Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 143: 85-98, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644026

RESUMO

Ciprofloxacin (CIP) is a commonly used antibiotic in the fluoroquinolone group and is widely used in medical and veterinary medicine disciplines to treat bacterial infections. When CIP is discharged into the sewage system, it cannot be removed by a conventional wastewater treatment plant because of its recalcitrant characteristics. In this study, boron-doped diamond anode and persulfate were used to degrade CIP in an aquatic solution by creating an electrochemically activated persulfate (EAP) process. Iron was added to the system as a coactivator and the process was called EAP+Fe. The effects of independent variables, including pH, Fe2+, persulfate concentration, and electrolysis time on the system were optimized using the response surface methodology. The results showed that the EAP+Fe process removed 94% of CIP under the following optimum conditions: A pH of 3, persulfate/Fe2+ concentration of 0.4 mmol/L, initial CIP concentration 30 mg/L, and electrolysis time of 12.64 min. CIP removal efficiency was increased from 65.10% to 94.35% by adding Fe2+ as a transition metal. CIP degradation products, 7 pathways, and 78 intermediates of CIP were studied, and three of those intermediates (m/z 298, 498, and 505) were reported. The toxicological analysis based on toxicity estimation software results indicated that some degradation products of CIP were toxic to targeted animals, including fathead minnow, Daphnia magna, Tetrahymena pyriformis, and rats. The optimum operation costs were similar in EAP and EAP+Fe processes, approximately 0.54 €/m3.


Assuntos
Antibacterianos , Ciprofloxacina , Poluentes Químicos da Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Antibacterianos/química , Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Animais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Técnicas Eletroquímicas , Sulfatos/química
2.
Environ Monit Assess ; 195(6): 733, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231226

RESUMO

This study aims to determine the potential health risks (Carcinogenic and non-carcinogenic) of metal(loid)s in sewage sludge samples for agricultural purposes. For this purpose, sewage sludge was collected annually from a domestic wastewater treatment plant, and metal(loid)s were determined by ICP-MS. Metal(loid)s concentration in sludge samples was within the legal standards. No statically significant seasonal variation of metal(loid)s were observed. The total cancer risk and the hazard index (HI) of metal(loid)s through ingestion, dermal, and inhalation exposure from sewage sludge samples were estimated. The main risk contributor to metal(loid)s were Pb, Zn, and Ni. The average HI values were 0.75 (child) and 0.09 (adult). The total carcinogenic risk (TCR) for child and adult was found to be 3.43 × 10-5 and 2.31 × 10-5, respectively. EPA risk assessment model and Monte Carlo Simulation were used to estimate probability and sensitivity distributions for carcinogenic and non-carcinogenic risks. Sensitivity analysis showed that metal(loid)s concentration, exposure duration, exposure frequency, and body weight significantly affect total health risk. The sewage sludge can be applied safely in agriculture due to no important carcinogenic and non-carcinogenic risk for child and adult.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Metais Pesados/análise , Esgotos/análise , Monitoramento Ambiental , Cidades , Medição de Risco , China , Poluentes do Solo/análise , Metaloides/análise
3.
Environ Pollut ; 330: 121680, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149253

RESUMO

The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.


Assuntos
Fenômenos Biológicos , Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Esgotos , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 331(Pt 1): 121864, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225080

RESUMO

The electrocoagulation (EC) and electrooxidation (EO) processes are employed widely as treatment processes for industrial, agricultural, and domestic wastewater. In the present study, EC, EO, and a combination of EC + EO were evaluated as methods of removing pollutants from shrimp aquaculture wastewater. Process parameters for electrochemical processes, including current density, pH, and operation time were studied, and response surface methodology was employed to determine the optimum condition for the treatment. The effectiveness of the combined EC + EO process was assessed by measuring the reduction of targeted pollutants, including dissolved inorganic nitrogen species, total dissolved nitrogen (TDN), phosphate, and soluble chemical oxygen demand (sCOD). Using EC + EO process, more than 87% reduction was achieved for inorganic nitrogen, TDN, and phosphate, while 76.2% reduction was achieved for sCOD. These results demonstrated that the combined EC + EO process provided better treatment performance in removing the pollutants from shrimp wastewater. The kinetic results suggested that the effects of pH, current density, and operation time were significant on the degradation process when using iron and aluminum electrodes. Comparatively, iron electrodes were effective at reducing the half-life (t1/2) of each of the pollutants in the samples. The application of the optimized process parameters on shrimp wastewater could be used for large-scale treatment in aquaculture.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodos , Resíduos Industriais/análise , Análise da Demanda Biológica de Oxigênio , Eletrodos , Aquicultura , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA