Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(9): 2013-2030.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773106

RESUMO

The sequestration of damaged mitochondria within double-membrane structures termed autophagosomes is a key step of PINK1/Parkin mitophagy. The ATG4 family of proteases are thought to regulate autophagosome formation exclusively by processing the ubiquitin-like ATG8 family (LC3/GABARAPs). We discover that human ATG4s promote autophagosome formation independently of their protease activity and of ATG8 family processing. ATG4 proximity networks reveal a role for ATG4s and their proximity partners, including the immune-disease protein LRBA, in ATG9A vesicle trafficking to mitochondria. Artificial intelligence-directed 3D electron microscopy of phagophores shows that ATG4s promote phagophore-ER contacts during the lipid-transfer phase of autophagosome formation. We also show that ATG8 removal during autophagosome maturation does not depend on ATG4 activity. Instead, ATG4s can disassemble ATG8-protein conjugates, revealing a role for ATG4s as deubiquitinating-like enzymes. These findings establish non-canonical roles of the ATG4 family beyond the ATG8 lipidation axis and provide an AI-driven framework for rapid 3D electron microscopy.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Metabolismo dos Lipídeos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Inteligência Artificial , Autofagossomos/genética , Autofagossomos/ultraestrutura , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Células HEK293 , Células HeLa , Humanos , Imageamento Tridimensional , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mitofagia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294121

RESUMO

ATG9A, a transmembrane protein of the core autophagy pathway, cycles between the Golgi, endosomes and a vesicular compartment. ATG9A was recently shown to act as a lipid scramblase, and this function is thought to require its interaction with another core autophagy protein, ATG2A, which acts as a lipid transfer protein. Together, ATG9A and ATG2A are proposed to function to expand the growing autophagosome. However, ATG9A is implicated in other pathways including membrane repair and lipid droplet homeostasis. To elucidate other ATG9A interactors within the autophagy pathway, or interactors beyond autophagy, we performed an interactome analysis through mass spectrometry. This analysis revealed a host of proteins involved in lipid synthesis and trafficking, including ACSL3, VPS13A and VPS13C. Furthermore, we show that ATG9A directly interacts with VPS13A and forms a complex that is distinct from the ATG9A-ATG2A complex.


Assuntos
Proteínas de Membrana , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Membrana/metabolismo , Autofagossomos/metabolismo , Autofagia , Lipídeos , Proteínas Relacionadas à Autofagia/metabolismo
3.
Trends Biochem Sci ; 45(6): 484-496, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307224

RESUMO

Autophagy is traditionally depicted as a signaling cascade that culminates in the formation of an autophagosome that degrades cellular cargo. However, recent studies have identified myriad pathways and cellular organelles underlying the autophagy process, be it as signaling platforms or through the contribution of proteins and lipids. The Golgi complex is recognized as being a central transport hub in the cell, with a critical role in endocytic trafficking and endoplasmic reticulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an important site of key autophagy regulators, including the protein autophagy-related (ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review, we highlight the central function of this organelle in autophagy as a transport hub supplying various components of autophagosome formation.


Assuntos
Autofagossomos/fisiologia , Complexo de Golgi/fisiologia , Autofagia , Proteínas Relacionadas à Autofagia/fisiologia , Transporte Biológico , Endossomos/metabolismo , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/fisiologia , Proteínas de Transporte Vesicular/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850023

RESUMO

The autophagy protein ATG2, proposed to transfer bulk lipid from the endoplasmic reticulum (ER) during autophagosome biogenesis, interacts with ER residents TMEM41B and VMP1 and with ATG9, in Golgi-derived vesicles that initiate autophagosome formation. In vitro assays reveal TMEM41B, VMP1, and ATG9 as scramblases. We propose a model wherein membrane expansion results from the partnership of a lipid transfer protein, moving lipids between the cytosolic leaflets of apposed organelles, and scramblases that reequilibrate the leaflets of donor and acceptor organelle membranes as lipids are depleted or augmented. TMEM41B and VMP1 are implicated broadly in lipid homeostasis and membrane dynamics processes in which their scrambling activities likely are key.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Modelos Biológicos , Modelos Teóricos , Biogênese de Organelas , Proteínas de Transferência de Fosfolipídeos/fisiologia
5.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396708

RESUMO

Preeclampsia (PE) is a serious hypertensive disorder affecting 4-5% of pregnancies globally, leading to maternal and perinatal morbidity and mortality and reducing life expectancy in surviving women post-gestation. Late-onset PE (LO-PE) is a clinical type of PE diagnosed after 34 weeks of gestation, being less severe than the early-onset PE (EO-PE) variant, although both entities have a notable impact on the placenta. Despite the fact that most studies have focused on EO-PE, LO-PE does not deserve less attention since its prevalence is much higher and little is known about the role of the placenta in this pathology. Via RT-qPCR and immunohistochemistry methods, we measured the gene and protein expressions of several macroautophagy markers in the chorionic villi of placentas from women who underwent LO-PE (n = 68) and compared them to normal pregnancies (n = 43). We observed a markedly distinct expression pattern, noticing a significant drop in NUP62 expression and a considerable rise in the gene and protein expressions of ULK1, ATG9A, LC3, ATG5, STX-17, and LAMP-1 in the placentas of women with LO-PE. A major induction of autophagic processes was found in the placental tissue of patients with LO-PE. Abnormal signaling expression of these molecular patterns in this condition aids in the understanding of the complexity of pathophysiology and proposes biomarkers for the clinical management of these patients.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Fatores de Transcrição/metabolismo , Autofagia/genética , Pré-Eclâmpsia/metabolismo , Estudos de Casos e Controles
6.
EMBO Rep ; 22(10): e51136, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34369648

RESUMO

ATG9A, the only multi-pass transmembrane protein among core ATG proteins, is an essential regulator of autophagy, yet its regulatory mechanisms and network of interactions are poorly understood. Through quantitative BioID proteomics, we identify a network of ATG9A interactions that includes members of the ULK1 complex and regulators of membrane fusion and vesicle trafficking, including the TRAPP, EARP, GARP, exocyst, AP-1, and AP-4 complexes. These interactions mark pathways of ATG9A trafficking through ER, Golgi, and endosomal systems. In exploring these data, we find that ATG9A interacts with components of the ULK1 complex, particularly ATG13 and ATG101. Using knockout/reconstitution and split-mVenus approaches to capture the ATG13-ATG101 dimer, we find that ATG9A interacts with ATG13-ATG101 independently of ULK1. Deletion of ATG13 or ATG101 causes a shift in ATG9A distribution, resulting in an aberrant accumulation of ATG9A at stalled clusters of p62/SQSTM1 and ubiquitin, which can be rescued by an ULK1 binding-deficient mutant of ATG13. Together, these data reveal ATG9A interactions in vesicle-trafficking and autophagy pathways, including a role for an ULK1-independent ATG13 complex in regulating ATG9A.


Assuntos
Autofagia , Ubiquitina , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Sequestossoma-1/genética
7.
Exp Cell Res ; 420(2): 113357, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116557

RESUMO

Neurodegenerative diseases are progressive disorders of the nervous system primarily affecting the loss of neuronal cells present in the brain. Although most neurodegenerative cases are sporadic, some familial genes are found to be involved in the neurodegenerative diseases. The extensively studied parkin and pink1 gene products are known to be involved in the removal of damaged mitochondria via autophagy (mitophagy), a quality control process. If the function of any of these genes is somehow disrupted, accumulation of damaged mitochondria occurs in the forms of protein aggregates in the cytoplasm, leading to formation of the Lewy-bodies. Autophagy is an important catabolic process where the endosomal Rab proteins are seen to be involved. Rab11, an endosomal recycling protein, serves as an ATG9A carrier that helps in autophagosome formation and maturation. Earlier studies have reported that loss of Rab11 prevents the fusion of autophagosomes with the late endosomes hampering the autophagy pathway resulting in apoptosis of cells. In this study, we have emphasized on the importance and functional role of Rab11 in the molecular pathway of Parkin/Pink1 in Parkinson's disease.


Assuntos
Proteínas de Drosophila , Doença de Parkinson , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endossomos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregados Proteicos , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
8.
Cell Mol Biol Lett ; 28(1): 74, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723445

RESUMO

BACKGROUND: Cardiomyocyte death induced by autophagy inhibition is an important cause of cardiac dysfunction. In-depth exploration of its mechanism may help to improve cardiac dysfunction. In our previous study, we found that ß1-adrenergic receptor autoantibodies (ß1-AAs) induced a decrease in myocardial autophagy and caused cardiomyocyte death, thus resulting in cardiac dysfunction. Through tandem mass tag (TMT)-based quantitative proteomics, autophagy-related S100a9 protein was found to be significantly upregulated in the myocardial tissue of actively immunized mice. However, whether S100a9 affects the cardiac function in the presence of ß1-AAs through autophagy and the specific mechanism are currently unclear. METHODS: In this study, the active immunity method was used to establish a ß1-AA-induced mouse cardiac dysfunction model, and RT-PCR and western blot were used to detect changes in gene and protein expression in cardiomyocytes. We used siRNA to knockdown S100a9 in cardiomyocytes. An autophagy PCR array was performed to screen differentially expressed autophagy-related genes in cells transfected with S100a9 siRNA and negative control siRNA. Cytoplasmic nuclear separation, co-immunoprecipitation (Co-IP), and immunofluorescence were used to detect the binding of S100a9 and hypoxia inducible factor-1α (HIF-1α). Finally, AAV9-S100a9-RNAi was injected into mice via the tail vein to knockdown S100a9 in cardiomyocytes. Cardiac function was detected via ultrasonography. RESULTS: The results showed that ß1-AAs induced S100a9 expression. The PCR array indicated that Atg9a changed significantly in S100a9siRNA cells and that ß1-AAs increased the binding of S100a9 and HIF-1α in cytoplasm. Knockdown of S100a9 significantly improved autophagy levels and cardiac dysfunction. CONCLUSION: Our research showed that ß1-AAs increased S100a9 expression in cardiomyocytes and that S100a9 interacted with HIF-1α, which prevented HIF-1α from entering the nucleus normally, thus inhibiting the transcription of Atg9a. This resulted in autophagy inhibition and cardiac dysfunction.


Assuntos
Calgranulina B , Miócitos Cardíacos , Animais , Camundongos , Autoanticorpos , Autofagia , Modelos Animais de Doenças , Miocárdio
9.
J Cell Sci ; 133(14)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32513819

RESUMO

The sorting nexins (SNXs) are a family of peripheral membrane proteins that direct protein trafficking decisions within the endocytic network. Emerging evidence in yeast and mammalian cells implicates a subgroup of SNXs in selective and non-selective forms of autophagy. Using siRNA and CRISPR-Cas9, we demonstrate that the SNX-BAR protein SNX4 is needed for efficient LC3 (also known as MAP1LC3) lipidation and autophagosome assembly in mammalian cells. SNX-BARs exist as homo- and hetero-dimers, and we show that SNX4 forms functional heterodimers with either SNX7 or SNX30 that associate with tubulovesicular endocytic membranes. Detailed image-based analysis during the early stages of autophagosome assembly reveals that SNX4-SNX7 is an autophagy-specific SNX-BAR heterodimer, required for efficient recruitment and/or retention of core autophagy regulators at the nascent isolation membrane. SNX4 partially colocalises with juxtanuclear ATG9A-positive membranes, with our data linking the autophagy defect upon SNX4 disruption to the mis-trafficking and/or retention of ATG9A in the Golgi region. Taken together, our findings show that the SNX4-SNX7 heterodimer coordinates ATG9A trafficking within the endocytic network to establish productive autophagosome assembly sites, thus extending knowledge of SNXs as positive regulators of autophagy.


Assuntos
Autofagossomos , Endossomos , Nexinas de Classificação , Animais , Autofagossomos/metabolismo , Autofagia , Endossomos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
10.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376785

RESUMO

Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.


Assuntos
Glaucoma de Ângulo Aberto , Fator de Transcrição TFIIIA , Proteínas de Ciclo Celular , Citocinas/genética , Humanos , Proteínas de Membrana Transportadoras , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
11.
Mol Biol Rep ; 49(11): 10269-10277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097121

RESUMO

BACKGROUND: The purpose of this study was to investigate the relationship between the expression of autophagy-related genes and prognosis in hepatocellular carcinoma (HCC). METHODS AND RESULTS: We selected three autophagy-related genes (ATG3, ATG7, and ATG9A) from gene expression data of liver cancer patients in The Cancer Genome Atlas (TCGA) database by Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis, and Gene Set Enrichment Analysis (GSEA). Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were applied to testify the credibility of our results. The expression levels of ATG3, ATG7, and ATG9A were verified by real-time quantitative PCR (RT-qPCR) in normal liver cells (L02) and three HCC cell lines (HepG2, Hep3b, and Li-7). Data analysis results from TCGA showed high ATG3, ATG7, ATG9A expression in HCC tumor tissues. Kaplan-Meier survival analysis showed that the survival rate of the high expression group of ATG3, ATG7, and ATG9A was all significantly lower than the low expression group. GSEA analysis showed that many signaling pathways (such as the regulation of autophagy, glycine serine and threonine metabolism, pathways in cancer, mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin (mTOR) signaling pathway, as well as P53 signaling pathway) were differentially enriched in HCCs with ATG3, ATG7, and ATG9A expression. GEPIA and RT-qPCR also identified that the mRNA expression level of ATG3, ATG7, and ATG9A in normal liver cells were significantly lower than in HCC cells. High protein expression of ATG3, ATG7, and ATG9A was displayed in HCCs from the HPA database. CONCLUSIONS: The ATG3, ATG7, ATG9A might be utilized as prognostic biomarkers for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Autofagia/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética
12.
Cell Mol Life Sci ; 78(2): 645-660, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32322926

RESUMO

The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-ß 42 (Aß), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson's disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteostase , Animais , Caenorhabditis elegans/citologia , Células HEK293 , Células HeLa , Humanos , Agregados Proteicos
13.
EMBO J ; 36(12): 1719-1735, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28495679

RESUMO

The autophagosome, a double-membrane structure mediating degradation of cytoplasmic materials by macroautophagy, is formed in close proximity to the endoplasmic reticulum (ER). However, how the ER membrane is involved in autophagy initiation and to which membrane structures the autophagy-initiation complex is localized have not been fully characterized. Here, we were able to biochemically analyze autophagic intermediate membranes and show that the autophagy-initiation complex containing ULK and FIP200 first associates with the ER membrane. To further characterize the ER subdomain, we screened phospholipid biosynthetic enzymes and found that the autophagy-initiation complex localizes to phosphatidylinositol synthase (PIS)-enriched ER subdomains. Then, the initiation complex translocates to the ATG9A-positive autophagosome precursors in a PI3P-dependent manner. Depletion of phosphatidylinositol (PI) by targeting bacterial PI-specific phospholipase C to the PIS domain impairs recruitment of downstream autophagy factors and autophagosome formation. These findings suggest that the autophagy-initiation complex, the PIS-enriched ER subdomain, and ATG9A vesicles together initiate autophagosome formation.


Assuntos
Autofagossomos/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/análise , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Biogênese de Organelas , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Transporte Proteico
14.
Biochem Soc Trans ; 48(5): 1877-1888, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33084855

RESUMO

Heterotetrameric adaptor protein (AP) complexes play key roles in protein sorting and transport vesicle formation in the endomembrane system of eukaryotic cells. One of these complexes, AP-4, was identified over 20 years ago but, up until recently, its function remained unclear. AP-4 associates with the trans-Golgi network (TGN) through interaction with small GTPases of the ARF family and recognizes transmembrane proteins (i.e. cargos) having specific sorting signals in their cytosolic domains. Recent studies identified accessory proteins (tepsin, RUSC2 and the FHF complex) that co-operate with AP-4, and cargos (amyloid precursor protein, ATG9A and SERINC3/5) that are exported from the TGN in an AP-4-dependent manner. Defective export of ATG9A from the TGN in AP-4-deficient cells was shown to reduce ATG9A delivery to pre-autophagosomal structures, impairing autophagosome formation and/or maturation. In addition, mutations in AP-4-subunit genes were found to cause neurological dysfunction in mice and a form of complicated hereditary spastic paraplegia referred to as 'AP-4-deficiency syndrome' in humans. These findings demonstrated that mammalian AP-4 is required for the development and function of the central nervous system, possibly through its role in the sorting of ATG9A for the maintenance of autophagic homeostasis. In this article, we review the properties and functions of AP-4, and discuss how they might explain the clinical features of AP-4 deficiency.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Mutação , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Rede trans-Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia , Sítios de Ligação , Caenorhabditis elegans , Cryptococcus neoformans , Drosophila melanogaster , Fungos , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Ligação Proteica , Conformação Proteica , Transporte Proteico , Vesículas Transportadoras/metabolismo , Tirosina/química , Proteínas de Transporte Vesicular/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(50): E10697-E10706, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180427

RESUMO

AP-4 is a member of the heterotetrameric adaptor protein (AP) complex family involved in protein sorting in the endomembrane system of eukaryotic cells. Interest in AP-4 has recently risen with the discovery that mutations in any of its four subunits cause a form of hereditary spastic paraplegia (HSP) with intellectual disability. The critical sorting events mediated by AP-4 and the pathogenesis of AP-4 deficiency, however, remain poorly understood. Here we report the identification of ATG9A, the only multispanning membrane component of the core autophagy machinery, as a specific AP-4 cargo. AP-4 promotes signal-mediated export of ATG9A from the trans-Golgi network to the peripheral cytoplasm, contributing to lipidation of the autophagy protein LC3B and maturation of preautophagosomal structures. These findings implicate AP-4 as a regulator of autophagy and altered autophagy as a possible defect in AP-4-deficient HSP.


Assuntos
Complexo 4 de Proteínas Adaptadoras/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Complexo 4 de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Animais , Autofagia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo
16.
Retrovirology ; 16(1): 18, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269971

RESUMO

BACKGROUND: Nef is a multifunctional accessory protein encoded by HIV-1, HIV-2 and SIV that plays critical roles in viral pathogenesis, contributing to viral replication, assembly, budding, infectivity and immune evasion, through engagement of various host cell pathways. RESULTS: To gain a better understanding of the role of host proteins in the functions of Nef, we carried out tandem affinity purification-mass spectrometry analysis, and identified over 70 HIV-1 Nef-interacting proteins, including the autophagy-related 9A (ATG9A) protein. ATG9A is a transmembrane component of the machinery for autophagy, a catabolic process in which cytoplasmic components are degraded in lysosomal compartments. Pulldown experiments demonstrated that ATG9A interacts with Nef from not only HIV-1 and but also SIV (cpz, smm and mac). However, expression of HIV-1 Nef had no effect on the levels and localization of ATG9A, and on autophagy, in the host cells. To investigate a possible role for ATG9A in virus replication, we knocked out ATG9A in HeLa cervical carcinoma and Jurkat T cells, and analyzed virus release and infectivity. We observed that ATG9A knockout (KO) had no effect on the release of wild-type (WT) or Nef-defective HIV-1 in these cells. However, the infectivity of WT virus produced from ATG9A-KO HeLa and Jurkat cells was reduced by ~ fourfold and eightfold, respectively, relative to virus produced from WT cells. This reduction in infectivity was independent of the interaction of Nef with ATG9A, and was not due to reduced incorporation of the viral envelope (Env) glycoprotein into the virus. The loss of HIV-1 infectivity was rescued by pseudotyping HIV-1 virions with the vesicular stomatitis virus G glycoprotein. CONCLUSIONS: These studies indicate that ATG9A promotes HIV-1 infectivity in an Env-dependent manner. The interaction of Nef with ATG9A, however, is not required for Nef to enhance HIV-1 infectivity. We speculate that ATG9A could promote infectivity by participating in either the removal of a factor that inhibits infectivity or the incorporation of a factor that enhances infectivity of the viral particles. These studies thus identify a novel host cell factor implicated in HIV-1 infectivity, which may be amenable to pharmacologic manipulation for treatment of HIV-1 infection.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Infecções por HIV/virologia , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Relacionadas à Autofagia/genética , Técnicas de Inativação de Genes , Células HeLa , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Transporte Vesicular/genética , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
17.
Biochim Biophys Acta ; 1863(9): 2299-310, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27316455

RESUMO

ATG9A is a multispanning membrane protein required for autophagosome formation. Under basal conditions, neosynthesized ATG9A proteins travel to the Golgi apparatus and cycle between the trans-Golgi network and endosomes. In the present work, we searched for molecular determinants involved in the subcellular trafficking of human ATG9A in HeLa cells using sequential deletions and point mutations. Deletion of amino acids L(340) to L(354) resulted in the retention of ATG9A in the endoplasmic reticulum. In addition, we found that substitution of the L(711)YM(713) sequence (located in the C-terminal region of ATG9A) by alanine residues severely impaired its transport through the Golgi apparatus. This defect could be corrected by oligomerization of the mutant protein with co-transfected wild-type ATG9A, suggesting that ATG9A oligomerization may help its sorting through biosynthetic compartments. Lastly, the study of the consequences of the LYM/AAA mutation on the intracellular trafficking of ATG9A highlighted that some newly synthesized ATG9A can bypass the Golgi apparatus to reach the plasma membrane. Taken together, these findings provide new insights into the intracellular pathways followed by ATG9A to reach different subcellular compartments, and into the intramolecular determinants that drive the sorting of this protein.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Vias Biossintéticas , Compartimento Celular , Membrana Celular/metabolismo , Endossomos/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Polissacarídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Multimerização Proteica , Estabilidade Proteica , Transporte Proteico , Proteólise , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
18.
Biochem Biophys Res Commun ; 479(2): 404-409, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27663665

RESUMO

ATG9A is the only polytopic protein of the mammalian autophagy-related protein family whose members regulate autophagosome formation during macroautophagy. At steady state, ATG9A localizes to several intracellular sites, including the Golgi apparatus, endosomes and the plasma membrane, and it redistributes towards autophagosomes upon autophagy induction. Interestingly, the transport of yeast Atg9 to the pre-autophagosomal structure depends on its self-association, which is mediated by a short amino acid motif located in the C-terminal region of the protein. Here, we investigated whether the residues that align with this motif in human ATG9A (V515-C519) are also required for its trafficking in mammalian cells. Interestingly, our findings support that human ATG9A self-interacts as well, and that this process promotes transport of ATG9A molecules through the Golgi apparatus. Furthermore, our data reveal that the transport of ATG9A out of the ER is severely impacted after mutation of the conserved V515-C519 motif. Nevertheless, the mutated ATG9A molecules could still interact with each other, indicating that the molecular mechanism of self-interaction differs in mammalian cells compared to yeast. Using sequential amino acid substitutions of glycine 516 and cysteine 519, we found that the stability of ATG9A relies on both of these residues, but that only the former is required for efficient transport of human ATG9A from the endoplasmic reticulum to the Golgi apparatus.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Glicina/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Alanina/química , Motivos de Aminoácidos , Proteínas Relacionadas à Autofagia/genética , Membrana Celular/metabolismo , Cisteína/química , Retículo Endoplasmático/metabolismo , Deleção de Genes , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Microscopia de Fluorescência , Domínios Proteicos , Transporte Proteico , Proteínas de Transporte Vesicular/genética
19.
Autophagy ; 20(3): 557-576, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37938170

RESUMO

Macroautophagy/autophagy is a fundamental aspect of eukaryotic biology, and the autophagy-related protein ATG9A is part of the core machinery facilitating this process. In addition to ATG9A vertebrates encode ATG9B, a poorly characterized paralog expressed in a subset of tissues. Herein, we characterize the structure of human ATG9B revealing the conserved homotrimeric quaternary structure and explore the conformational dynamics of the protein. Consistent with the experimental structure and computational chemistry, we establish that ATG9B is a functional lipid scramblase. We show that ATG9B can compensate for the absence of ATG9A in starvation-induced autophagy displaying similar subcellular trafficking and steady-state localization. Finally, we demonstrate that ATG9B can form a heteromeric complex with ATG2A. By establishing the molecular structure and function of ATG9B, our results inform the exploration of niche roles for autophagy machinery in more complex eukaryotes and reveal insights relevant across species.Abbreviation: ATG: autophagy related; CHS: cholesteryl hemisuccinate; cryo-EM: single-particle cryogenic electron microscopy; CTF: contrast transfer function: CTH: C- terminal α helix; FSC: fourier shell correlation; HDIR: HORMA domain interacting region; LMNG: lauryl maltose neopentyl glycol; MD: molecular dynamics simulations; MSA: multiple sequence alignment; NBD-PE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl ammonium salt); POPC: palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; RBG: repeating beta groove domain; RMSD: root mean square deviation; SEC: size-exclusion chromatography; TMH: transmembrane helix.


Assuntos
Autofagia , Proteínas de Membrana , Animais , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo
20.
Gene ; 897: 148084, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104954

RESUMO

BACKGROUND: Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS: Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS: Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION: ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.


Assuntos
Proteínas Relacionadas à Autofagia , Degeneração do Disco Intervertebral , Disco Intervertebral , MicroRNAs , RNA Citoplasmático Pequeno , Humanos , Algoritmos , Biologia Computacional , Degeneração do Disco Intervertebral/diagnóstico , Degeneração do Disco Intervertebral/genética , RNA-Seq , Proteínas Relacionadas à Autofagia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA