Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(22): 5447-5464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34964426

RESUMO

Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.


Assuntos
Camellia sinensis , Chá , Chá/química , Camellia sinensis/química , Fungos , Antioxidantes , China , Fermentação
2.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770733

RESUMO

This study aimed to investigate the differences in the physicochemical and structural characteristics, digestibility, and lipolysis inhibitory potential in vitro of highland barley resistant starches (HBRSs) prepared by autoclaving (HBSA), microwave-assisted autoclaving (HBSM), isoamylase (HBSI) and pullulanase (HBSP) debranching modifications. Results revealed that the resistant starch content of native starch was significantly elevated after modifications. HBSA and HBSM showed distinctly higher swelling power and water-binding capacities along with lower amylose amounts and solubilities than those of HBSI and HBSP (p < 0.05). Fourier transform infrared spectroscopy and X-ray diffraction exhibited that HBSP displayed the highest degree of the ordered crystalline region and crystallinity with a mixture of CB- and V-type polymorphs. Meanwhile, HBSA and HBSM were characterized by their high degree of the amorphous region with a mixture of B- and V-type polymorphs. Physical and enzymatic modifications resulted in different functionalities of HBRSs, among which HBSP showed the lowest digestibility and HBSM exhibited the highest inhibitory activity on lipolysis due to their structure and structure-based morphology and particle size. This study provided significant insights into the development of native starch from highland barley as an alternative functional food.


Assuntos
Hordeum , Amido Resistente , Lipólise , Amido/química , Amilose/química , Difração de Raios X
3.
J Sci Food Agric ; 103(6): 3050-3064, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36546454

RESUMO

BACKGROUND: The gut microbiota (GM) is recognized as a significant contributor to the immune system. In the present study, the effects of Hericium erinaceus polysaccharides (HEP) on immunoregulation and GM in cyclophosphamide (CTX)-treated mice were investigated to elucidate the attenuate of immunosuppression by modulating GM. RESULTS: The results revealed that HEP significantly improved the body weight and immune organ index in immunodeficient mice (P < 0.05). They significantly increased operational taxonomic units (OTUs) (P < 0.05), adjusted the α and ß diversity of the GM, and the bacterial community structure was more similar to that of control group. Taxonomic composition analysis found that HEP increased the abundance of Alistipse, uncultured_bacterium_f_Muribaculaceae, Lachnospiraceae_NK4A136_group, uncultured_bacterium_f_Lachnospiracea, uncultured_bacterium_f_Ruminococcaceae and Ruminococcaceae_UCG-014, and decreased Lactobacillus, Bacteroides, and Alloprevotella, suggesting that HEP can improve the GM structure and inhibit CTX-induced GM dysregulation. Moreover, HEP increased short-chain fatty acid (SCFA)-producing bacteria, recovered SCFA levels, alleviated immunosuppression caused by CTX, enhanced the serum immune cytokine factors, and upregulated TLR4/NF-κB pathway key proteins (TLR4, NF-κB p65) at mRNA and protein levels. CONCLUSION: Hericium erinaceus polysaccharides effectively regulated GM and enhancement of intestinal immune function, so they have the potential to be developed as functional ingredients or foods to modulate immune responses. © 2022 Society of Chemical Industry.


Assuntos
Basidiomycota , Microbioma Gastrointestinal , Camundongos , Animais , Receptor 4 Toll-Like , NF-kappa B , Basidiomycota/química , Polissacarídeos/química , Ciclofosfamida , Imunidade , Ácidos Graxos Voláteis
4.
Food Technol Biotechnol ; 58(4): 370-380, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33505200

RESUMO

RESEARCH BACKGROUND: Polysaccharides isolated from plants, fungi and bacteria are associated with immunomodulatory effects. Chickpea hull, which is regarded as food industrial waste, contains considerable amount of antioxidants and bioactive compounds. EXPERIMENTAL APPROACH: In the present study, we investigated the immunomodulatory activity of polysaccharides from kabuli chickpea (Cicer arietinum L.) hull (CHPS). In vitro study was conducted with RAW264.7 cell line while in vivo study was carried out using specific pathogen-free BALB/c mouse animal model. RESULTS AND DISCUSSION: In in vitro test with RAW264.7 murine macrophage cells, the three purified fractions of chickpea hull polysaccharides showed potent immunomodulatory activity. Sample CHPS-3 showed stronger effect on cell viability, promoted the phagocytosis index to a greater extent and had the best effect on acid phosphatase activity. Moreover, it was found that CHPS-3 significantly (p<0.05) enhanced the secretion of nitrogen monoxide and cytokine (interleukins IL-6, IL-1ß and tumor necrosis factor-alpha (TNF-α)) levels. In in vivo study, CHPS-3 improved thymus and spleen indices in cyclophosphamide-induced immunodeficient mice. Increased activities of lysozyme, catalase, superoxide dismutase and glutathione peroxidase, serum haemolysin content and total antioxidant capacity were observed, while the amount of malondialdehyde in the liver decreased. NOVELTY AND SCIENTIFIC CONTRIBUTION: The results suggest that chickpea hull polysaccharides enhanced the immune activity and could be developed as the ingredient of functional foods.

5.
J Food Sci Technol ; 54(11): 3421-3432, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29051637

RESUMO

In this study, theaflavins (TF1, TF2A, TF2B and TF3) were prepared from black tea and their interaction with bovine serum albumin (BSA) was explored by fluorescence and CD spectroscopy. The results showed that the structures of theaflavins exhibited significant effects on the binding/quenching process, and the binding affinity increased with the increase of molecular weight of theaflavins and the presence of galloyl moiety. The quenching effects showed a sequence as TF3 > TF2A > TF2B > TF1, demonstrating the important role of the galloyl moiety on the C-3 position of theaflavins. CD spectra indicated that TF3 in high concentration could change the skeleton structure of BSA and induce the unfolding of BSA secondary structure. The present results provide a new perspective for better understanding of the likely physiological fate of theaflavins and help to control the functional characteristics of food.

6.
Int J Food Sci Nutr ; 65(1): 28-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24112293

RESUMO

This study was conducted to evaluate the combined effects of blanching and sonication on carrot juice quality. Carrots were blanched at 100 °C for 4 min in normal and acidified water. Juice was extracted and sonicated at 15 °C for 2 min keeping pulse duration 5 s on and 5 s off (70% amplitude level and 20 kHz frequency). No significant effect of blanching and sonication was observed on Brix, pH and titratable acidity except acidified blanching that decreased pH and increased acidity significantly. Peroxidase was inactivated after blanching that also significantly decreased total phenol, flavonoids, tannins, free radical scavenging activity, antioxidant capacity and ascorbic acid and increased cloud and color values. Sonication could improve all these parameters significantly. The present results suggest that combination of blanching and sonication may be employed in food industry to produce high-quality carrot juice with reduced enzyme activity and improved nutrition.


Assuntos
Bebidas/análise , Daucus carota/química , Manipulação de Alimentos , Qualidade dos Alimentos , Raízes de Plantas/química , Antioxidantes/análise , Ácido Ascórbico/análise , China , Culinária , Daucus carota/enzimologia , Estabilidade Enzimática , Flavonoides/análise , Humanos , Concentração de Íons de Hidrogênio , Valor Nutritivo , Peroxidase/química , Peroxidase/metabolismo , Fenóis/análise , Pigmentação , Proteínas de Vegetais Comestíveis/química , Proteínas de Vegetais Comestíveis/metabolismo , Raízes de Plantas/enzimologia , Sonicação/efeitos adversos , Taninos/análise
7.
Food Chem ; 455: 139864, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38833862

RESUMO

Aspergillus cristatus, the predominant microbe of Fuzhuan brick tea (FBT), is responsible for the creation of distinctive golden flower and unique floral aroma of FBT. The present study examined the alterations in chemical and aromatic components of raw dark tea by solid-state fermentation using A. cristatus (MK346334), the strain isolated from FBT. As results, catechins, total ployphenols, total flavonoids, theaflavins, thearubigins and antioxidant activity were significantly reduced after fermentation. Moreover, 112 and 76 volatile substances were identified by HS-SPME-GC-MS and HS-GC-IMS, respectively, primarily composed of alcohols, ketones, esters and aldehydes. Furthermore, the calculation of odor activity values revealed that 19 volatile chemicals, including hexanal, heptanal, linalool and methyl salicylate, were the main contributors to the floral, fungal, woody and minty aroma of dark tea. The present research highlights the pivotal role played by the fermentation with A. cristatus in the chemical composition, antioxidant property and distinctive flavor of dark tea.

8.
J Adv Res ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969095

RESUMO

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

9.
Int J Biol Macromol ; 273(Pt 2): 132878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844277

RESUMO

Granular hydrogels have emerged as a new class of materials for 3D printing, tissue engineering, and food applications due to their extrudability, porosity, and modularity. This work introduces a convenient method to prepare granular hydrogel with tunable properties by modulating the interaction between gum Arabic (GA) and whey protein isolate (WPI) microgels. As the concentration of GA increased, the appearance of the hydrogel changed from fluid liquid to moldable solid, and the microstructure changed from a macro-porous structure with thin walls to a dense structure formed by the accumulation of spherical particles. At a GA concentration of 0.5 %, the hydrogels remained fluid. Granular hydrogels containing 1.0 % GA showed mechanical properties similar to those of tofu (compressive strength: 10.8 ± 0.5 kPa, Young's modulus: 16.7 ± 0.4 kPa), while granular hydrogels containing 1.5 % GA showed mechanical properties similar to those of hawthorn sticks and sausages (compressive strength: 300.4 ± 5.8 kPa; Young's modulus: 200.5 ± 3.4 kPa). The hydrogel with 2.0 % GA was similar to hawthorn sticks, with satisfactory bite resistance and elasticity. Such tunability has led to various application potentials in the food industry to meet consumer demand for healthy, nutritious, and diverse textures.


Assuntos
Goma Arábica , Hidrogéis , Microgéis , Proteínas do Soro do Leite , Goma Arábica/química , Hidrogéis/química , Proteínas do Soro do Leite/química , Microgéis/química , Módulo de Elasticidade , Reologia , Porosidade , Força Compressiva
10.
Foods ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38890895

RESUMO

In the present study, four Bacteroides species that could degrade Fuzhuan brick tea polysaccharide-3 (FBTPS-3) were isolated from human feces and identified to be Bacteroides ovatus, B. uniformis, B. fragilis and B. thetaiotaomicron. The four Bacteroides species showed growth on FBTPS-3 as the carbon source, and B. ovatus showed the best capability for utilizing FBTPS-3 among the four species since B. ovatus could utilize more FBTPS-3 during 24 h fermentation. Moreover, the four Bacteroides species could metabolize FBTPS-3 and promote the production of acetic, propionic and isovaleric acids. Transcriptome analysis of B. ovatus revealed that 602 genes were up-regulated by FBTPS-3, including two carbohydrate-active enzyme clusters and four polysaccharide utilization loci (PULs). The PUL 1 contained GH28 family that could hydrolyze rhamnogalacturonan and other pectic substrates, which was in line with our previous work that rhamnose and galacturonic acid were the main component monosaccharides of FBTPS-3. Collectively, the results suggested that FBTPS-3 could be utilized by Bacteroides spp., and it might be developed as a promising prebiotic targeting Bacteroidetes in intestinal environment.

11.
Food Chem X ; 21: 101058, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38178927

RESUMO

Tea (Camellia sinensis L.) flower polysaccharides (TFPS) have various health-promoting functions. In the present work, the structure of a purified TFPS fraction, namely TFPS-1-3p, and its in vitro digestive properties were investigated. The results demonstrated that TFPS-1-3p was a typical heteropolysaccharide consisting of rhamnose (Rha), arabinose (Ara), galactose (Gal) and galacturonic acid (GalA) with a molecular weight of 47.77 kDa. The backbone of TFPS-1-3p contained â†’ 4)-α-d-GalpA(-6-OMe)-(1 â†’ 4)-α-GalpA-(1 â†’ and â†’ 4)-α-d-GalpA(-6-OMe)-(1 â†’ 2,4)-α-l-Rhap-(1 â†’ linkages. The branch linkages in TFPS-1-3p contained â†’ 6)-ß-d-Galp-(1→, →3,6)-ß-d-Galp-(1→, →5)-α-l-Araf-(1 â†’ and â†’ 3,5)-α-l-Araf-(1 â†’. Subsequently, TFPS-1-3p could not be degraded under simulated human gastrointestinal conditions but could be of use to human fecal microbes, thereby lowering the pH and increasing the production of short-chain fatty acids (SCFAs) of the gut microenvironment and altering the composition of the gut microbiota. The relative abundance of Fusobacterium_mortiferum Megasphaera_elsdenii_DSM_20460, Bacteroides thetaiotaomicron, Bacteroides plebeius and Collinsella aerofaciens increased significantly, potentially contributing to the degradation of TFPS-1-3p.

12.
Int J Biol Macromol ; 266(Pt 1): 131198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552700

RESUMO

The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.


Assuntos
Digestão , Fermentação , Microbioma Gastrointestinal , Paecilomyces , Humanos , Paecilomyces/metabolismo , Fezes/microbiologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Prebióticos
13.
Int J Biol Macromol ; 258(Pt 2): 129036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151081

RESUMO

High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Lycium , Camundongos , Animais , Glicemia , Frutas , Frutose , Polissacarídeos/farmacologia , Dieta , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
14.
J Agric Food Chem ; 72(8): 4074-4088, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323407

RESUMO

Sialylated immunoglobulin G (IgG) is a vital glycoprotein in breast milk with the ability to promote the growth of Bifidobacterium in gut microbiota and relieve inflammatory bowel disease (IBD) symptoms in vitro. Here, it was found that the microcapsules with sialylated IgG could protect and release sialylated IgG with its structure and function in the intestine. Furthermore, the sialylated IgG microcapsules alleviated the clinical symptoms (body weight, feed quantity, and colon length loss), decreased disease activity index score, suppressed the production of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IFN-γ, and MCP-1) and endotoxin (lipopolysaccharide), and enhanced the intestinal mucosal barrier (Claudin1, Muc2, Occludin, and ZO-1) in dextran sulfate sodium (DSS)-induced colitis mice. Additionally, the sialylated IgG microcapsules improved the gut microbiota by increasing the relative abundance of critical microbe Bifidobacterium bifidum and promoted the production of short-chain fatty acids (SCFAs). Correlation analysis indicated that the key microbes were strongly correlated with pro-inflammatory factors, clinical symptoms, tight junction protein, and SCFAs. These findings suggest that the sialylated IgG microcapsules have the potential to be used as a novel therapeutic approach for treating IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Feminino , Animais , Camundongos , Imunoglobulina G , Sulfato de Dextrana/efeitos adversos , Cápsulas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Citocinas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
15.
Zhong Yao Cai ; 36(1): 15-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23750402

RESUMO

OBJECTIVE: To study the preliminary characterizations of Hyriopsis cumingii proteoglycan (HCPG). METHODS: The content of carbohydrate and protein were measured by spectrophotometry. FTIR spectrum was used to analyze the functional groups. Relative molecular mass and amino acid composition were detected by HPLC. GC was utilized to determine the monosaccharide composition. The glycopeptide linkage-bond was detected by using the method of beta-elimination reaction. RESULTS: In HCPG,the content of carbohydrate and protein was 80.06% and 9.42%, respectively. FTIR spectrum showed the characteristic absorptions of polysaccharides and protein. Relative molecular mass of HCPG, determined by size-exclusive HPLC, was 503.1 kDa. GC spectra demonstrated that polysaccharide of HCPG was composed of rhamnose, fucose, mannose, glucose and galactose with a molar ratio of 13.80: 4.51: 7.70: 64.92 : 9.07. Fourteen amino acids (13 known and one unknown) have been detected by pre-column derivation HPLC. From beta-elimination reaction, peptide chain was attached to the carbohydrate chain by O-glycosidic bond. CONCLUSION: Basic characterizations of HCPG have been determined preliminarily.


Assuntos
Carboidratos/análise , Proteínas/análise , Proteoglicanas/química , Proteoglicanas/isolamento & purificação , Unionidae/química , Aminoácidos/análise , Animais , Cromatografia Líquida de Alta Pressão/métodos , Glicopeptídeos/química , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
16.
Int J Biol Macromol ; 247: 125787, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37437678

RESUMO

Polysaccharides extracted from Dendrobium officinale have various physiological effects. In this study, we used D-galactose-induced senescent mice as an animal model to investigate the inhibitory effects of Dendrobium officinale polysaccharide (DOP) on oxidative damage in glial cells by attenuating oxidative stress and modulating the gut microbiota. The results showed that DOP significantly alleviated the activation of glial cells, increased the activity of antioxidant enzymes and reduced the MDA content in senescent mice. In addition, DOP reshaped the disordered gut microbiota, decreased the abundance ratio of Firmicutes to Bacteroidetes and increased the abundance of beneficial bacteria Lactobacillus. DOP may reverse the gut microbiota disturbance and alleviate the oxidative damage of glial cells, therefore exert potential neuroprotective effects by modulating gut microbiota.


Assuntos
Dendrobium , Microbioma Gastrointestinal , Camundongos , Animais , Estresse Oxidativo , Polissacarídeos/farmacologia , Envelhecimento , Neuroglia
17.
Int J Biol Macromol ; 240: 124440, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062382

RESUMO

Dendrobium officinale has anti-inflammatory effects and is one of the well-known functional foods. Dendrobium officinale polysaccharide (DOP) can reduce intestinal barrier disruption and excessive inflammatory response by regulating intestinal bacterial homeostasis as well as short-chain fatty acid levels. It can also inhibit the activation of astrocytes and microglia, further realizing the protective effect on neuronal apoptosis and apoptosis, thus exerting a significant alleviating effect on neurological diseases. There is now evidence that bidirectional communication between the central nervous system and the gastrointestinal tract may influence human neurology, cognition and behavior via the gut-brain axis. In this review, we review the structural characterization, bioactivity and possible bioactive mechanisms of DOP, so as to elucidate the advantages of DOP's action on CNS diseases, with the aim of providing new perspectives for its drug and functional food development as well as clinical applications.


Assuntos
Doenças do Sistema Nervoso Central , Dendrobium , Microbioma Gastrointestinal , Humanos , Dendrobium/química , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Antioxidantes/farmacologia , Doenças do Sistema Nervoso Central/tratamento farmacológico
18.
Int J Biol Macromol ; 229: 81-91, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586650

RESUMO

Polysaccharide is one of the main active ingredients in Lonicera japonica Thunb. (L. japonica). In this study, we examined the anti-aging activities of L.japonica polysaccharides (LJPs) and further explored the mechanisms. Polysaccharides from L.japonica including the crude LJP (CLJP) and the purified fraction (LJP-2-1) were characterized. The molecular weights of CLJP and LJP-2-1 were 1450 kDa and 1280 kDa, respectively. Meanwhile, CLJP was mainly composed of galacturonic acid (23.57 %), galactose (23.45 %) and arabinose (23.45 %). LJP-2-1 was mainly composed of galacturonic acid (51.25 %) and arabinose (22.89 %). In Caenorhabditis elegans (C. elegans), LJPs maximally prolonged mean lifespan by 13.97 %, promoted fitness with increased motility by 40.92 % and pharyngeal pumping by 25.72 %, and decreased lipofuscin accumulation by 38.9 % with intact body length and fecundity. Moreover, CLJP extended the mean lifespan of nematodes under oxidative and heat stress by 16.76 % and 14.05 % respectively by activating stress-related genes and the antioxidant system. Further, CLJP required DAF-16 to prolong the lifespan of nematodes. CLJP upregulated the expression of daf-16 and its targeted downstream genes, including sod-3, gst-4 and hsp-16.2. Moreover, nuclear accumulation of DAF-16 was promoted upon CLJP treatment. Together, our data uncover the role of LJPs in extending lifespan and healthspan through DAF-16.


Assuntos
Proteínas de Caenorhabditis elegans , Lonicera , Animais , Caenorhabditis elegans/metabolismo , Longevidade , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Arabinose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Estresse Oxidativo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
19.
Int J Biol Macromol ; 246: 125662, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399869

RESUMO

The polysaccharides from Auricularia auricula (AAPs), containing a large number of O-acetyl groups that are related to the physiological and biological properties, seem to be potential prebiotics like other edible fungus polysaccharides. In the present study, therefore, the alleviating effects of AAPs and deacetylated AAPs (DAAPs, prepared from AAPs by alkaline treatment) on nonalcoholic fatty liver disease (NAFLD) induced by high-fat and high-cholesterol diet combined with carbon tetrachloride were investigated. The results revealed that both AAPs and DAAPs could effectively relieve liver injury, inflammation and fibrosis, and maintain intestinal barrier function. Both AAPs and DAAPs could modulate the disorder of gut microbiota and altered the composition of gut microbiota with enrichment of Odoribacter, Lactobacillus, Dorea and Bifidobacterium. Further, the alteration of gut microbiota, especially enhancement of Lactobacillus and Bifidobacterium, was contributed to the changes of bile acids (BAs) profile with increased deoxycholic acid (DCA). Farnesoid X receptor could be activated by DCA and other unconjugated BAs, which participated the BAs metabolism and alleviated the cholestasis, then protected against hepatitis in NAFLD mice. Interestingly, it was found that the deacetylation of AAPs negatively affected the anti-inflammation, thereby reducing the health benefits of A. auricula-derived polysaccharides.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL
20.
Food Chem ; 404(Pt B): 134689, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36302284

RESUMO

A new method for the drying of beef and chicken meats at low temperatures (4 °C) was developed by using a composite film based on sodium carboxymethyl cellulose-gum Arabic (SG) with anthocyanins from Cinnamomum camphora fruit peel (ANC.P, 0, 1, 1.5 and 2%). After incorporation of ANC.P into SG, the physicochemical properties, morphological characteristics, melting, molecular, antioxidant and antimicrobial properties of the resulting dehydration films were improved. Film-dried beef and chicken slices showed higher values of dehydration ratio on day 6 (54.58% and 72.06%, respectively) compared with the control samples without film (4.55% and 7.04%, respectively). Results showed that SG-ANC.P film-dried meats exhibited more stable pH and color, higher rehydration rate, better sensory quality and microbial growth inhibition compared with SG film-dried samples and control samples, in which control samples showed the highest total viable count values (6.02 and 5.16 log CFU/mL for beef and chicken, respectively) during storage.


Assuntos
Desidratação , Embalagem de Alimentos , Bovinos , Animais , Embalagem de Alimentos/métodos , Antocianinas , Contagem de Colônia Microbiana , Galinhas , Biopolímeros , Conservação de Alimentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA