Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Opt Express ; 32(7): 11010-11021, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570960

RESUMO

Achieving a broadband nonreciprocal device without gain and any external bias is very challenging and highly desirable for modern photonic technologies and quantum networks. Here we theoretically propose a passive and magnetic-free all-optical isolator for a femtosecond laser pulse by exploiting a new mechanism of unidirectional self-induced transparency, obtained with a nonlinear medium followed by a normal absorbing medium at one side. The transmission contrast between the forward and backward directions can reach 14.3 dB for a 2π - 5 fs laser pulse. The 20 dB bandwidth is about 56 nm, already comparable with a magneto-optical isolator. This work provides a new mechanism which may benefit non-magnetic isolation of ultrashort laser pulses.

2.
Opt Express ; 32(11): 20207-20217, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859136

RESUMO

Random numbers are at the heart of diverse fields, ranging from simulations of stochastic processes to classical and quantum cryptography. The requirement for true randomness in these applications has motivated various proposals for generating random numbers based on the inherent randomness of quantum systems. The generation of true random numbers with arbitrarily defined probability distributions is highly desirable for applications, but it is very challenging. Here we show that single-photon quantum walks can generate multi-bit random numbers with on-demand probability distributions, when the required "coin" parameters are found with the gradient descent (GD) algorithm. Our theoretical and experimental results exhibit high fidelity for various selected distributions. This GD-enhanced single-photon system provides a convenient way for building flexible and reliable quantum random number generators. Multi-bit random numbers are a necessary resource for high-dimensional quantum key distribution.

3.
Opt Express ; 32(4): 5898-5907, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439305

RESUMO

Quantum ghost image technique utilizing position or momentum correlations between entangled photons can realize nonlocal reconstruction of the image of an object. In this work, based on polarization entanglement, we experimentally demonstrate quantum ghost imaging of vector images by using a geometric phase object. We also provide a corresponding theoretical analysis. Additionally, we offer a geometrical optics path explanation of ghost imaging for vector fields. The proposed strategy offers new insights into the fundamental development of ghost imaging and also holds great promise for developing complex structured ghost imaging techniques. Our work expanding the principle of ghost imaging to spatially varying vector beams will lead to interesting developments of this field.

4.
Opt Express ; 31(22): 36836-36844, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017825

RESUMO

Order is one of the most important concepts to interpret various phenomena such as the emergence of turbulence and the life-evolution process. The generation of laser can also be treated as an ordering process in which the interaction between the laser beam and the gain medium leads to the correlation between photons in the output optical field. Here, we demonstrate experimentally in a hybrid Raman-laser-optomechanical system that an ordered Raman laser can be generated from an entropy-absorption process by a chaotic optomechanical resonator. When the optomechanical resonator is chaotic or disordered enough, the Raman-laser field is in an ordered lasing mode. This can be interpreted by the entropy transfer from the Raman-laser mode to the chaotic motion mediated by optomechanics. Different order parameters, such as the box-counting dimension, the maximal Lyapunov exponent, and the Kolmogorov entropy, are introduced to quantitatively analyze this entropy transfer process, by which we can observe the order transfer between the Raman-laser mode and the optomechanical resonator. Our study presents a new mechanism of laser generation and opens up new dimensions of research such as the modulation of laser by optomechanics.

5.
Opt Express ; 30(11): 19199-19211, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221704

RESUMO

It is a challenge for all-optical switching to simultaneous achieve ultralow power consumption, broad bandwidth and high extinction ratio. We experimentally demonstrate an ultralow-power all-optical switching by exploiting chiral interaction between light and optically active material in a Mach-Zehnder interferometer. We achieve switching extinction ratio of 20.0 ± 3.8 and 14.7 ± 2.8 dB with power cost of 66.1 ± 0.7 and 1.3 ± 0.1 fJ/bit, respectively. The bandwidth of our all-optical switching is about 4.2 GHz. Moreover, our all-optical switching has the potential to be operated at few-photon level. Our scheme paves the way towards ultralow-power and ultrafast all-optical information processing.

6.
Phys Rev Lett ; 128(8): 083604, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35275662

RESUMO

We propose an all-optical approach to achieve optical nonreciprocity on a chip by quantum squeezing one of two coupled resonator modes. By parametric pumping a χ^{(2)}-nonlinear resonator unidirectionally with a classical coherent field, we squeeze the resonator mode in a selective direction due to the phase-matching condition, and induce a chiral photon interaction between two resonators. Based on this chiral interresonator coupling, we achieve an all-optical diode and a three-port quasicirculator. By applying a second squeezed-vacuum field to the squeezed resonator mode, our nonreciprocal device also works for single-photon pulses. We obtain an isolation ratio of >40 dB for the diode and fidelity of >98% for the quasicirculator, and insertion loss of <1 dB for both. We also show that nonreciprocal transmission of strong light can be switched on and off by a relative weak pump light. This achievement implies a nonreciprocal optical transistor. Our protocol opens up a new route to achieve integrable all-optical nonreciprocal devices permitting chip-compatible optical isolation and nonreciporcal quantum information processing.

7.
Phys Rev Lett ; 128(20): 203602, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657886

RESUMO

We study a single-photon band structure in a one-dimensional coupled-resonator optical waveguide that chirally couples to an array of two-level quantum emitters (QEs). The chiral interaction between the resonator mode and the QE can break the time-reversal symmetry without the magneto-optical effect and an external or synthetic magnetic field. As a result, nonreciprocal single-photon edge states, band gaps, and flat bands appear. By using such a chiral QE coupled-resonator optical waveguide system, including a finite number of unit cells and working in the nonreciprocal band gap, we achieve frequency-multiplexed single-photon circulators with high fidelity and low insertion loss. The chiral QE-light interaction can also protect one-way propagation of single photons against backscattering. Our work opens a new door for studying unconventional photonic band structures without electronic counterparts in condensed matter and exploring its applications in the quantum regime.

8.
Opt Express ; 29(7): 9942-9959, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820157

RESUMO

We propose a scheme for converting a microwave (mw) single photon in a mw cavity to a flying optical photon. The conversion is realized by using a flying circular Rydberg atom, which plays a role of the "data bus" as an excellent memory to connect the mw and optical cavities. To link the energy levels of atom in optical domain and mw domain, we use fast decircularization method and three-photon Raman transition method. Thank to these low loss processes and the super long lifetime of circular Rydberg states, this scheme can efficiently convert single mw photons into the optical domain. Based on existing experiments and data, the conversion efficiency is simulated as 60%. The theoretical limit of the conversion efficiency is about 87%.

9.
Opt Express ; 29(11): 17613-17627, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154301

RESUMO

Exceptional points (EPs) have revealed a lot of fundamental physics and promise many important applications. The effect of system nonlinearity on the property of EPs is yet to be well studied. Here, we propose an optical system with nonlinear dissipation to achieve a nonreciprocal EP. Our system consists of a linear whispering-gallery-mode microresonator (WGMR) coupling to a WGMR with nonlinear dissipation. In our system, the condition of EP appearance is dependent on the field intensity in the nonlinear WGMR. Due to the chirality of intracavity field intensity, the EPs and the transmission of the system can be nonreciprocal. Our work may pave the way to exploit nonreciprocal EP for optical information processing.

10.
Opt Express ; 29(24): 40187-40193, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809365

RESUMO

Self-healing of an Airy beam during propagation is of fundamental interest and also promises important applications. Despite many studies of Airy beams in the quantum regime, it is unclear whether an Airy beam only including a single photon can heal after passing an obstacle because the photon may be blocked. Here we experimentally observe self-healing of a heralded single-photon Airy beam. Our observation implies that an Airy wave packet is robust against obstacle caused distortion and can restore even at the single-photon level.

11.
Opt Express ; 28(2): 1316-1329, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121845

RESUMO

We present efficient protocols for creating multipartite Greenberger-Horne-Zeilinger (GHZ) and W states of distant stationary qubits. The system nonuniformity and/or the non-ideal single-photon scattering usually limit the performance of entanglement creation, and result in the decrease of the fidelity and the efficiency in practical quantum information processing. By using linear optical elements, errors caused by the system nonuniformity and non-ideal photon scattering can be converted into heralded loss in our protocols. Thus, the fidelity of generated multipartite entangled states keeps unchanged and only the efficiency decreases. The GHZ state of distant stationary qubits is created in a parallel way that its generation efficiency considerably increases. In the protocol for creating the W state of N distant stationary qubits, an input single photon is prepared in a superposition state and sent into N paths parallelly. We use the two-spatial-mode interferences to eliminate the "which path" single-photon scattering "knowledge". As a result, the efficiency of creating the N-qubit W state is independent of the number of stationary qubits rather than exponentially decreases.

12.
Phys Rev Lett ; 125(12): 123901, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-33016716

RESUMO

Optical nonreciprocity is an essential property for a wide range of applications, such as building nonreciprocal optical devices that include isolators and circulators. The realization of optical nonreciprocity relies on breaking the symmetry associated with Lorentz reciprocity, which typically requires stringent conditions such as introducing a strong magnetic field or a high-finesse cavity with nonreciprocal coupling geometry. Here we discover that the collision effect of thermal atoms, which is undesirable for most studies, can induce broadband optical nonreciprocity. By exploiting the thermal atomic collision, we experimentally observe magnet-free and cavity-free optical nonreciprocity, which possesses a high isolation ratio, ultrabroad bandwidth, and low insertion loss simultaneously. The maximum isolation ratio is close to 40 dB, while the insertion loss is less than 1 dB. The bandwidth for an isolation ratio exceeding 20 dB is over 1.2 GHz, which is 2 orders of magnitude broader than typical resonance-enhanced optical isolators. Our work paves the way for the realization of high-performance optical nonreciprocal devices and provides opportunities for applications in integrated optics and quantum networks.

13.
Phys Rev Lett ; 124(15): 153601, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357035

RESUMO

Vector vortex beams simultaneously carrying spin and orbital angular momentum of light promise additional degrees of freedom for modern optics and emerging resources for both classical and quantum information technologies. The inherently infinite dimensions can be exploited to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build quantum computing machines in high-dimensional Hilbert space. So far, much progress has been made in the emission of vector vortex beams from a chip surface into free space; however, the generation of vector vortex beams inside a photonic chip has not been realized yet. Here, we demonstrate the first vector vortex beam emitter embedded in a photonic chip by using femtosecond laser direct writing. We achieve a conversion of vector vortex beams with an efficiency up to 30% and scalar vortex beams with an efficiency up to 74% from Gaussian beams. We also present an expanded coupled-mode model for understanding the mode conversion and the influence of the imperfection in fabrication. The fashion of embedded generation makes vector vortex beams directly ready for further transmission, manipulation, and emission without any additional interconnection. Together with the ability to be integrated as an array, our results may enable vector vortex beams to become accessible inside a photonic chip for high-capacity communication and high-dimensional quantum information processing.

14.
Phys Rev Lett ; 121(20): 203602, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500258

RESUMO

Optical nonlinearity has been widely used to try to produce optical isolators. However, this is very difficult to achieve due to dynamical reciprocity. Here, we show the use of the chiral cross-Kerr nonlinearity of atoms at room temperature to realize optical isolation, circumventing dynamical reciprocity. In our approach, the chiral cross-Kerr nonlinearity is induced by the thermal motion of N-type atoms. The resulting cross phase shift and absorption of a weak probe field are dependent on its propagation direction. This proposed optical isolator can achieve more than 30 dB of isolation ratio, with a low loss of less than 1 dB. By inserting this atomic medium in a Mach-Zehnder interferometer, we further propose a four-port optical circulator with a fidelity larger than 0.9 and an average insertion loss less than 1.6 dB. Using atomic vapor embedded in an on-chip waveguide, our method may provide chip-compatible optical isolation at the single-photon level of a probe field.

15.
Phys Rev Lett ; 116(2): 023601, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824538

RESUMO

Detecting a single photon without absorbing it is a long-standing challenge in quantum optics. All experiments demonstrating the nondestructive detection of a photon make use of a high quality cavity. We present a cavity-free scheme for nondestructive single-photon detection. By pumping a nonlinear medium we implement an interfield Rabi oscillation which leads to a ∼π phase shift on a weak probe coherent laser field in the presence of a single signal photon without destroying the signal photon. Our cavity-free scheme operates with a fast intrinsic time scale in comparison with similar cavity-based schemes. We implement a full real-space multimode numerical analysis of the interacting photonic modes and confirm the validity of our nondestructive scheme in the multimode case.

16.
Front Immunol ; 15: 1348391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469312

RESUMO

Background: Rhinitis is a complex condition characterized by various subtypes, including allergic rhinitis (AR), which involves inflammatory reactions. The objective of this research was to identify crucial genes associated with inflammatory response that are relevant for the treatment and diagnosis of AR. Methods: We acquired the AR-related expression datasets (GSE75011 and GSE50223) from the Gene Expression Omnibus (GEO) database. In GSE75011, we compared the gene expression profiles between the HC and AR groups and identified differentially expressed genes (DEGs). By intersecting these DEGs with inflammatory response-related genes (IRGGs), resulting in the identification of differentially expressed inflammatory response-related genes (DIRRGs). Afterwards, we utilized the protein-protein interaction (PPI) network, machine learning algorithms, namely least absolute shrinkage and selection operator (LASSO) regression and random forest, to identify the signature markers. We employed a nomogram to evaluate the diagnostic effectiveness of the method, which has been confirmed through validation using GSE50223. qRT-PCR was used to confirm the expression of diagnostic genes in clinical samples. In addition, a consensus clustering method was employed to categorize patients with AR. Subsequently, extensive investigation was conducted to explore the discrepancies in gene expression, enriched functions and pathways, as well as potential therapeutic drugs among these distinct subtypes. Results: A total of 22 DIRRGs were acquired, which participated in pathways including chemokine and TNF signaling pathway. Additionally, machine learning algorithms identified NFKBIA, HIF1A, MYC, and CCRL2 as signature genes associated with AR's inflammatory response, indicating their potential as AR biomarkers. The nomogram based on feature genes could offer clinical benefits to AR patients. We discovered two molecular subtypes, C1 and C2, and observed that the C2 subtype exhibited activation of immune- and inflammation-related pathways. Conclusions: NFKBIA, HIF1A, MYC, and CCRL2 are the key genes involved in the inflammatory response and have the strongest association with the advancement of disease in AR. The proposed molecular subgroups could provide fresh insights for personalized treatment of AR.


Assuntos
Rinite Alérgica , Humanos , Rinite Alérgica/diagnóstico , Rinite Alérgica/tratamento farmacológico , Rinite Alérgica/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Algoritmos , Análise por Conglomerados , Consenso
17.
Nat Commun ; 15(1): 1119, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321010

RESUMO

The metasurface platform with time-varying characteristics has emerged as a promising avenue for exploring exotic physics associated with Floquet materials and for designing photonic devices like linear frequency converters. However, the limited availability of materials with ultrafast responses hinders their applications in the terahertz range. Here we present a time-varying metasurface comprising an array of superconductor-metal hybrid meta-molecules. Each meta-molecule consists of two meta-atoms that are "bonded" together by double superconducting microbridges. Through experimental investigations, we demonstrate high-efficiency linear terahertz frequency conversion by rapidly breaking the bond using a coherent ultrashort terahertz pump pulse. The frequency and relative phase of the converted wave exhibit strong dependence on the pump-probe delay, indicating phase controllable wave conversion. The dynamics of the meta-molecules during the frequency conversion process are comprehensively understood using a time-varying coupled mode model. This research not only opens up new possibilities for developing innovative terahertz sources but also provides opportunities for exploring topological dynamics and Floquet physics within metasurfaces.

18.
Opt Express ; 21(22): 25619-31, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24216787

RESUMO

Using a technique, analogous to coherent population trapping in an atomic system, we propose schemes to create transverse light propagation violating left-right symmetry in a photonic circuit consisting of three coupled waveguides. The frequency windows for the symmetry breaking of the left-right energy flow span over 80 nm. Our proposed system only uses linear passive optical materials and is easy to integrate on a chip.

19.
Opt Express ; 20(24): 27198-211, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187575

RESUMO

We theoretically study the deterministic generation of photon Fock states on-demand using a protocol based on a Jaynes Cummings quantum random walk which includes damping. We then show how each of the steps of this protocol can be implemented in a low temperature solid-state quantum system with a Nitrogen-Vacancy centre in a nanodiamond coupled to a nearby high-Q optical cavity. By controlling the coupling duration between the NV and the cavity via the application of a time dependent Stark shift, and by increasing the decay rate of the NV via stimulated emission depletion (STED) a Fock state with high photon number can be generated on-demand. Our setup can be integrated on a chip and can be accurately controlled.


Assuntos
Luz , Iluminação/instrumentação , Nanodiamantes/química , Dispositivos Ópticos , Fótons , Refratometria/instrumentação , Espalhamento de Radiação , Desenho Assistido por Computador , Desenho de Equipamento , Dinâmica não Linear
20.
Sci Adv ; 7(12)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33741596

RESUMO

Nonreciprocal devices operating at the single-photon level are fundamental elements for quantum technologies. Because magneto-optical nonreciprocal devices are incompatible for magnetic-sensitive or on-chip quantum information processing, all-optical nonreciprocal isolation is highly desired, but its realization at the quantum level is yet to be accomplished at room temperature. Here, we propose and experimentally demonstrate two regimes, using electromagnetically induced transparency (EIT) or a Raman transition, for all-optical isolation with warm atoms. We achieve an isolation of 22.52 ± 0.10 dB and an insertion loss of about 1.95 dB for a genuine single photon, with bandwidth up to hundreds of megahertz. The Raman regime realized in the same experimental setup enables us to achieve high isolation and low insertion loss for coherent optical fields with reversed isolation direction. These realizations of single-photon isolation and coherent light isolation at room temperature are promising for simpler reconfiguration of high-speed classical and quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA