Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(3): 100197, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033677

RESUMO

The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified ("dark peptidome") by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.


Assuntos
Colite Ulcerativa , Microbiota , Cromatografia Líquida , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/microbiologia , Endopeptidases , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Serina , Espectrometria de Massas em Tandem
2.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924917

RESUMO

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Assuntos
Nociceptividade , Fenelzina , Animais , Camundongos , Masculino , Fenelzina/farmacologia , Proteoma , Proteínas do Tecido Nervoso
3.
J Proteome Res ; 22(10): 3360-3367, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676756

RESUMO

Activity-based proteome profiling (ABPP) is a powerful chemoproteomic technology for global profiling of protein activity and modifications. The tandem orthogonal proteolysis-ABPP (TOP-ABPP) strategy utilizes a clickable enrichment tag with cleavable linkers to enable direct identification of probe-labeled residue sites within the target proteins. However, such a site-specific chemoproteomic workflow requires a long operation time and complex sample preparation procedures, limiting its wide applications. In the current study, we developed a simplified and ultrafast peptide enrichment and release TOP-ABPP ("superTOP-ABPP") pipeline for site-specific quantitative chemoproteomic analysis with special agarose resins that are functionalized with azide groups and acid-cleavable linkers. The azide groups allow enrichment of peptides that are labeled by the alkynyl probe through a one-step click reaction, which can be conveniently released by acid cleavage for subsequent LC-MS/MS analysis. In comparison with the traditional TOP-ABPP method, superTOP-ABPP cuts down the averaged sample preparation time from 25 to 9 h, and significantly improves the sensitivity and coverage of site-specific cysteinome profiling. The method can also be seamlessly integrated with reductive dimethylation to enable quantitative chemoproteomic analysis with a high accuracy. The simplified and ultrafast superTOP-ABPP will become a valuable tool for site-specific quantitative chemoproteomic studies.

4.
J Biol Chem ; 298(8): 102146, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716777

RESUMO

Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Serina Proteases , Adenocarcinoma de Células Claras/enzimologia , Adenocarcinoma de Células Claras/patologia , Feminino , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Serina Proteases/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Tripsina , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
BMC Cancer ; 23(1): 957, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814239

RESUMO

BACKGROUND: Prostate cancer is a disease that seriously troubles men. However, there are some inevitable limitations in interventional therapy for prostate cancer patients at present, most of which are caused by low selectivity and high toxic side effects due to unclear drug targets. In this study, we identified the target protein of Curcusone C with anti-prostate cancer potential activity and verified its target and mechanism of action. METHODS: Click chemistry-activity based proteomics profiling (CC-ABPP) method was used to find target protein of Curcusone C against prostate cancer. Competitive CC-ABPP, drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR) methods were used to verifying the target protein. Moreover, potential mechanism was validated by western blot in vitro and by hematoxylin-eosin (HE) staining, detection of apoptosis in tumor tissue (TUNEL), and immunohistochemical (IHC) in vivo. RESULTS: We found that poly(rC)-binding protein 2 (PCBP2) was the target protein of Curcusone C. In addition, Curcusone C might disrupt the Bax/Bcl-2 balance in PC-3 cells by inhibiting the expression of the target protein PCBP2, thereby inducing mitochondrial damage and activation of the mitochondrial apoptosis pathway, and ultimately inducing apoptosis of prostate cancer cells. CONCLUSIONS: Curcusone C is a potential compound with anti-prostate cancer activity, and this effect occurs by targeting the PCBP2 protein, which in turn may affect the TGF/Smad signaling pathway and Bax/Bcl-2 balance. Our results laid a material and theoretical foundation for Curcusone C, to be widely used in anti-prostate cancer.


Assuntos
Proteínas de Transporte , Neoplasias da Próstata , Masculino , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteômica , Química Click , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias da Próstata/patologia , Apoptose , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo
6.
Acta Pharmacol Sin ; 44(8): 1701-1711, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36932232

RESUMO

Eriocalyxin B (EB), 17-hydroxy-jolkinolide B (HJB), parthenolide (PN), xanthatin (XT) and andrographolide (AG) are terpenoid natural products with a variety of promising antitumor activities, which commonly bear electrophilic groups (α,ß-unsaturated carbonyl groups and/or epoxides) capable of covalently modifying protein cysteine residues. However, their direct targets and underlying molecular mechanisms are still largely unclear, which limits the development of these compounds. In this study, we integrated activity-based protein profiling (ABPP) and quantitative proteomics approach to systematically characterize the covalent targets of these natural products and their involved cellular pathways. We first demonstrated the anti-proliferation activities of these five compounds in triple-negative breast cancer cell MDA-MB-231. Tandem mass tag (TMT)-based quantitative proteomics showed all five compounds commonly affected the ubiquitin mediated proteolysis pathways. ABPP platform identified the preferentially modified targets of EB and PN, two natural products with high anti-proliferation activity. Biochemical experiments showed that PN inhibited the cell proliferation through targeting ubiquitin carboxyl-terminal hydrolase 10 (USP10). Together, this study uncovered the covalently modified targets of these natural products and potential molecular mechanisms of their antitumor activities.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteômica , Proteínas/metabolismo , Ubiquitinas
7.
Int J Mol Sci ; 24(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37511286

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) seriously endangers the sustainable development of the pig industry. Our previous studies have shown that matrine can resist porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study aimed to explore the anti-PRRSV targets of matrine in Marc-145 cells. Biotin-labeled matrine 1 and 2 were used as probes. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each probe in Marc-145 cells. The anti-PRRSV activity of each probe was evaluated via MTT, qPCR and Western blot, and its anti-inflammatory activity was evaluated via qPCR and Western blot. The targets of matrine in Marc-145 cells were searched using activity-based protein profiling (ABPP), and compared with the targets predicted via network pharmacology for screening the potential targets of matrine against PRRSV. The protein-protein interaction networks (PPI) of potential targets were constructed using a network database and GO/KEGG enrichment analysis was performed. ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1 were identified as potential targets of matrine, and their functions were related to antiviral capacity and immunity. Matrine may play an anti-PRRSV role by directly acting on ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Matrinas , Linhagem Celular , Antivirais/farmacologia , Replicação Viral
8.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203709

RESUMO

The canine mammary tumor model is more suitable for studying human breast cancer, and the safety concentrations of matrine and the biotin-labeled matrine probe were determined in canine primary mammary epithelial cells, and then selected canine mammary tumor cell lines CHMm and CHMp were incubated with matrine, and cell viability was detected by CCK-8. The biotin-labeled matrine probe was used to pull-down the targets of matrine in canine mammary tumor cells, and the targets were screened in combination with activity-based protein profiling (ABPP) and Genecards database, and verified by qPCR and western blot. The results showed that the maximum non-cytotoxic concentrations of matrine and biotin-labeled matrine probe in canine primary mammary epithelial cells were 250 µg/mL and 500 µg/mL, respectively. Matrine and biotin-labeled matrine probe had a proliferation inhibitory effect time-dependently on CHMm and CHMp cells within a safe concentration range, and induced autophagy in cells. Then BTF3 targets were obtained by applying ABPP and Genecards screening. Cellular thermal shift assay (CETSA) findings indicated that matrine could increase the heat stability of BTF3 protein. Pull-down employing biotin-labeled matrine probe with CHMm and CHMp cell lysates revealed that BTF3 protein was detected in the biotin-labeled matrine probe group and that BTF3 protein was significantly decreased by the addition of matrine. The qPCR and western blot findings of CHMm and CHMp cells treated with matrine revealed that matrine decreased the expression of the BTF3 gene and protein with the extension of the action time, and the impact was more substantial at the protein level, respectively.


Assuntos
Neoplasias Mamárias Animais , Matrinas , Humanos , Animais , Cães , Biotina , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/genética , Células Epiteliais , Sobrevivência Celular
9.
Chembiochem ; 23(24): e202200389, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36271784

RESUMO

Competitive proteome profiling is a powerful approach for the identification of targets of small molecules. This approach usually employs an inhibitor-derived probe or a cysteine-reactive probe such as an IA-alkyne in a comparison between inhibitor-treated and untreated samples, thus enabling distinction between genuine targets and nonspecific labeling. We have developed an active probe derived from an EGFR inhibitor, afatinib, and a cysteine reactive probe, an alkyne-containing α,ß-unsaturated amide, to compare their characterization of cellular targets. In both approaches, myosin heavy chain 9 (MYH9) was identified as an off-target. Subsequent functional validation experiments suggested that MYH9 might be involved in the function of afatinib.


Assuntos
Cisteína , Proteoma , Afatinib , Alcinos
10.
Biol Chem ; 403(4): 391-402, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35191283

RESUMO

Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ligantes , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Bioorg Med Chem Lett ; 60: 128553, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35051576

RESUMO

PES (2-phenylethynesulfonamide, pifithrin-µ, PFTµ) is an electrophilic compound that exhibits anticancer properties, protects against chemotherapy-induced peripheral neuropathy in chemotherapy, and shows immunomodulatory, anti-inflammatory and anti-viral activities. PES generally shows higher cytotoxicity towards tumor cells than non-tumor cells. The mechanism of action of PES is unclear but may involve the covalent modification of proteins as PES has been found to be a covalent inhibitor of Hsp70. We developed a new PES derivative PESA with a terminal alkynyl group to perform click-reaction-assisted activity-based protein profiling (click-reaction ABPP) and used this to screen for cellular targets of PES. We found PES and its derivatives PES-Cl and PESA have comparable ability to undergo a Michael addition reaction with GSH and Hsp70, and showed similar cytotoxicity. By fluorescence imaging and proteomics studies we identified over 300 PESA-attached proteins in DOHH2 cells. Some proteins involved in cancer-related redox processes, such as peroxiredoxin 1 (PRDX1), showed higher frequency and abundance in mass spectrometry detection. Our results suggest that cytotoxicity of PES and its derivatives may be related to attack of protein thiols and cellular GSH resulting in breakdown of cellular redox homeostasis. This study provides a powerful new tool compound within the PES class of bioactive compounds and gives insight into the working mechanisms of PES and its derivatives.


Assuntos
Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
12.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364182

RESUMO

Lung cancer, especially adenocarcinoma, is the second most occurring and highest fatality-causing cancer worldwide. Many natural anticancer compounds, such as sesquiterpene lactones (SLs), show promising anticancer properties. Herein, we examined Lactucin, an SL from the plant Cichorium intybus, for its cytotoxicity, apoptotic-inducing, cell cycle inhibiting capacity, and associated protein expression. We also constructed a biotinylated Lactucin probe to isolate interacting proteins and identified them. We found that Lactucin stops the proliferation of A549 and H2347 lung adenocarcinoma cell lines while not affecting normal lung cell MRC5. It also significantly inhibits the cell cycle at G0/G1 stage and induces apoptosis. The western blot analysis shows that Lactucin downregulates the MAPK pathway, cyclin, and cyclin-dependent kinases, inhibiting DNA repair while upregulating p53, p21, Bax, PTEN, and downregulation of Bcl-2. An increased p53 in response to DNA damage upregulates p21, Bax, and PTEN. In an activity-based protein profiling (ABPP) analysis of A549 cell's protein lysate using a biotinylated Lactucin probe, we found that Lactucin binds PGM, PKM, and LDHA PDH, four critical enzymes in central carbon metabolism in cancer cells, limiting cancer cells in its growth; thus, Lactucin inhibits cancer cell proliferation by downregulating the MAPK and the Central Carbon Metabolism pathway.


Assuntos
Cichorium intybus , Neoplasias Pulmonares , Sesquiterpenos , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Carbono/metabolismo , Sesquiterpenos/farmacologia , Lactonas/farmacologia , Proliferação de Células , Neoplasias Pulmonares/metabolismo , Apoptose , Ciclinas/metabolismo , Linhagem Celular Tumoral
13.
J Proteome Res ; 20(6): 3134-3149, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014671

RESUMO

Multiple myeloma is an incurable hematological malignancy that impacts tens of thousands of people every year in the United States. Treatment for eligible patients involves induction, consolidation with stem cell rescue, and maintenance. High-dose therapy with a DNA alkylating agent, melphalan, remains the primary drug for consolidation therapy in conjunction with autologous stem-cell transplantation; as such, melphalan resistance remains a relevant clinical challenge. Here, we describe a proteometabolomic approach to examine mechanisms of acquired melphalan resistance in two cell line models. Drug metabolism, steady-state metabolomics, activity-based protein profiling (ABPP, data available at PRIDE: PXD019725), acute-treatment metabolomics, and western blot analyses have allowed us to further elucidate metabolic processes associated with melphalan resistance. Proteometabolomic data indicate that drug-resistant cells have higher levels of pentose phosphate pathway metabolites. Purine, pyrimidine, and glutathione metabolisms were commonly altered, and cell-line-specific changes in metabolite levels were observed, which could be linked to the differences in steady-state metabolism of naïve cells. Inhibition of selected enzymes in purine synthesis and pentose phosphate pathways was evaluated to determine their potential to improve melphalan's efficacy. The clinical relevance of these proteometabolomic leads was confirmed by comparison of tumor cell transcriptomes from newly diagnosed MM patients and patients with relapsed disease after treatment with high-dose melphalan and autologous stem-cell transplantation. The observation of common and cell-line-specific changes in metabolite levels suggests that omic approaches will be needed to fully examine melphalan resistance in patient specimens and define personalized strategies to optimize the use of high-dose melphalan.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Melfalan/farmacologia , Metabolômica , Mieloma Múltiplo/tratamento farmacológico , Transplante Autólogo
14.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769464

RESUMO

Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and ß-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and ß-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ecossistema , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteoma/análise , Proteômica/métodos , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
15.
Angew Chem Int Ed Engl ; 60(12): 6799-6806, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33350010

RESUMO

Activity-based probes are valuable tools for chemical biology. However, finding probes that specifically target the active site of an enzyme remains a challenging task. Herein, we present a ligand selection strategy that allows to rapidly tailor electrophilic probes to a target of choice and showcase its application for the two cysteine proteases of SARS-CoV-2 as proof of concept. The resulting probes were specific for the active site labeling of 3CLpro and PLpro with sufficient selectivity in a live cell model as well as in the background of a native human proteome. Exploiting the probes as tools for competitive profiling of a natural product library identified salvianolic acid derivatives as promising 3CLpro inhibitors. We anticipate that our ligand selection strategy will be useful to rapidly develop customized probes and discover inhibitors for a wide range of target proteins also beyond corona virus proteases.


Assuntos
Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Técnicas de Sonda Molecular , Sondas Moleculares/química , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/química , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Células Hep G2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Estudo de Prova de Conceito , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
16.
Biol Proced Online ; 22: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190011

RESUMO

BACKGROUND: Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. RESULTS: Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. CONCLUSIONS: Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.

17.
Chembiochem ; 21(8): 1080-1100, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31833626

RESUMO

Covalent drugs have experienced significant renewed interest in drug discovery. This resurgence has been accompanied by a better understanding of the reactivity relationships required to engage selective covalent bonds between nucleophilic proteins and electrophilic small molecules. As a result, researchers have come to the realisation that covalent molecules could also represent useful and novel tools aimed at supporting medicinal chemistry programmes. This review surveys the increasing number of drug discovery platforms employing covalent chemistries, and highlights the utility of these techniques for identifying and characterising small molecules and biological targets.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Enzimas/química , Terapia de Alvo Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Humanos
18.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554687

RESUMO

Virus-encoded proteases play diverse roles in the efficient replication of enterovirus 71 (EV71), which is the causative agent of human hand, foot, and mouth disease (HFMD). However, it is unclear how host proteases affect viral proliferation. Here, we designed activity-based probes (ABPs) based on an inhibitor of the main EV71 protease (3Cpro), which is responsible for the hydrolysis of the EV71 polyprotein, and successfully identified host candidates that bind to the ABPs. Among the candidates, the host cysteine protease autophagy-related protein 4 homolog B (ATG4B), a key component of the autophagy machinery, was demonstrated to hydrolytically process the substrate of EV71 3Cpro and had activity comparable to that of the viral protease. Genetic disruption of ATG4B confirmed that the enzyme is indispensable for viral proliferation in vivo Our results not only further the understanding of host-virus interactions in EV71 biology but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.IMPORTANCE Enterovirus 71 (EV71), one of the major pathogens of human HFMD, has caused outbreaks worldwide. How EV71 efficiently assesses its life cycle with elaborate interactions with multiple host factors remains to be elucidated. In this work, we deconvoluted that the host ATG4B protein processes the viral polyprotein with its cysteine protease activity and helps EV71 replicate through a chemical biology strategy. Our results not only further the understanding of the EV71 life cycle but also provide a sample for the usage of activity-based proteomics to reveal host-pathogen interactions.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proliferação de Células/fisiologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano A/metabolismo , Proteases Virais 3C , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cisteína Endopeptidases/genética , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/crescimento & desenvolvimento , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/fisiologia , Modelos Moleculares , Conformação Proteica , Proteoma , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
19.
Expert Rev Proteomics ; 17(7-8): 513-532, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32910682

RESUMO

INTRODUCTION: Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED: This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION: There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.


Assuntos
Proteoma/genética , Proteômica , Proteínas Virais/genética , Viroses/genética , Cromatografia Líquida , Biologia Computacional , Interações Hospedeiro-Patógeno/genética , Humanos , Espectrometria de Massas , Software , Proteínas Virais/isolamento & purificação , Viroses/patologia , Viroses/virologia
20.
Clin Proteomics ; 17: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549867

RESUMO

BACKGROUND: The pathophysiology of subclinical versus clinical rejection remains incompletely understood given their equivalent histological severity but discordant graft function. The goal was to evaluate serine hydrolase enzyme activities to explore if there were any underlying differences in activities during subclinical versus clinical rejection. METHODS: Serine hydrolase activity-based protein profiling (ABPP) was performed on the urines of a case control cohort of patients with biopsy confirmed subclinical or clinical transplant rejection. In-gel analysis and affinity purification with mass spectrometry were used to demonstrate and identify active serine hydrolase activity. An assay for proteinase 3 (PR3/PRTN3) was adapted for the quantitation of activity in urine. RESULTS: In-gel ABPP profiles suggested increased intensity and diversity of serine hydrolase activities in urine from patients undergoing subclinical versus clinical rejection. Serine hydrolases (n = 30) were identified by mass spectrometry in subclinical and clinical rejection patients with 4 non-overlapping candidates between the two groups (i.e. ABHD14B, LTF, PR3/PRTN3 and PRSS12). Western blot and the use of a specific inhibitor confirmed the presence of active PR3/PRTN3 in samples from patients undergoing subclinical rejection. Analysis of samples from normal donors or from several serial post-transplant urines indicated that although PR3/PRTN3 activity may be highly associated with low-grade subclinical inflammation, the enzyme activity was not restricted to this patient group. CONCLUSIONS: There appear to be limited qualitative and quantitative differences in serine hydrolase activity in patients with subclinical versus clinical renal transplant rejection. The majority of enzymes identified were present in samples from both groups implying that in-gel quantitative differences may largely relate to the activity status of shared enzymes. However qualitative compositional differences were also observed indicating differential activities. The PR3/PRTN3 analyses indicate that the activity status of urine in transplant patients is dynamic possibly reflecting changes in the underlying processes in the transplant. These data suggest that differential serine hydrolase pathways may be active in subclinical versus clinical rejection which requires further exploration in larger patient cohorts. Although this study focused on PR3/PRTN3, this does not preclude the possibility that other enzymes may play critical roles in the rejection process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA