 in lung cancer. miR-495 downregulated its substrate UBE2C through direct interaction with UBE2C 3'- untranslated region. UBE2C is a proto-oncogene activated in lung cancer; however, its role in chemotherapeutic resistance is unclear. Herein, UBE2C expression levels were higher in DDP-resistant NSCLC cells; this was associated with the proliferation, invasion, and DDP resistance in induced cisplatin-resistant NSCLC cells. Furthermore, epithelial-mesenchymal transitions (EMT) contributed to DDP resistance. Moreover, UBE2C knockdown downregulated vimentin. In contrast, E-cadherin was upregulated. Importantly, miR-495 and UBE2C were associated with cisplatin resistance. We attempted to evaluate their effects on cell proliferation and cisplatin resistance. We also performed EMT, cell migration, and invasion assays in DDP-resistant NSCLC cells overexpressing miR-495 and under-expressing UBE2C. Furthermore, in silico assays coupled with western blotting and luciferase assays revealed that UBE2C directly binds to the 5'-UTR of the drug-resistance genes ABCG2 and ERCC1. Furthermore, miR-495 downregulated ABCG2 and ERCC1 via regulation of UBE2C. Together, the present results indicate that the miR495-UBE2C-ABCG2/ERCC1 axis reverses DDP resistance via downregulation of anti-drug genes and reducing EMT in DDP-resistant NSCLC cells.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Endonucleases/metabolismo , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Invasividade Neoplásica , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proto-Oncogene Mas , Estabilidade de RNA/genética , Transdução de Sinais/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA