Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur Biophys J ; 45(1): 45-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26596272

RESUMO

Mucins are the primary macromolecular component of mucus--nature's natural lubricant--although they are poorly characterised heterogeneous substances. Recent advances in hydrodynamic methodology now offer the opportunity for gaining a better understanding of their solution properties. In this study a combination of such methods was used to provide increased understanding of a preparation of porcine intestinal mucin (PIM), MUC2 mucin, in terms of both heterogeneity and quantification of conformational flexibility. The new sedimentation equilibrium algorithm SEDFIT-MSTAR is applied to yield a weight average (over the whole distribution) molar mass of 7.1 × 10(6) g mol(-1), in complete agreement with size exclusion chromatography coupled with multi-angle light scattering (SEC-MALS), which yielded a value of 7.2 × 10(6) g mol(-1). Sedimentation velocity profiles show mucin to be very polydisperse, with a broad molar mass distribution obtained using the Extended Fujita algorithm, consistent with the elution profiles from SEC-MALS. On-line differential pressure viscometry coupled to the SEC-MALS was used to obtain the intrinsic viscosity [η] as a function of molar mass. These data combined with sedimentation coefficient data into the global conformation algorithm HYDFIT show that PIM has a flexible linear structure, with persistence length L p ~10 nm and mass per unit length, M L ~2380 g mol(-1) nm(-1), consistent with a Wales-van Holde ratio of ~1.2 obtained from the concentration dependence of the sedimentation coefficient.


Assuntos
Algoritmos , Hidrodinâmica , Mucina-2/química , Animais , Fracionamento por Campo e Fluxo/métodos , Mucosa Intestinal/metabolismo , Soluções , Suínos
2.
J Chem Phys ; 135(8): 084116, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21895168

RESUMO

The hydrodynamic interaction is an essential effect to consider in Brownian dynamics simulations of polymer and nanoparticle dilute solutions. Several mathematical approaches can be used to build Brownian dynamics algorithms with hydrodynamic interaction, the most common of them being the exact but time demanding Cholesky decomposition and the Chebyshev polynomial expansion. Recently, Geyer and Winter [J. Chem. Phys. 130, 1149051 (2009)] have proposed a new approximation to treat the hydrodynamic interaction that seems quite efficient and is increasingly used. So far, a systematic comparison among those approaches has not been clearly made. In this paper, several features and the efficiency of typical implementations of those approaches are evaluated by using bead-and-spring chain models. The different sensitivity to the bead overlap detected for the different implementations may be of interest to select the suitable algorithm for a given simulation.

3.
Biochimie ; 131: 85-95, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27687161

RESUMO

Sulfatases catalyze hydrolysis of sulfate groups. They have a key role in regulating the sulfation states that determine the function of several scaffold molecules. Currently, there are no studies of the conformational stability of endosulfatases. In this work, we describe the structural features and conformational stability of a 4-O-endosulfatase (EndoV) from a marine bacterium, which removes specifically the 4-O-sulfate from chondroitin sulfate/dermatan sulfate. For that purpose, we have used several biophysical techniques, namely, fluorescence, circular dichroism (CD), FTIR spectroscopy, analytical ultracentrifugation (AUC), differential scanning calorimetry (DSC), mass spectrometry (MS), dynamic light scattering (DLS) and size exclusion chromatography (SEC). The protein was a dimer with an elongated shape. EndoV acquired a native-like structure in a narrow pH range (7.0-9.0); it is within this range where the protein shows the maximum of enzymatic activity. The dimerization did not involve the presence of disulphide-bridges as suggested by AUC, SEC and DLS experiments in the presence of ß-mercaptoethanol (ß-ME). EndoV secondary structure is formed by a mixture of α and ß-sheet topology, as judged by deconvolution of CD and FTIR spectra. Thermal and chemical denaturations showed irreversibility and the former indicates that protein did not unfold completely during heating.


Assuntos
Proteínas de Bactérias/metabolismo , Sulfatos de Condroitina/metabolismo , Condroitinases e Condroitina Liases/metabolismo , Dermatan Sulfato/análogos & derivados , Vibrio/enzimologia , Proteínas de Bactérias/química , Biocatálise , Fenômenos Biofísicos , Varredura Diferencial de Calorimetria , Condroitinases e Condroitina Liases/química , Cromatografia em Gel , Dicroísmo Circular , Dermatan Sulfato/metabolismo , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Multimerização Proteica , Desdobramento de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos/metabolismo , Temperatura
4.
BMC Biophys ; 8: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629336

RESUMO

BACKGROUND: The possibility of validating biological macromolecules with locally disordered domains like RNA against solution properties is helpful to understand their function. In this work, we present a computational scheme for predicting global properties and mimicking the internal dynamics of RNA molecules in solution. A simple coarse-grained model with one bead per nucleotide and two types of intra-molecular interactions (elastic interactions and excluded volume interactions) is used to represent the RNA chain. The elastic interactions are modeled by a set of Hooke springs that form a minimalist elastic network. The Brownian dynamics technique is employed to simulate the time evolution of the RNA conformations. RESULTS: That scheme is applied to the 5S ribosomal RNA of E. Coli and the yeast phenylalanine transfer RNA. From the Brownian trajectory, several solution properties (radius of gyration, translational diffusion coefficient, and a rotational relaxation time) are calculated. For the case of yeast phenylalanine transfer RNA, the time evolution and the probability distribution of the inter-arm angle is also computed. CONCLUSIONS: The general good agreement between our results and some experimental data indicates that the model is able to capture the tertiary structure of RNA in solution. Our simulation results also compare quite well with other numerical data. An advantage of the scheme described here is the possibility of visualizing the real time macromolecular dynamics.

5.
PLoS One ; 10(5): e0126420, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997164

RESUMO

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.


Assuntos
Ultracentrifugação/métodos , Ultracentrifugação/normas , Calibragem , Reprodutibilidade dos Testes
6.
Biopolymers ; 20(1): 129-139, 1981 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33327672

RESUMO

The translational friction coefficients, rotational friction coefficient, and intrinsic viscosity of rigid regular structures composed of up to eight identical spherical subunits have been accurately calculated. The aim of this calculation is to interpret the hydrodynamic properties of oligomeric subunit proteins. To avoid the well-known failure of the theory in the evaluation of rotational coefficients and intrinsic viscosities, each subunit is hydrodynamically modeled as a polyhedral array of smaller spheres. The analysis of several alternatives suggests that a cubic array is the best choice. The reliability of this strategy is checked by comparison of the calculated values for all the transport properties of a sphere and the translational friction coefficients of a dimer with their exact values. Finally, the hydrodynamic properties of a number of subunit structures with varying number of subunits and different geometries are tabulated.

7.
PLoS One ; 8(7): e69307, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922699

RESUMO

The phosphotransferase system (PTS) is involved in the use of carbon sources in bacteria. Bacillus sphaericus, a bacterium with the ability to produce insecticidal proteins, is unable to use hexoses and pentoses as the sole carbon source, but it has ptsHI genes encoding the two general proteins of the PTS: enzyme I (EI) and the histidine phosphocarrier (HPr). In this work, we describe the biophysical and structural properties of HPr from B. sphaericus, HPr(bs), and its affinity towards EI of other species to find out whether there is inter-species binding. Conversely to what happens to other members of the HPr family, HPr(bs) forms several self-associated species. The conformational stability of the protein is low, and it unfolds irreversibly during heating. The protein binds to the N-terminal domain of EI from Streptomyces coelicolor, EIN(sc), with a higher affinity than that of the natural partner of EIN(sc), HPr(sc). Modelling of the complex between EIN(sc) and HPr(bs) suggests that binding occurs similarly to that observed in other HPr species. We discuss the functional implications of the oligomeric states of HPr(bs) for the glycolytic activity of B. sphaericus, as well as a strategy to inhibit binding between HPr(sc) and EIN(sc).


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas de Bactérias/química , Calorimetria , Histidina , Temperatura Alta , Hidrodinâmica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Peptídeos , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosforilação , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Streptomyces coelicolor/metabolismo , Termodinâmica
9.
J Chem Theory Comput ; 5(10): 2606-18, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26631776

RESUMO

A computer programs suite, SIMUFLEX, has been constructed for the calculation of solution properties of flexible macromolecules modeled as bead-and-connector models of arbitrary topology. The suite consists mainly of two independent programs, BROWFLEX that generates the macromolecular trajectory by using the Brownian dynamics technique and ANAFLEX that analyzes that trajectory to get solution properties of the macromolecule. In this paper, we describe theoretical aspects about the macromolecular model and the Brownian dynamics algorithm used and describe some of the numerous properties that can be evaluated. In order to provide examples of the application of the methodology, we present simulations of dynamic properties of DNA with length ranging from 10 to 10(5) base pairs. SIMUFLEX is able to run simulations with more or less coarse-grained models, thus enabling such multiple-scale studies.

10.
Macromol Biosci ; 8(12): 1108-15, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18683163

RESUMO

The flexibility/rigidity of methylcelluloses (MCs) plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. In the present study, two MCs of low degree of substitution (DS) 1.09 and 1.32 and four of high DS (1.80, 1.86, 1.88 and 1.93) were characterised in distilled water in terms of intrinsic viscosity [h]; sedimentation coefficient (s020,w) and weight average molar mass (Mw). Solution conformation and flexibility were estimated qualitatively using conformation zoning and quantitatively (persistence length Lp) using the new combined global method. Sedimentation conformation zoning showed an extended coil (Type C) conformation and the global method applied to each MC sample yielded persistence lengths all within the range Lp(1/4)12-17 nm (for a fixed mass per unit length) with no evidence of any significant change in flexibility with DS.


Assuntos
Metilcelulose/química , Viscosidade , Cromatografia Líquida de Alta Pressão , Conformação Molecular , Peso Molecular , Relação Estrutura-Atividade , Ultracentrifugação
11.
Biophys J ; 91(5): 1688-97, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16766619

RESUMO

Crystallohydrodynamics describes the domain orientation in solution of antibodies and other multidomain protein assemblies where the crystal structures may be known for the domains but not the intact structure. The approach removes the necessity for an ad hoc assumed value for protein hydration. Previous studies have involved only the sedimentation coefficient leading to considerable degeneracy or multiplicity of possible models for the conformation of a given protein assembly, all agreeing with the experimental data. This degeneracy can be considerably reduced by using additional solution parameters. Conformation charts are generated for the three universal (i.e., size-independent) shape parameters P (obtained from the sedimentation coefficient or translational diffusion coefficient), nu (from the intrinsic viscosity), and G (from the radius of gyration), and calculated for a wide range of plausible orientations of the domains (represented as bead-shell ellipsoidal models derived from their crystal structures) and after allowance for any linker or hinge regions. Matches are then sought with the set of functions P, nu, and G calculated from experimental data (allowing for experimental error). The number of solutions can be further reduced by the employment of the D max parameter (maximum particle dimension) from x-ray scattering data. Using this approach we are able to reduce the degeneracy of possible solution models for IgG3 to a possible representative structure in which the Fab domains are directed away from the plane of the Fc domain, a structure in accord with the recognition that IgG3 is the most efficient complement activator among human IgG subclasses.


Assuntos
Cristalização/métodos , Cristalografia/métodos , Fracionamento por Campo e Fluxo/métodos , Imunoglobulina G/química , Imunoglobulina G/ultraestrutura , Nefelometria e Turbidimetria/métodos , Difração de Raios X/métodos , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Conformação Proteica
12.
Biophys J ; 83(6): 3039-48, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12496076

RESUMO

We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.


Assuntos
Campos Eletromagnéticos , Modelos Biológicos , Modelos Químicos , Movimento (Física) , Reologia/métodos , Algoritmos , Anisotropia , Transporte Biológico/fisiologia , Transporte Biológico/efeitos da radiação , Coloides/química , Simulação por Computador , Difusão , Hemorreologia/métodos , Humanos , Imunoglobulina G/química , Corpos de Inclusão/química , Lipídeos/química , Substâncias Macromoleculares , Modelos Estatísticos , Tamanho da Partícula , Rotação , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA