Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32238581

RESUMO

Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-ß) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-ß despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-ß. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-ß. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.


Assuntos
Proteínas Aviárias , Surtos de Doenças , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Interferon beta , RNA Polimerase Dependente de RNA , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Coturnix , Cães , Patos , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/imunologia , Interferon beta/genética , Interferon beta/imunologia , Células Madin Darby de Rim Canino , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
2.
PLoS Pathog ; 11(3): e1004767, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25807248

RESUMO

The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs.


Assuntos
Anticorpos Neutralizantes/química , Epitopos/química , Produtos do Gene env/química , Anticorpos Anti-HIV/química , Antígenos HIV/química , HIV-1/química , Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Produtos do Gene env/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , HIV-1/imunologia
3.
J Immunol ; 195(8): 3759-68, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26355155

RESUMO

Ab-neutralized HIV-1 can be captured by dendritic cells (DCs), which subsequently transfer infectious HIV-1 to susceptible CD4(+) T cells. In this study, we examined the capacity of early Abs, as well as recently identified broadly neutralizing Abs (bNAbs) targeting different envelope glycoprotein (Env) epitopes, to block HIV-1 transmission by immature and mature DCs to HIV-1-sensitive cells. Three bNAbs directed against the gp41 membrane proximal region of Env (2F5, 4E10, and 10E8) and three gp120 bNAbs targeting the CD4 binding site (b12, VRC01, and NIH45-46) were examined. In addition, eight glycan-dependent bNAbs targeting the V1V2 apex (PG9, PG16, and PGT145), the V3 loop (2G12, PGT121, and PGT128), and the gp120-gp41 interface of Env (PGT151 and 35O22) were tested. bNAbs that bound specific glycans showed, depending on the immature or mature state of the DC, diverse efficiencies in HIV-1 trans-infection. All bNAbs that bound the CD4 binding site blocked trans-infection, whereas all bNAbs directed against the membrane proximal region lost neutralizing activity after DC-mediated HIV-1 transmission. To understand how preneutralized HIV-1 can be transferred as infectious virus by DCs, we followed the processing of 2F5-treated HIV-1 by DCs with confocal microscopy. Inhibition of DC-internalization pathways could not reverse the dissociation of 2F5 from HIV-1, suggesting that Ab dissociation occurs directly at the plasma membrane. Collectively, these findings imply that the location of the epitope and the neutralization capacity of these Abs determine the efficiency of DC-mediated HIV-1 transfer.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Dendríticas/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/fisiologia , Ativação Viral/imunologia , Linhagem Celular , Células Dendríticas/virologia , Humanos
4.
J Biol Chem ; 290(12): 7436-42, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25635058

RESUMO

Many therapeutic proteins and protein subunit vaccines contain heterologous trimerization domains, such as the widely used GCN4-based isoleucine zipper (IZ) and the T4 bacteriophage fibritin foldon (Fd) trimerization domains. We found that these domains induced potent anti-IZ or anti-Fd antibody responses in animals when fused to an HIV-1 envelope glycoprotein (Env) immunogen. To dampen IZ-induced responses, we constructed an IZ domain containing four N-linked glycans (IZN4) to shield the underlying protein surface. When fused to two different vaccine antigens, HIV-1 Env and influenza hemagglutinin (HA), IZN4 strongly reduced the antibody responses against the IZ, but did not affect the antibody titers against Env or HA. Silencing of immunogenic multimerization domains with glycans might be relevant for therapeutic proteins and protein vaccines.


Assuntos
Polimerização , Proteínas/química , Sequência de Aminoácidos , Animais , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese , Proteínas/genética , Proteínas/imunologia , Coelhos , Ratos , Ratos Wistar
5.
J Immunol ; 192(10): 4628-35, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729614

RESUMO

Cytokines are often used as adjuvants to increase the immunogenicity of vaccines because they can improve the immune response and/or direct it into a desired direction. As an alternative to codelivering Ags and cytokines separately, they can be fused into a composite protein, with the advantage that both moieties act on the same immune cells. The HIV-1 envelope glycoprotein (Env) spike, located on the outside of virus particles and the only relevant protein for the induction of neutralizing Abs, is poorly immunogenic. The induction of anti-Env Abs can be improved by coupling Env proteins to costimulatory molecules such as a proliferation inducing ligand (APRIL). In this study, we evaluated the immunogenicity of chimeric molecules containing uncleaved Env gp140 fused to the species-matched cytokines IL-21 or GM-CSF in rabbits and mice. Each cytokine was either fused to the C terminus of Env or embedded within Env at the position of the variable loops 1 and 2. The cytokine components of the chimeric Env-GM-CSF and Env-IL-21 molecules were functional in vitro, but none of the Env-cytokine fusion proteins resulted in improved Ab responses in vivo. Both the Env-GM-CSF and the Env-IL-21 molecules induced strong anticytokine Ab responses in both test species. These autoimmune responses were independent of the location of the cytokine in the chimeric Env molecules in that they were induced by cytokines inserted within the variable loops 1 and 2 of Env or fused to its C terminus. The induction of undesired autoimmune responses should be considered when using cytokines as costimulatory molecules in fusion proteins.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes , HIV-1 , Interleucinas , Proteínas Recombinantes de Fusão , Produtos do Gene env do Vírus da Imunodeficiência Humana , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linhagem Celular Tumoral , HIV-1/genética , HIV-1/imunologia , Humanos , Interleucinas/efeitos adversos , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/farmacologia , Camundongos , Estrutura Secundária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/efeitos adversos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/farmacologia
6.
Proc Natl Acad Sci U S A ; 110(45): 18256-61, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145402

RESUMO

We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120-gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120-gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.


Assuntos
HIV-1/química , Conformação Proteica , Engenharia de Proteínas/métodos , Subunidades Proteicas/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/síntese química , Vacinas contra a AIDS/metabolismo , Anticorpos Monoclonais , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica , Mutação de Sentido Incorreto/genética , Multimerização Proteica/genética , Subunidades Proteicas/genética , Corantes de Rosanilina , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
7.
Retrovirology ; 12: 82, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26410741

RESUMO

BACKGROUND: Presenting vaccine antigens in particulate form can improve their immunogenicity by enhancing B cell activation. FINDINGS: We describe ferritin-based protein nanoparticles that display multiple copies of native-like HIV-1 envelope glycoprotein trimers (BG505 SOSIP.664). Trimer-bearing nanoparticles were significantly more immunogenic than trimers in both mice and rabbits. Furthermore, rabbits immunized with the trimer-bearing nanoparticles induced significantly higher neutralizing antibody responses against most tier 1A viruses, and higher responses (but not significantly), to several tier 1B viruses and the autologous tier 2 virus than when the same trimers were delivered as soluble proteins. CONCLUSIONS: This or other nanoparticle designs may be practical ways to improve the immunogenicity of envelope glycoprotein trimers.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Anti-HIV/biossíntese , HIV-1/química , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Feminino , Ferritinas/imunologia , Humanos , Imunização , Camundongos , Nanopartículas , Multimerização Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
8.
PLoS Pathog ; 9(3): e1003259, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555263

RESUMO

HIV-1 latency remains a formidable barrier towards virus eradication as therapeutic attempts to purge these reservoirs are so far unsuccessful. The pool of transcriptionally silent proviruses is established early in infection and persists for a lifetime, even when viral loads are suppressed below detection levels using anti-retroviral therapy. Upon therapy interruption the reservoir can re-establish systemic infection. Different cellular reservoirs that harbor latent provirus have been described. In this study we demonstrate that HIV-1 can also establish a silent integration in actively proliferating primary T lymphocytes. Co-culturing of these proliferating T lymphocytes with dendritic cells (DCs) activated the provirus from latency. Activation did not involve DC-mediated C-type lectin DC-SIGN signaling or TCR-stimulation but was mediated by DC-secreted component(s) and cell-cell interaction between DC and T lymphocyte that could be inhibited by blocking ICAM-1 dependent adhesion. These results imply that circulating DCs could purge HIV-1 from latency and re-initiate virus replication. Moreover, our data show that viral latency can be established early after infection and supports the idea that actively proliferating T lymphocytes with an effector phenotype contribute to the latent viral reservoir. Unraveling this physiologically relevant purging mechanism could provide useful information for the development of new therapeutic strategies that aim at the eradication of HIV-1 reservoirs.


Assuntos
Células Dendríticas/imunologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno , Linfócitos T/imunologia , Ativação Viral/imunologia , Proliferação de Células , Técnicas de Cocultura , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Células HEK293 , HIV-1/patogenicidade , Humanos , Provírus/fisiologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Latência Viral
9.
J Immunol ; 187(9): 4676-85, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957147

RESUMO

The natural function of dendritic cells (DCs) is to capture and degrade pathogens for Ag presentation. However, HIV-1 can evade viral degradation by DCs and hijack DCs for migration to susceptible CD4(+) T lymphocytes. It is unknown what factors decide whether a virus is degraded or transmitted to T cells. The interaction of DCs with HIV-1 involves C-type lectin receptors, such as DC-specific ICAM-3-grabbing nonintegrin, which bind to the envelope glycoprotein complex (Env), which is decorated heavily with N-linked glycans. We hypothesized that the saccharide composition of the Env N-glycans is involved in avoiding viral degradation and Ag presentation, as well as preserving infectious virus for the transmission to target cells. Therefore, we studied the fate of normally glycosylated virus versus oligomannose-enriched virus in DCs. Changing the heterogeneous N-linked glycan composition of Env to uniform oligomannose N-glycans increased the affinity of HIV-1 for DC-specific ICAM-3-grabbing nonintegrin and enhanced the capture of HIV-1 by immature DCs; however, it decreased the subsequent transmission to target cells. Oligomannose-enriched HIV-1 was directed more efficiently into the endocytic pathway, resulting in enhanced viral degradation and reduced virus transfer to target cells. Furthermore, Env containing exclusively oligomannose N-glycans was presented to Env-specific CD4(+) T cells more efficiently. Taken together, our results showed that the HIV-1 N-glycan composition plays a crucial role in the balance between DC-mediated Ag degradation and presentation and DC-mediated virus transmission to target cells. This finding may have implications for the early events in HIV-1 transmission and the induction of antiviral immune responses.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Dendríticas/metabolismo , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Polissacarídeos/imunologia , Receptores de Superfície Celular/metabolismo , Vírion/imunologia , Vírion/metabolismo , Ligação Viral
10.
J Biol Chem ; 286(25): 22250-61, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21515681

RESUMO

An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Células HEK293 , Proteína gp120 do Envelope de HIV/química , HIV-1/imunologia , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Engenharia de Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia
11.
Retrovirology ; 8: 48, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21689404

RESUMO

BACKGROUND: One reason why subunit protein and DNA vaccines are often less immunogenic than live-attenuated and whole-inactivated virus vaccines is that they lack the co-stimulatory signals provided by various components of the more complex vaccines. The HIV-1 envelope glycoprotein complex (Env) is no exception to this rule. Other factors that limit the induction of neutralizing antibodies against HIV-1 lie in the structure and instability of Env. We have previously stabilized soluble trimeric mimics of Env by introducing a disulfide bond between gp120 and gp41 and adding a trimer stabilizing mutation in gp41 (SOSIP.R6 gp140). RESULTS: We further stabilized the SOSIP.R6 gp140 using a GCN4-based isoleucine zipper motif, creating SOSIP.R6-IZ gp140. In order to target SOSIP.R6-IZ to immune cells, including dendritic cells, while at the same time activating these cells, we fused SOSIP.R6-IZ to the active domain of CD40 ligand (CD40L), which may serve as a 'cis-adjuvant'. The Env component of the SOSIP.R6-IZ-CD40L fusion construct bound to CD4 and neutralizing antibodies, while the CD40L moiety interacted with CD40. Furthermore, the chimeric molecule was able to signal efficiently through CD40 and induce maturation of human dendritic cells. Dendritic cells secreted IL-6, IL-10 and IL-12 in response to stimulation by SOSIP.R6-IZ-CD40L and were able to activate naïve T cells. CONCLUSIONS: Chimeric HIV-1 gp140 - CD40L trimers can target and activate dendritic cells. Targeting and activating immune cells using CD40L and other 'cis-adjuvants' may improve subunit protein vaccine immunogenicity for HIV-1 and other infectious diseases.


Assuntos
Ligante de CD40/imunologia , Ligante de CD40/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Ligante de CD40/química , Ligante de CD40/genética , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , HIV-1/genética , Humanos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
12.
Cell Rep ; 30(7): 2284-2296.e3, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075737

RESUMO

The HIV latent reservoir forms the major hurdle to an HIV cure. The discovery of CD32 as marker of this reservoir has aroused much interest, but subsequent reports have challenged this finding. Here, we observe a positive correlation between the percentages of CD32+ cells among CD4+ T cells of aviremic cART-treated, HIV-infected individuals and their HIV DNA loads in peripheral blood. Moreover, optimization of the CD32+CD4+ T cell purification protocol reveals prominent enrichment for HIV DNA (mean, 292-fold) in these cells. However, no enrichment for HIV RNA is observed in CD32+CD4+ cells, yielding significantly reduced HIV RNA/DNA ratios. Furthermore, HIV proviruses in CD32+CD4+ cells can be reactivated ex vivo to produce virus, strongly suggesting that these cells support HIV transcriptional latency. Our results underscore the importance of isolating pure, bona fide CD32+CD4+ T cells for future studies and indicate that CD32 remains a promising candidate marker of the HIV reservoir.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , DNA Viral/genética , HIV-1/genética , Receptores de IgG/metabolismo , Latência Viral/genética , Humanos
13.
J Virol ; 82(16): 7886-96, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18524826

RESUMO

Human immunodeficiency virus type 1 (HIV-1) preferentially utilizes the CCR5 coreceptor for target cell entry in the acute phase of infection, while later in disease progression the virus switches to the CXCR4 coreceptor in approximately 50% of patients. In response to HIV-1 the adaptive immune response is triggered, and antibody (Ab) production is elicited to block HIV-1 entry. We recently determined that dendritic cells (DCs) can efficiently capture Ab-neutralized HIV-1, restore infectivity, and transmit infectious virus to target cells. Here, we tested the effect of Abs on trans transmission of CCR5 or CXCR4 HIV-1 variants. We observed that transmission of HIV-1 by immature as well as mature DCs was significantly higher for CXCR4- than CCR5-tropic viral strains. Additionally, neutralizing Abs directed against either the gp41 or gp120 region of the envelope such as 2F5, 4E10, and V3-directed Abs inhibited transmission of CCR5-tropic HIV-1, whereas Ab-treated CXCR4-tropic virus demonstrated unaltered or increased transmission. To further study the effects of coreceptor usage we tested molecularly cloned HIV-1 variants with modifications in the envelope that were based on longitudinal gp120 V1 and V3 variable loop sequences from a patient progressing to AIDS. We observed that DCs preferentially facilitated infection of CD4(+) T lymphocytes of viral strains with an envelope phenotype found late in disease. Taken together, our results illustrate that DCs transmit CXCR4-tropic HIV-1 much more efficiently than CCR5 strains; we hypothesize that this discrimination could contribute to the in vivo coreceptor switch after seroconversion and could be responsible for the increase in viral load.


Assuntos
Linfócitos T CD4-Positivos/virologia , Células Dendríticas/virologia , HIV-1/genética , Receptores CXCR4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Variação Genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Sistema Imunitário , Lectinas Tipo C/metabolismo , Receptores CCR5/metabolismo , Receptores de Superfície Celular/metabolismo
14.
EBioMedicine ; 42: 97-108, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30824386

RESUMO

BACKGROUND: The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. METHODS: Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. FINDINGS: Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a "one-two punch" strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. INTERPRETATION: This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Latência Viral , Adulto , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Latência Viral/imunologia
15.
FEBS J ; 273(21): 4944-58, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17010165

RESUMO

Dendritic cells can enhance the replication of HIV-1 in CD4(+) lymphocytes through the interaction of the gp120 envelope protein with such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. The variable loops of gp120 have previously been shown to modulate the interaction of HIV-1 with its principal receptor CD4 and its various coreceptors, namely CCR5 and CXCR4. Here, we utilized a panel of molecular cloned viruses to identify whether gp120 modifications can influence the virus interaction with immature dendritic cells or a cell line expressing dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (Raji-DC-SIGN). The viruses encompass the R5, R5X4 and X4 phenotypes, and are based upon V1V2 and V3 sequences from a patient with disease progression. We found that dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin enhancement of virus replication can be modulated by the V1V2 length, the overall V3 charge and N-linked glycosylation patterns; similar results were observed with immature dendritic cells. Viruses with higher V3 charges are more readily transferred to CD4(+) lymphocytes when the V1V2 region is longer and contains an additional N-linked glycosylation site, whereas transfer of viruses with lower V3 charges is greater when the V1V2 region is shorter. Viruses differing in the V1V2 and V3 regions also demonstrated differential capture by Raji-DC-SIGN cells in the presence of mannan. These results indicate that the interaction between HIV-1 and immature dendritic cells via such molecules as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin may have a role in selecting viruses undergoing transmission and evolution during disease progression.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Dendríticas/virologia , Proteína gp120 do Envelope de HIV/fisiologia , HIV-1/fisiologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular/genética , Linhagem Celular , Técnicas de Cocultura , Progressão da Doença , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Lectinas Tipo C/genética , Mananas/farmacologia , Dados de Sequência Molecular , Mutação , Ligação Proteica , Receptores de Superfície Celular/genética , Replicação Viral
16.
Biomolecules ; 5(4): 2919-34, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512709

RESUMO

Generation of a stable, soluble mimic of the HIV-1 envelope glycoprotein (Env) trimer on the virion surface has been considered an important first step for developing a successful HIV-1 vaccine. Recently, a soluble native-like Env trimer (BG505 SOSIP.664) has been described. This protein has facilitated major advances in the HIV-1 vaccine field, since it was the first Env immunogen that induced consistent neutralizing antibodies against a neutralization-resistant (tier 2) virus. Moreover, BG505 SOSIP.664 enabled elucidation of the atomic resolution structure of the Env trimer and facilitated the isolation and characterization of new broadly neutralizing antibodies against HIV-1. Here, we designed and characterized the BG505 SOSIP.664 trimer fused to fluorescent superfolder GFP (sfGFP), a GFP variant that allows efficient folding (BG505 SOSIP.664-sfGFP). Despite the presence of the sfGFP, the Env protein largely retained its morphology, antigenicity, glycan composition, and thermostability. In addition, we show that BG505 SOSIP.664-sfGFP can be used for fluorescence-based assays, such as flow cytometry.


Assuntos
Produtos do Gene env/genética , Multimerização Proteica , Sequência de Aminoácidos , Produtos do Gene env/química , Produtos do Gene env/metabolismo , Proteínas de Fluorescência Verde/genética , Células HEK293 , HIV-1 , Humanos , Dados de Sequência Molecular , Estabilidade Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
AIDS ; 29(9): 1003-14, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25768834

RESUMO

BACKGROUND: Latent HIV type I (HIV-1) infections can frequently occur in short-lived proliferating effector T lymphocytes. These latently infected cells could revert into resting T lymphocytes and thereby contribute to the establishment of the long-lived viral reservoir. Monocyte-derived dendritic cells can revert latency in effector T cells in vitro. METHODS: Here we investigated the latency activation properties of tissue-specific immune cells, including a large panel of dendritic cell subsets, to explore in which body compartments effector T cells are most likely to maintain latent HIV-1 provirus and thus potentially contribute to the long-lived reservoir. RESULTS: Our results demonstrate that blood or genital tract dendritic cells do not activate latent provirus in effector T cells, whereas gut or lymphoid dendritic cells induce virus production from latently infected effector T cells in our in-vitro model for latency. Toll-like receptor 3-induced interferon production by myeloid dendritic cells abolished the dendritic cells' ability to induce viral gene expression. CONCLUSIONS: In this study, we show that HIV-1 provirus residing in effector T cells is activated from latency by tissue-specific dendritic cell subsets and other immune cells with remarkably different efficiencies.Our new assay system points to an important, neglected aspect of HIV-1 research: the ability of other immune cells, especially dendritic cells, to differentially affect latency establishment as well as virus reactivation.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Ativação Viral , Latência Viral , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Provírus/imunologia , Provírus/fisiologia
18.
PLoS One ; 10(3): e0122020, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793526

RESUMO

Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.


Assuntos
Moléculas de Adesão Celular/metabolismo , Colo/metabolismo , Infecções por HIV/imunologia , HIV-1/fisiologia , Lectinas Tipo C/metabolismo , Muco/metabolismo , Receptores de Superfície Celular/metabolismo , Reto/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Humanos , Lactoferrina/metabolismo , Espectrometria de Massas , Ligação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
19.
PLoS One ; 9(9): e107683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247707

RESUMO

Current HIV-1 vaccines based on the HIV-1 envelope glycoprotein spike (Env), the only relevant target for broadly neutralizing antibodies, are unable to induce protective immunity. Env immunogenicity can be enhanced by fusion to costimulatory molecules involved in B cell activation, such as APRIL and CD40L. Here, we found that Env-APRIL signaled through the two receptors, BCMA and TACI. In rabbits, Env-APRIL induced significantly higher antibody responses against Env compared to unconjugated Env, while the antibody responses against the APRIL component were negligible. To extend this finding, we tested Env-APRIL in mice and found minimal antibody responses against APRIL. Furthermore, Env-CD40L did not induce significant anti-CD40L responses. Thus, in contrast to the 4-helix cytokines IL-21 and GM-CSF, the TNF-superfamily members CD40L and APRIL induced negligible autoantibodies. This study confirms and extends previous work and shows that fusion of Env-based immunogens to APRIL can improve Env immunogenicity and might help in designing HIV vaccines that induce protective humoral immunity.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Antígeno de Maturação de Linfócitos B/metabolismo , Células HEK293 , Infecções por HIV/prevenção & controle , HIV-1/genética , Humanos , Camundongos , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
20.
PLoS One ; 8(4): e60126, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565193

RESUMO

HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF) chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF) proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF) should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , HIV-1/genética , Proteínas Recombinantes de Fusão , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Anticorpos Neutralizantes , Antígenos CD4/metabolismo , Linhagem Celular , Epitopos/imunologia , Ordem dos Genes , Glicosilação , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , HIV-1/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Ligação Proteica/imunologia , Domínios e Motivos de Interação entre Proteínas , Proteólise , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA