Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Cell Res ; 429(2): 113672, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37339729

RESUMO

Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.


Assuntos
Proteínas de Ciclo Celular , Pontos de Checagem da Fase M do Ciclo Celular , Humanos , Proteínas de Ciclo Celular/genética , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Temperatura , Fuso Acromático/metabolismo , Resposta ao Choque Térmico , Mitose
2.
Proc Natl Acad Sci U S A ; 117(25): 14365-14375, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513690

RESUMO

Proper resolution of inflammation is vital for repair and restoration of homeostasis after tissue damage, and its dysregulation underlies various noncommunicable diseases, such as cardiovascular and metabolic diseases. Macrophages play diverse roles throughout initial inflammation, its resolution, and tissue repair. Differential metabolic reprogramming is reportedly required for induction and support of the various macrophage activation states. Here we show that a long noncoding RNA (lncRNA), lncFAO, contributes to inflammation resolution and tissue repair in mice by promoting fatty acid oxidation (FAO) in macrophages. lncFAO is induced late after lipopolysaccharide (LPS) stimulation of cultured macrophages and in Ly6Chi monocyte-derived macrophages in damaged tissue during the resolution and reparative phases. We found that lncFAO directly interacts with the HADHB subunit of mitochondrial trifunctional protein and activates FAO. lncFAO deletion impairs resolution of inflammation related to endotoxic shock and delays resolution of inflammation and tissue repair in a skin wound. These results demonstrate that by tuning mitochondrial metabolism, lncFAO acts as a node of immunometabolic control in macrophages during the resolution and repair phases of inflammation.


Assuntos
Ácidos Graxos/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Subunidade beta da Proteína Mitocondrial Trifuncional/genética , RNA Longo não Codificante/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Camundongos , Subunidade beta da Proteína Mitocondrial Trifuncional/metabolismo , Oxirredução , Cultura Primária de Células , RNA Longo não Codificante/genética , Pele/imunologia , Pele/lesões , Cicatrização/imunologia
3.
FASEB J ; 35(1): e21242, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368671

RESUMO

When cells with excess DNA, such as tetraploid cells, undergo cell division, it can contribute to cellular transformation via asymmetrical chromosome segregation-generated genetic diversity. Cell cycle progression of tetraploid cells is suppressed by large tumor suppressor 2 (LATS2) kinase-induced inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP). We recently reported that the oncogene v-Src induces tetraploidy and promotes cell cycle progression of tetraploid cells by suppressing LATS2 activity. We explore here the mechanism by which v-Src suppresses LATS2 activity and the role of LATS2 in v-Src-expressing cells. LATS2 was directly phosphorylated by v-Src and the proto-oncogene c-Src, resulting in decreased LATS2 kinase activity. This kinase-deficient LATS2 accumulated in a YAP transcriptional activity-dependent manner, and knockdown of either LATS2 or the LATS2-binding partner moesin-ezrin-radixin-like protein (Merlin) accelerated v-Src-induced membrane bleb formation. Upon v-Src expression, the interaction of Merlin with LATS2 was increased possibly due to a decrease in Merlin phosphorylation at Ser518, the dephosphorylation of which is required for the open conformation of Merlin and interaction with LATS2. LATS2 was colocalized with Merlin at the plasma membrane in a manner that depends on the Merlin-binding region of LATS2. The bleb formation in v-Src-expressing and LATS2-knockdown cells was rescued by the reexpression of wild-type or kinase-dead LATS2 but not the LATS2 mutant lacking the Merlin-binding region. These results suggest that the kinase-deficient LATS2 plays a role with Merlin at the plasma membrane in the maintenance of cortical rigidity in v-Src-expressing cells, which may cause tumor suppression.


Assuntos
Estruturas da Membrana Celular/enzimologia , Proteína Oncogênica pp60(v-src)/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Estruturas da Membrana Celular/genética , Células HCT116 , Células HT29 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteína Oncogênica pp60(v-src)/genética , Proteínas Serina-Treonina Quinases/genética , Proto-Oncogene Mas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
4.
J Cell Mol Med ; 25(3): 1677-1687, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465289

RESUMO

v-Src oncogene causes cell transformation through its strong tyrosine kinase activity. We have revealed that v-Src-mediated cell transformation occurs at a low frequency and it is attributed to mitotic abnormalities-mediated chromosome instability. v-Src directly phosphorylates Tyr-15 of cyclin-dependent kinase 1 (CDK1), thereby causing mitotic slippage and reduction in Eg5 inhibitor cytotoxicity. However, it is not clear whether v-Src modifies cytotoxicities of the other anticancer drugs targeting cell division. In this study, we found that v-Src restores cancer cell viability reduced by various microtubule-targeting agents (MTAs), although v-Src does not alter cytotoxicity of DNA-damaging anticancer drugs. v-Src causes mitotic slippage of MTAs-treated cells, consequently generating proliferating tetraploid cells. We further demonstrate that v-Src also restores cell viability reduced by a polo-like kinase 1 (PLK1) inhibitor. Interestingly, treatment with Aurora kinase inhibitor strongly induces cell death when cells express v-Src. These results suggest that the v-Src modifies cytotoxicities of anticancer drugs targeting cell division. Highly activated Src-induced resistance to MTAs through mitotic slippage might have a risk to enhance the malignancy of cancer cells through the increase in chromosome instability upon chemotherapy using MTAs.


Assuntos
Antineoplásicos/farmacologia , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteína Oncogênica pp60(v-src)/metabolismo , Biomarcadores , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Imunofenotipagem , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Moduladores de Tubulina/farmacologia , Quinase 1 Polo-Like
5.
J Cell Biochem ; 122(12): 1958-1967, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617313

RESUMO

The mammalian HSP105/110 family consists of four members, including Hsp105 and Apg-1, which function as molecular chaperones. Recently, we reported that Hsp105 knockdown increases sensitivity to the DNA-damaging agent Adriamycin but decreases sensitivity to the microtubule-targeting agent paclitaxel. However, whether the other Hsp105/110 family proteins have the same functional property is unknown. Here, we show that Apg-1 has different roles from Hsp105 in cell proliferation, cell division, and drug sensitivity. We generated the Apg-1-knockdown HeLa S3 cells by lentiviral expression of Apg-1-targeting short hairpin RNA. Knockdown of Apg-1 but not Hsp105 decreased cell proliferation. Apg-1 knockdown increased cell death upon Adriamycin treatment without affecting paclitaxel sensitivity. The cell synchronization experiment suggests that Apg-1 functions in mitotic progression at a different mitotic subphase from Hsp105, which cause difference in paclitaxel sensitivity. Since Apg-1 is overexpressed in certain types of tumors, Apg-1 may become a potential therapeutic target for cancer treatment without causing resistance to the microtubule-targeting agents.


Assuntos
Divisão Celular , Resistencia a Medicamentos Antineoplásicos , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas de Choque Térmico HSP110/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética
6.
Exp Cell Res ; 395(2): 112207, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750331

RESUMO

Cell division is a tightly regulated, essential process for cell proliferation. Very recently, we reported that EphA2 is phosphorylated at Ser897, via the Cdk1/MEK/ERK/RSK pathway, during M phase and contributes to proper M-phase progression by maintaining cortical rigidity via the EphA2pSer897/ephexin4/RhoG pathway. Here, we show that EphA2 kinase activity is dispensable for M-phase progression. Although EphA2 knockdown delayed this progression, the delay was rescued by an EphA2 mutant expression with an Asp739 to Asn substitution, as well as by wild-type EphA2. Western blotting analysis confirmed that the Asp739Asn mutant lost its EphA2 kinase activity. Like wild-type EphA2, the Asp739Asn mutant was localized to the plasma membrane irrespective of cell cycle. While RhoG localization to the plasma membrane was decreased in EphA2 knockdown cells, it was rescued by re-expression of wild-type EphA2 but not via the mutant containing the Ser897 to Ala substitution. This confirmed our recent report that phosphorylation at Ser897 is responsible for RhoG localization to the plasma membrane. In agreement with the M-phase progression's rescue effect, the Asp739Asn mutant rescued RhoG localization in EphA2 knockdown cells. These results suggest that EphA2 regulates M-phase progression in a manner independent of its kinase activity.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Efrina-A2/metabolismo , Proteína Quinase CDC2/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfosserina/metabolismo , Receptor EphA2 , Transdução de Sinais/fisiologia
7.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071893

RESUMO

Insulin-like growth factor 1 receptor (IGF1R), a receptor-type tyrosine kinase, transduces signals related to cell proliferation, survival, and differentiation. We recently reported that OSI-906, an IGF1R inhibitor, in combination with the Aurora B inhibitor ZM447439 suppresses cell proliferation. However, the mechanism underlying this suppressive effect is yet to be elucidated. In this study, we examined the effects of combination treatment with OSI-906 and ZM447439 on cell division, so as to understand how cell proliferation was suppressed. Morphological analysis showed that the combination treatment generated enlarged cells with aberrant nuclei, whereas neither OSI-906 nor ZM447439 treatment alone caused this morphological change. Flow cytometry analysis indicated that over-replicated cells were generated by the combination treatment, but not by the lone treatment with either inhibitors. Time-lapse imaging showed mitotic slippage following a severe delay in chromosome alignment and cytokinesis failure with furrow regression. Furthermore, in S-trityl-l-cysteine-treated cells, cyclin B1 was precociously degraded. These results suggest that the combination treatment caused severe defect in the chromosome alignment and spindle assembly checkpoint, which resulted in the generation of over-replicated cells. The generation of over-replicated cells with massive aneuploidy may be the cause of reduction of cell viability and cell death. This study provides new possibilities of cancer chemotherapy.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Ciclina B1/metabolismo , Imidazóis/farmacologia , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteólise , Quinazolinas/farmacologia , Receptor IGF Tipo 1/metabolismo
8.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033461

RESUMO

The insulin-like growth factor 1 receptor (IGF1R) is a receptor-type tyrosine kinase that transduces signals related to cell proliferation, differentiation, and survival. IGF1R expression is often misregulated in tumor cells, but the relevance of this for cancer progression remains unclear. Here, we examined the impact of IGF1R inhibition on cell division. We found that siRNA-mediated knockdown of IGF1R from HeLa S3 cells leads to M-phase delays. Although IGF1R depletion causes partial exclusion of FoxM1 from the nucleus, quantitative real-time PCR revealed that the transcription of M-phase regulators is not affected by decreased levels of IGF1R. Moreover, a similar delay in M phase was observed following 2 h of incubation with the IGF1R inhibitors OSI-906 and NVP-ADW742. These results suggest that the M-phase delay observed in IGF1R-compromised cells is not caused by altered expression of mitotic regulators. Live-cell imaging revealed that both prolonged prometaphase and prolonged metaphase underlie the delay and this can be abrogated by the inhibition of Mps1 with AZ3146, suggesting activation of the Spindle Assembly Checkpoint when IGF1R is inhibited. Furthermore, incubation with the Aurora B inhibitor ZM447439 potentiated the IGF1R inhibitor-induced suppression of cell proliferation, opening up new possibilities for more effective cancer chemotherapy.


Assuntos
Aurora Quinase B/genética , Divisão Celular/genética , Proliferação de Células/genética , Receptor IGF Tipo 1/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , Imidazóis/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Quinazolinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
9.
J Biol Chem ; 292(5): 1648-1665, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27998981

RESUMO

Src-family tyrosine kinases are widely expressed in many cell types and participate in a variety of signal transduction pathways. Despite the significance of Src in suppression of apoptosis, its mechanism remains poorly understood. Here we show that Src acts as an effector for Ku70-dependent suppression of apoptosis. Inhibition of endogenous Src activity promotes UV-induced apoptosis, which is impaired by Ku70 knockdown. Src phosphorylates Ku70 at Tyr-530, being close to the possible acetylation sites involved in promotion of apoptosis. Src-mediated phosphorylation of Ku70 at Tyr-530 decreases acetylation of Ku70, whereas Src inhibition augments acetylation of Ku70. Importantly, knockdown-rescue experiments with stable Ku70 knockdown cells show that the nonphosphorylatable Y530F mutant of Ku70 reduces the ability of Ku70 to suppress apoptosis accompanied by augmentation of Ku70 acetylation. Our results reveal that Src plays a protective role against hyperactive apoptotic cell death by reducing apoptotic susceptibility through phosphorylation of Ku70 at Tyr-530.


Assuntos
Apoptose , Autoantígeno Ku/metabolismo , Quinases da Família src/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Autoantígeno Ku/genética , Mutação de Sentido Incorreto , Fosforilação/genética , Quinases da Família src/genética
10.
Biol Pharm Bull ; 41(3): 445-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491222

RESUMO

Cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA is a variant isoform of the liver-type OATP1B3. Because Ct-OATP1B3 mRNA shows an excellent cancer-specific expression profile in colorectal cancer (CRC), and that its expression levels are associated with CRC prognosis, it holds the potential to become a useful CRC detection and diagnosis biomarker. While the potential is currently justified only at the tissue level, if existence of Ct-OATP1B3 mRNA in CRC-derived extracellular vesicles (EVs) is validated, the findings could enhance its translational potential as a CRC detection and diagnosis biomarker. Therefore, this study aims at proving that Ct-OATP1B3 mRNA exists in CRC-derived EVs, and can be detected using serum specimens. To examine the possibility of Ct-OATP1B3 mRNA being existed in extracellular milieu, we isolated EVs from the human CRC (HCT116, HT-29, and SW480) cell lines, and prepared their cDNAs. The RT-PCR results showed that Ct-OATP1B3 mRNA was clearly present in EVs derived from the human CRC cell lines. Then, in order to further explore the possibility that Ct-OATP1B3 mRNA in CRC-derived EVs can be detected in serum, we isolated serum EVs derived from human CRC xenograft mice, and then performed RT-PCR. The results showed that Ct-OATP1B3 mRNA could be found in all serum EV and CRC tissue samples of the mice examined. Collectively, our findings, which show that Ct-OATP1B3 mRNA exists in EVs and can be detected in (at least) mouse serum, strengthen the potential use of Ct-OATP1B3 mRNA as a serum-based CRC biomarker.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/sangue , Vesículas Extracelulares/metabolismo , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Neoplásico/sangue , RNA Neoplásico/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/biossíntese
11.
Biochem Biophys Res Commun ; 490(3): 1045-1051, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28666867

RESUMO

c-Abl is a non-receptor-type tyrosine kinase that plays an important role in cell proliferation, migration, apoptosis, and fibrosis. Furthermore, although c-Abl is involved in transforming growth factor-ß (TGF-ß) signaling, its molecular functions in TGF-ß signaling are not fully understood. Here, we found that c-Abl phosphorylates SKI-interacting protein (SKIP), a nuclear cofactor of the transcription factor Smad3. The c-Abl inhibitor imatinib suppressed TGF-ß-induced expression of Smad3 targets as well as SKIP/Smad3 interaction. TGF-ß-stimulation induced tyrosine phosphorylation of SKIP, and this phosphorylation was suppressed by imatinib. Tyr292, Tyr430, and Tyr433 residues in SKIP were shown to be involved in c-Abl-mediated phosphorylation. Phosphomimetic glutamic acid substitution at Tyr292 in SKIP enhanced, whereas its phospho-dead phenylalanine substitution attenuated TGF-ß-induced SKIP/Smad3 interaction. Moreover, the phosphomimetic mutant of SKIP augmented transcriptional activity of Smad3. Taken together, these results suggest that c-Abl phosphorylates SKIP mainly at Tyr292 and promotes SKIP/Smad3 interaction for the full activation of TGF-ß/Smad3 signaling.


Assuntos
Coativadores de Receptor Nuclear/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tirosina/metabolismo , Células A549 , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Fosforilação , Mapas de Interação de Proteínas
12.
Biol Pharm Bull ; 40(11): 1968-1975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093346

RESUMO

Anaplastic lymphoma kinase (ALK) is a receptor-type tyrosine kinase that promotes cell growth upon stimulation with ligands such as midkine and pleiotrophin. Recently, a truncated isoform of ALK was identified in a variety of tumors. This isoform is expressed from a novel ALK transcript initiated from a de novo alternative transcription initiation (ATI) site in ALK intron 19 (referred to as ALKATI). ALKATI, which consists of only the intracellular kinase domain, localizes to the nucleus as well as the cytoplasm. However, its nuclear role is unknown. In this study, we determined that ALKATI promoted chromatin structural changes in the nucleus in a kinase activity-dependent manner. We found that expression of ALKATI increased the level of the heterochromatin marker Lys9 tri-methylated histone H3. In addition, we demonstrated that ALKATI phosphorylated the nuclear protein A-kinase anchoring protein 8 (AKAP8) and altered its subcellular localization from the insoluble fraction to the soluble fraction. These results suggest that ALKATI induces chromatin structural changes and heterochromatinization through phosphorylation of AKAP8 in the nucleus.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Processamento Alternativo , Quinase do Linfoma Anaplásico , Núcleo Celular/genética , Células HeLa , Heterocromatina/genética , Histonas/metabolismo , Humanos , Íntrons/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Domínios Proteicos/genética , Receptores Proteína Tirosina Quinases/genética , Sítio de Iniciação de Transcrição
13.
J Biol Chem ; 290(17): 10891-904, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25770215

RESUMO

Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Matriz Nuclear/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Substituição de Aminoácidos , Cromatina/genética , Células HeLa , Humanos , Mutação de Sentido Incorreto , Matriz Nuclear/genética , Fosforilação/fisiologia , Proteínas Tirosina Quinases/genética
14.
J Cell Biochem ; 117(4): 894-903, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26365631

RESUMO

The mitotic spindle is the major piece of cellular machinery essential for faithful chromosome segregation. Whereas Fyn, a member of Src-family kinases, is known to be localized to the meiotic and mitotic spindle microtubules, the role of Fyn in mitotic spindle formation has not yet been completely elucidated. In this study, we studied the role of Fyn in spindle formation and effects on M-phase progression. Re-expression of Fyn induced increases in the fluorescence intensity of mitotic spindle microtubules in SYF cells having triple knock-out mutations of c-Src, c-Yes, and Fyn. Cold treatment results showed that Fyn increases the maximum length of microtubules in HeLa S3 cells in a manner dependent on Fyn kinase activity. Complete depolymerization of microtubules under cold treatment and the following release into 37 °C revealed that the increase in the microtubule length in Fyn-expressing cells may be attributed to the promotion of microtubule polymerization. After cold treatment, Fyn promotes the accumulation of EB1, which is a plus-end tracking protein and facilitates microtubule growth, in a manner dependent on the kinase activity. Furthermore, Fyn accelerates the M phase progression of cells from nocodazole arrest. These results suggest that Fyn facilitates mitotic spindle formation through the increase in microtubule polymerization, resulting in the acceleration of M-phase progression.


Assuntos
Fibroblastos/metabolismo , Microtúbulos/metabolismo , Mitose , Proteínas Proto-Oncogênicas c-fyn/genética , Fuso Acromático/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Segregação de Cromossomos , Temperatura Baixa , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Microtúbulos/ultraestrutura , Polimerização , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-yes/genética , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transdução de Sinais , Fuso Acromático/ultraestrutura , Quinases da Família src/genética , Quinases da Família src/metabolismo
15.
Biochem J ; 471(1): 67-77, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26217035

RESUMO

The non-receptor-type tyrosine kinase c-Abl functions as a cytoplasmic signal transducer upon activation of cell-surface receptors. c-Abl is also involved in DDR (DNA-damage response), which is initiated in the nucleus, whereas its molecular functions in DDR are not fully understood. In the present study, we found that c-Abl phosphorylates JunB, a member of the AP-1 (activator protein 1) transcription factor family. Because JunB was suggested to be involved in DDR, we analysed the role of c-Abl-mediated phosphorylation of JunB in DDR. We first analysed phosphorylation sites of JunB and found that c-Abl majorly phosphorylates JunB at Tyr(173), Tyr(182) and Tyr(188). Because c-Abl promotes expression of the cyclin-dependent kinase inhibitor p21 upon stimulation with the DNA-damaging agent Adriamycin (doxorubicin), we analysed the involvement of JunB in Adriamycin-induced p21 expression. We found that JunB suppresses p21 induction through inhibition of its promoter activity. The phosphomimetic JunB, which was generated by glutamic acid substitutions at the phosphorylation sites, failed to repress p21 induction. Recruitment of JunB to the p21 promoter was promoted by Adriamycin stimulation and was further enhanced by co-treatment with the c-Abl inhibitor imatinib. The phosphomimetic glutamic acid substitutions in JunB or Adriamycin treatment impaired the JunB-c-Fos transcription factor complex formation. Taken together, these results suggest that, although JunB represses p21 promoter activity, c-Abl phosphorylates JunB and conversely inhibits its suppressive role on p21 promoter activity upon Adriamycin stimulation. Therefore JunB is likely to be a key target of c-Abl in expression of p21 in Adriamycin-induced DDR.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Doxorrubicina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/metabolismo , Fatores de Transcrição/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA , Células HeLa , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição/genética
16.
J Biol Chem ; 289(9): 5730-46, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24421316

RESUMO

Mimosine is an effective cell synchronization reagent used for arresting cells in late G1 phase. However, the mechanism underlying mimosine-induced G1 cell cycle arrest remains unclear. Using highly synchronous cell populations, we show here that mimosine blocks S phase entry through ATM activation. HeLa S3 cells are exposed to thymidine for 15 h, released for 9 h by washing out the thymidine, and subsequently treated with 1 mM mimosine for a further 15 h (thymidine → mimosine). In contrast to thymidine-induced S phase arrest, mimosine treatment synchronizes >90% of cells at the G1-S phase boundary by inhibiting the transition of the prereplication complex to the preinitiation complex. Mimosine treatment activates ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint signaling without inducing DNA damage. Inhibition of ATM activity is found to induce mimosine-arrested cells to enter S phase. In addition, ATM activation by mimosine treatment is mediated by reactive oxygen species (ROS). These results suggest that, upon mimosine treatment, ATM blocks S phase entry in response to ROS, which prevents replication fork stalling-induced DNA damage.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Fase G1/efeitos dos fármacos , Mimosina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fase S/efeitos dos fármacos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Células COS , Chlorocebus aethiops , Fase G1/genética , Células HeLa , Humanos , Fase S/genética
17.
J Cell Biochem ; 116(6): 954-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25560148

RESUMO

Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Interferência de RNA , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
18.
Cell Biol Int ; 39(4): 446-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25561363

RESUMO

c-Abl is a non-receptor-type tyrosine kinase that regulates various cellular events, including cell proliferation, differentiation, and apoptosis, through phosphorylation of cytoplasmic and nuclear targets. Although we showed that c-Abl induces histone deacetylation, the molecular mechanisms of this phenomenon are largely unknown. Here, we analyzed the effect of c-Abl on the expression of histone deacetylase 1 (HDAC1), because c-Abl was shown to be involved in maintenance of nuclear protein levels of HDAC1. Co-transfection of HDAC1 with c-Abl increased the levels of HDAC1 protein in a kinase activity-dependent manner without affecting its mRNA levels. Treatment with the proteasome inhibitor MG132 increased protein levels of HDAC1 in cells transfected with HDAC1 but not in cells co-transfected with HDAC1 and c-Abl. Among class I HDACs, knockdown of endogenous c-Abl preferentially suppressed endogenous protein levels of HDAC1, suggesting that c-Abl stabilizes HDAC1 protein by inhibiting its proteasomal degradation. Subcellular fractionation showed that the stabilization of HDAC1 by c-Abl occurred in the nucleus. Despite the fact that HDAC1 was phosphorylated by co-expression with c-Abl, stabilization of HDAC1 by c-Abl was not affected by mutations in its sites phosphorylated by c-Abl. Co-expression with HDAC1 and nuclear-targeted c-Abl did not affect HDAC1 stabilization. Therefore, these results suggest that c-Abl induces HDAC1 stabilization possibly through phosphorylation of a cytoplasmic target that is involved in proteasomal degradation of HDAC1.


Assuntos
Histona Desacetilase 1/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Histona Desacetilase 1/genética , Humanos , Leupeptinas/farmacologia , Células MCF-7 , Microscopia de Fluorescência , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-abl/genética , RNA Mensageiro/metabolismo
19.
J Biol Chem ; 288(24): 17871-83, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23645696

RESUMO

Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1ß/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1-3YF). In DNA damage, KAP1-3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Quinases da Família src/metabolismo , Animais , Células COS , Núcleo Celular/enzimologia , Chlorocebus aethiops , Homólogo 5 da Proteína Cromobox , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases/metabolismo , Proteína 28 com Motivo Tripartido , Tirosina/metabolismo
20.
Exp Cell Res ; 319(20): 3251-68, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24041959

RESUMO

The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus.


Assuntos
Actinas/biossíntese , Núcleo Celular/enzimologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Actinas/antagonistas & inibidores , Actinas/química , Animais , Sítios de Ligação , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Proteínas Proto-Oncogênicas c-abl/deficiência , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA