Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(10): 1577-1589, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076760

RESUMO

The impact of climate change-induced drought stress on global food security and environmental sustainability is a serious concern. While previous research has highlighted the potential benefits of drought hardening in improving plants' ability to withstand drought, the exact underlying physiological mechanisms in millet plants (Setaria italica L.) have not been explored. This study aimed to investigate the impact of drought hardening on antioxidant defense and polyphenol accumulation in different millet genotypes ('PI 689680' and 'PI 662292') subjected to different treatments: control (unstressed), drought acclimation (two stress episodes with recovery), and non-acclimation (single stress episode with no recovery). The results showed that drought stress led to higher levels of polyphenols and oxidative damage, as indicated by increased phenolic, flavonoid, and anthocyanin levels. Non-acclimated (NA) plants experienced more severe oxidative damage and inhibition of enzymes associated with the ascorbate glutathione cycle compared to drought-acclimated plants. NA plants also exhibited a significant reduction in photosynthesis and tissue water content. The expression of genes related to antioxidants and polyphenol synthesis was more pronounced in non-acclimated plants. The study demonstrated that drought hardening not only prepared plants for subsequent drought stress but also mitigated damage caused by oxidative stress in plant physiology. Drought-acclimated (DA) plants displayed improved drought tolerance, as evidenced by better growth, photosynthesis, antioxidant defense, polyphenol accumulation, and gene expression related to antioxidants and polyphenol synthesis. In conclusion, the research advocates for the use of drought hardening as an effective strategy to alleviate the negative impacts of drought-induced metabolic disturbances in millet. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01366-w.

2.
Physiol Mol Biol Plants ; 29(10): 1457-1474, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076765

RESUMO

The cooperative role of vital components of the antioxidative defense pathway in addition to redox couples was studied in a growth-phase dependent manner at 20, 30, and 40 days after subculturing (DAS) in five different euryhaline microalgal strains (EMS) Scenedesmus MKB (B-S), Spirulina subsalsa (B-6), Anabaena sp. (B-7), Chlorella sp. (B-8), and Chlorosarcinopsis eremi (B-18) collected from waterlogged areas of Punjab, India and in two freshwater microalgal strains (FMS). EMS surpasses to maintain a high redox couple's ratio ascorbic acid/dehydroascorbate (AsA/DHA), and reduced glutathione/oxidized glutathione (GSH/GSSG) through a close-knit pattern of antioxidative enzymes including high specific activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR), dehydroascorbate reductase (DHAR) and less specific activity of glutathione peroxidase (GPX). While FMS struggled for the same irrespective of near similar total glutathione and higher specific activity of GPX might be answerable for the lesser redox ratio than EMS. However, high specific activity of catalase (CAT) might be sought to compensate for the less increase of APX in FMS. The fact significantly less H2O2, and malondialdehyde (MDA) with DAS in EMS than in FMS and higher redox ratios exquisitely elevate their tolerance ability making EMS a captivating prospect for cultivation in waterlogged areas. Additionally, their abundance of potent antioxidants further highlights the potential of EMS as an excellent source of these beneficial compounds.

3.
Curr Issues Mol Biol ; 44(6): 2453-2471, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35735609

RESUMO

Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•-) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate-glutathione (AsA-GSH) cycle and upregulated key genes in the AsA-GSH cycle.

4.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008903

RESUMO

Aluminum (Al) toxicity is the main factor limiting plant growth and the yield of cereal crops in acidic soils. Al-induced oxidative stress could lead to the excessive accumulation of reactive oxygen species (ROS) and aldehydes in plants. Aldehyde dehydrogenase (ALDH) genes, which play an important role in detoxification of aldehydes when exposed to abiotic stress, have been identified in most species. However, little is known about the function of this gene family in the response to Al stress. Here, we identified an ALDH gene in maize, ZmALDH, involved in protection against Al-induced oxidative stress. Al stress up-regulated ZmALDH expression in both the roots and leaves. The expression of ZmALDH only responded to Al toxicity but not to other stresses including low pH and other metals. The heterologous overexpression of ZmALDH in Arabidopsis increased Al tolerance by promoting the ascorbate-glutathione cycle, increasing the transcript levels of antioxidant enzyme genes as well as the activities of their products, reducing MDA, and increasing free proline synthesis. The overexpression of ZmALDH also reduced Al accumulation in roots. Taken together, these findings suggest that ZmALDH participates in Al-induced oxidative stress and Al accumulation in roots, conferring Al tolerance in transgenic Arabidopsis.


Assuntos
Adaptação Fisiológica/genética , Aldeído Desidrogenase/genética , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Genes de Plantas , Zea mays/genética , Adaptação Fisiológica/efeitos dos fármacos , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Sequência de Aminoácidos , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Superóxidos/metabolismo , Nicotiana/metabolismo
5.
Physiol Mol Biol Plants ; 28(7): 1453-1466, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36051237

RESUMO

Contamination of soil with chromium (Cr) is a rising problem in terms of agricultural sustainability and food safety. Here, the effects of methyl jasmonate (MJ; 0, 5, and 10 µM) on alleviating Cr stress (0, 100, and 200 µM) were surveyed in pot marigold (Calendula officinalis L.). The results showed that Cr stress significantly reduced photosynthetic pigments and leaf accumulation of total soluble sugars, total starch, and mineral nutrients and, consequently, lowered the height and biomass of pot marigold plants. Chromium toxicity also increased the leaf levels of oxidative stress markers and induced oxidative stress, which was associated with damage to bio-membranes and increased levels of malondialdehyde. However, MJ supplementation reduced the leaf accumulation of Cr, increased the content of photosynthetic pigments, and improved the performance of the photosynthetic machinery in Cr-stressed plants. MJ supplementation boosted the antioxidant defense system by upregulating antioxidant enzymes, glyoxalase enzymes, and the ascorbate-glutathione (AsA-GSH) pool redox, which significantly diminished Cr-induced oxidative stress. Hence, MJ supplementation might be a practicable approach for reducing Cr absorption and its negative impacts on pot marigold plants growing under Cr-contaminated conditions. Clinical trials registration Not applicable.

6.
Ecotoxicol Environ Saf ; 227: 112879, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649142

RESUMO

Cinnamic acid (CA), one of the main autotoxins secreted by cucumber roots during continuous cropping, inhibits plant growth and reduces yield. Silicon (Si) is an environmentally friendly element that alleviates abiotic stresses in plants, but the mechanism underlying its resistance to autotoxicity remain unclear. Here, we used 0.8 mmol L-1 CA to study the effects of Si application on the growth, chlorophyll fluorescence, and ascorbate-glutathione (AsA-GSH) cycle of cucumber seedlings under CA inducing conditions. Our results indicated that CA significantly induced photoinhibition and overaccumulation of reactive oxygen species (ROS), thereby inhibiting cucumber growth. Treatment with 1.0 mmol L-1 Si improved plant height, stem diameter and biomass accumulation, and protected the photosynthetic electron transport function of photosystem II in the presence of CA. Similarly, Si application maintained the ROS status by increasing ascorbate (AsA) and glutathione (GSH) production, as well as the ratios of AsA/DHA and GSH/GSSG in both leaves and roots during CA stress. In addition, Si application in CA-treated seedlings enhanced the activity of key enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), and the transcription of several enzyme genes (CsAPX, CsMDHAR and CsGR) from the AsA-GSH cycle. These results suggest that exogenous Si enhances CA tolerance in cucumber seedlings by protecting photosystem II activity, upregulating AsA-GSH pathway, and reducing ROS levels.


Assuntos
Cucumis sativus , Silício , Cinamatos , Glutationa , Complexo de Proteína do Fotossistema II , Folhas de Planta
7.
Ecotoxicol Environ Saf ; 208: 111758, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396081

RESUMO

The cultivation of leafy vegetables on metal contaminated soil embodies a serious threat to yield and quality. In the present study, the potential role of exogenous jasmonic acid (JA; 0, 5, 10, and 20 µM) on mitigating chromium toxicity (Cr; 0, 150, and 300 µM) was investigated in choysum (Brassica parachinensis L.). With exposure to increasing Cr stress levels, a dose-dependent decline in growth, photosynthesis, and physio-biochemical attributes of choysum plants was observed. An increase in Cr levels also resulted in oxidative stress closely associated with higher lipoxygenase activity (LOX), hydrogen peroxide (H2O2) generation, lipid peroxidation (MDA), and methylglyoxal (MG) levels. Exogenous application of JA alleviated the Cr-induced phytotoxic effects on photosynthetic pigments, gas exchange parameters, and restored growth of choysum plants. While exposed to Cr stress, JA supplementation induced plant defense system via enhanced regulation of antioxidant enzymes, ascorbate and glutathione pool, and the glyoxalase system enzymes. The coordinated regulation of antioxidant and glyoxalase systems expressively suppressed the oxidative and carbonyl stress at both Cr stress levels. More importantly, JA restored the mineral nutrient contents, restricted Cr uptake, and accumulation in roots and shoots of choysum plants when compared to the only Cr-stressed plants. Overall, the application of JA2 treatment (10 µM JA) was more effective and counteracted the detrimental effects of 150 µM Cr stress by restoring the growth and physio-biochemical attributes to the level of control plants, while partially mitigated the detrimental effects of 300 µM Cr stress. Hence, JA application might be considered as an effective approach for minimizing Cr uptake and its detrimental effects in choysum plants grown on contaminated soils.


Assuntos
Antioxidantes/farmacologia , Brassica/fisiologia , Cromo/toxicidade , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassica/efeitos dos fármacos , Brassica/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo
8.
Physiol Mol Biol Plants ; 27(11): 2651-2664, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34924716

RESUMO

Contamination of agricultural soil by chromium (Cr) is a serious menace to environmental safety and global food security. Although potential of salicylic acid (SA) in mitigating heavy metal (HM) toxicity in plants is well recognized, detailed physiological mechanisms behind such beneficial effects under Cr-stress in tomato (Solanum lycopersicum L.) plant are far from being completely unravelled. The present study evaluated the efficacy of exogenously applied SA, in alleviating Cr-mediated alterations on photosynthesis and antioxidant defense in tomato exposed to three different concentrations of Cr(VI) [0, 50, and 100 mg Cr(VI) kg-1 soil]. Exposure of tomato plants to Cr resulted in increased Cr-accumulation and oxidative damage, as signposted by high Cr concentration in root as well as shoot, augmented malondialdehyde (MDA) and superoxides levels, and inhibition in enzymes of ascorbate-glutathione (AsA-GSH) cycle. Furthermore, a significant (P ≤ 0.05) reduction in photosynthetic pigments and gas exchange parameters was also evident in Cr-stressed tomato plants. Findings of the present study showed that exogenous application of 0.5 mM SA not only promoted plant growth subjected to Cr, but also restored Cr-mediated disturbances in plant physiology. A significant (P ≤ 0.05) decrease in Cr acquisition and translocation as evidenced by improved growth and photosynthesis in SA-treated plants was observed. Additionally, exogenous SA application by virtue of its positive effect on efficient antioxidant system ameliorated the Cr-mediated oxidative stress in tomato plants as signposted by lower MDA and superoxide levels and improved AsA-GSH cycle. Overall, current study advocates the potential of exogenous SA application in amelioration of Cr-mediated physiological disturbances in tomato plant.

9.
Ann Bot ; 126(6): 1049-1062, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32639526

RESUMO

BACKGROUND AND AIMS: Branching is an important mechanism of plant shape establishment and the direct consequence of axillary bud outgrowth. Recently, hydrogen peroxide (H2O2) metabolism, known to be involved in plant growth and development, has been proposed to contribute to axillary bud outgrowth. However, the involvement of H2O2 in this process remains unclear. METHODS: We analysed the content of H2O2 during bud outgrowth and characterized its catabolism, both at the transcriptional level and in terms of its enzymatic activities, using RT-qPCR and spectrophotometric methods, respectively. In addition, we used in vitro culture to characterize the effects of H2O2 application and the reduced glutathione (GSH) synthesis inhibitor l-buthionine sulfoximine (BSO) on bud outgrowth in relation to known molecular markers involved in this process. KEY RESULTS: Quiescent buds displayed a high content of H2O2 that declined when bud outgrowth was initiated, as the consequence of an increase in the scavenging activity that is associated with glutathione pathways (ascorbate-glutathione cycle and glutathione biosynthesis); catalase did not appear to be implicated. Modification of bud redox state after the application of H2O2 or BSO prevented axillary bud outgrowth by repressing organogenesis and newly formed axis elongation. Hydrogen peroxide also repressed bud outgrowth-associated marker gene expression. CONCLUSIONS: These results show that high levels of H2O2 in buds that are in a quiescent state prevents bud outgrowth. Induction of ascorbate-glutathione pathway scavenging activities results in a strong decrease in H2O2 content in buds, which finally allows bud outgrowth.


Assuntos
Glutationa , Peróxido de Hidrogênio , Ácido Ascórbico , Catalase , Desenvolvimento Vegetal
10.
Ecotoxicol Environ Saf ; 203: 110978, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678757

RESUMO

In this study, hydroponic experiments were conducted to elucidate mechanism(s) that are associated with differential effects of low (5 µM) and high (25 µM) dose of cadmium (Cd) stress in tomato. Furthermore, emphasis has also been focused on any involvement of endogenous hydrogen sulfide (H2S) in differential behaviour of low and high doses of Cd stress. At low dose of Cd, root growth i.e. root fresh weight, length and fitness did not significantly alter when compared to the control seedlings. Though at low dose of Cd, cellular accumulation of Cd was slightly increased but this was accompanied by higher endogenous H2S and phytochelatins, L-cysteine desulfhydrase (DES) activity, activities of glutathione biosynthetic and AsA-GSH cycle enzymes, and maintained redox status of ascorbate and glutathione. However, addition of hypotaurine (HT, a scavenger of H2S) resulted in greater toxicity, even at low dose of Cd, and these responses resembled with higher dose of Cd stress such as greater decline in root growth, endogenous H2S and phytochelatins, activities of DES, glutathione biosynthesis and AsA-GSH cycle enzymes, disturbed redox status of ascorbate and glutathione which collectively led to higher oxidative stress in tomato roots. Moreover, addition of HT with higher dose of Cd also further enhanced its toxicity. Collectively, the results showed that differential behaviour of low and high dose of Cd stress is mediated by differential regulation of biochemical attributes in which endogenous H2S has a crucial role.


Assuntos
Cádmio/toxicidade , Sulfeto de Hidrogênio/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
11.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887449

RESUMO

We studied changes in gas exchange, photochemical activity and the antioxidant system in cucumber leaves locally infected with Pseudomonas syringae pv lachrymans and in uninfected systemic ones. Infection-induced declined net photosynthesis rate and the related changes in transpiration rate, the intracellular CO2 concentration, and prolonged reduction in maximal PSII quantum yield (Fv/Fm), accompanied by an increase in non-photochemical quenching (NPQ), were observed only in the infected leaves, along with full disease symptom development. Infection severely affected the ROS/redox homeostasis at the cellular level and in chloroplasts. Superoxide dismutase, ascorbate, and tocopherol were preferentially induced at the early stage of pathogenesis, whereas catalase, glutathione, and the ascorbate-glutathione cycle enzymes were activated later. Systemic leaves retained their net photosynthesis rate and the changes in the antioxidant system were partly like those in the infected leaves, although they occurred later and were less intense. Re-balancing of ascorbate and glutathione in systemic leaves generated a specific redox signature in chloroplasts. We suggest that it could be a regulatory element playing a role in integrating photosynthesis and redox regulation of stress, aimed at increasing the defense capacity and maintaining the growth of the infected plant.


Assuntos
Antioxidantes/metabolismo , Cucumis sativus/fisiologia , Estresse Oxidativo , Fotossíntese , Folhas de Planta/fisiologia , Pseudomonas syringae/patogenicidade , Catalase/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/microbiologia , Cucumis sativus/microbiologia , Glutationa/metabolismo , Oxirredução , Folhas de Planta/microbiologia , Superóxido Dismutase/metabolismo
12.
Physiol Mol Biol Plants ; 25(3): 649-665, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31168230

RESUMO

Imbibitional oxidative stress of different magnitude, imposed by treatment with different titer of H2O2 (both elevated, 20 mM and low, 500 µM) to an indica rice cultivar (Oryza sativa L., Cultivar Ratna) caused formation of differential redox cues at the metabolic interface, as evident from significant alteration of ROS/antioxidant ratio, efficacy of ascorbate-glutathione cycle, radical scavenging property, modulation of total thiol content and expression of oxidative membrane protein and lipid damages as biomarkers of oxidative stress. All the redox parameters examined, substantiate the experimental outcome that treatment with elevated concentration of H2O2 caused serious loss of redox homeostasis and germination impairment, whereas low titre H2O2 treatment not only restored redox homeostasis but also improve germination and post-germinative growth. The inductive pulse of H2O2 (500 µM) exhibited significantly better performance of ascorbate-glutathione pathway, which was otherwise down-regulated significantly in 20 mM H2O2 treatment-raised seedlings. A comparison between imbibitional chilling stress-raised experimental rice seedlings with 20 mM H2O2 treated rice seedling revealed similar kind of generation of redox cues and oxidative stress response. Further, imbibitional H2O2 treatments in rice also revealed a dose-dependent regulation of expression of genes of Halliwell-Asada pathway enzymes, which is in consonance with the redox metabolic response of germinating rice seeds. In conclusion, a dose-dependent regulation of H2O2 mediated redox cues and redox regulatory properties during germination in rice are suggested, the knowledge of which may be exploited as a promising seed priming technology.

13.
Planta ; 248(1): 49-68, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29564629

RESUMO

MAIN CONCLUSION: Salicylic acid alleviates lead toxicity in Brassica juncea (L.) by promoting growth under non-stress and activating stress-defense mechanism (s) under lead stress conditions. It also boosts the ascorbate-glutathione cycle and thus helps in minimizing oxidative and DNA damage. Brassica juncea plants were exposed to different concentrations (0, 500, 1000 and 2000 mg kg-1) of lead (Pb) and subsequently sprayed with 0.5 mM of salicylic acid (SA) to check for morphological and leaf gas exchange parameters like transpiration rate (E), stomatal conductance (GH2O), net photosynthetic rate (A) and maximum quantum yield of PS II (Fv/Fm). Leaf epidermis by scanning electron microscopy (SEM), enzymatic and non-enzymatic components of ascorbate-glutathione (AsA-GSH) cycle, DNA damage by comet assay, lipid peroxidation and endogenous SA quantification by HPLC were analyzed. Lead accumulation in root, shoot and its sub-cellular distribution ratio (SDR) and localization was also determined using atomic absorption spectroscopy (AAS) and rhodizonate-dye staining method, respectively. Results revealed that notable amount of Pb was accumulated in root and shoot in dose-dependent manner which significantly (P ≤ 0.05) posed the toxicity on the majority of morphological parameters, structural integrity of epidermal and guard cells, photosynthetic pigments, malondialdehyde (MDA) and H2O2 content. Notable decrease in leaf gas exchange parameters, Fv/Fm, poor performance of AsA-GSH cycle and striking amount of DNA damage, was found as well. However, SA revoked Pb toxicity to a great extent by promoting growth, chlorophyll content, improving the A, Fv/Fm, boosting the overall performance of AsA-GSH cycle and by lessening the DNA damage.


Assuntos
Chumbo/toxicidade , Mostardeira/efeitos dos fármacos , Ácido Salicílico/farmacologia , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Chumbo/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/química , Brotos de Planta/química , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 162: 312-323, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30005404

RESUMO

Despite numerous reports that legume-rhizobium symbiosis alleviates Cu stress in plants, the possible roles of legume-rhizobium symbiosis and the regulatory mechanisms in counteracting Cu toxicity remain unclear. Here, Sinorhizobium meliloti CCNWSX0020 was used for analyzing the effects of rhizobium inoculation on plant growth in Medicago sativa seedlings under Cu stress. Our results showed that rhizobium inoculation alleviated Cu-induced growth inhibition, and increased nitrogen concentration in M. sativa seedlings. Moreover, the total amount of Cu uptake in inoculated plants was significantly increased compared with non-inoculated plants, and the increase in the roots was much higher than that in the shoots, thus decreasing the transfer coefficient and promoting Cu phytostabilization. Cu stress induced lipid peroxidation and reactive oxygen species production, but rhizobium inoculation reduced these components' accumulation through altering antioxidant enzyme activities and regulating ascorbate-glutathione cycles. Furthermore, legume-rhizobium symbiosis regulated the gene expression involved in antioxidant responses, phytochelatin (PC) biosynthesis, and metallothionein biosynthesis in M. sativa seedlings under Cu stress. Our results demonstrate that rhizobium inoculation enhanced Cu tolerance by affecting Cu uptake, regulating antioxidant enzyme activities and the ascorbate-glutathione cycle, and influencing PC biosynthesis-related gene expression in M. sativa. The results provide an efficient strategy for phytoremediation of Cu-contaminated soils.


Assuntos
Cobre/toxicidade , Medicago sativa/efeitos dos fármacos , Rhizobium/metabolismo , Poluentes do Solo/toxicidade , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Metalotioneína/metabolismo , Fitoquelatinas/biossíntese , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Simbiose
15.
Pestic Biochem Physiol ; 145: 108-117, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29482726

RESUMO

Nicosulfuron is a postemergence herbicide used for weed control in maize fields (Zea mays L.). We used the pair of nearly isogenic inbred lines, SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive), to study the effect of nicosulfuron on growth, oxidative stress, and the ascorbate-glutathione (AA-GSH) cycle in waxy maize seedlings. Nicosulfuron treatment was applied when the fourth leaves were fully developed and the obtained effects were compared to water treatment as control. After nicosulfuron treatment, compared to SN509-R, the death of SN509-S might be associated with increased oxidative stress, since higher O2- and H2O2 accumulations were observed in SN509-S. This in turn might have caused severe damage to lipids and proteins, thus reducing membrane stability. These effects were exacerbated with increasing exposure time. After nicosulfuron treatment, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and guaiacol peroxidase of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, dehydroascorbate content, glutathione (GSH) content, and GSH to glutathione disulphide ratios significantly declined with increasing exposure time in SN509-S. Our results suggest that the rapid degradation of nicosulfuron in SN509-R results in only a small and transient increase in reactive oxygen species (ROS). In contrast, in SN509-S, reduced nicosulfuron degradation leads to increase ROS, while at the same time, the AA-GSH pathway is not activated.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Herbicidas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/farmacologia , Compostos de Sulfonilureia/farmacologia , Zea mays/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Desidroascórbico/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , NADH NADPH Oxirredutases/metabolismo , Oxirredutases/metabolismo , Superóxidos/metabolismo , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
16.
Physiol Mol Biol Plants ; 24(4): 577-589, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30042614

RESUMO

The effect of 0.5-1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate-glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200-400 mM NaCl compared to the control. Superoxide anion (O2·-), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100-400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O2·- accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.

17.
Physiol Mol Biol Plants ; 24(1): 7-23, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29398835

RESUMO

The present work makes an effort to assess and standardize some redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice cultivars of West Bengal, India. PEG-induced dehydration stress during early germination caused disruption of redox-homeostasis and oxidative damage in four IARVs (Jamainadu, Tulaipanji, Sitabhog and Badshabhog) by enhancing the accumulation of pro-oxidants [assessed in terms of oxidation of 2',7'-dichlorofluorescindiacetate (DCFDA), accumulation of [Formula: see text] and H2O2 and in situ staining of reactive oxygen species (ROS) in germinating tissue], significant reduction of antioxidative defence (total antioxidant and radical scavenging capacity, total thiol content and activities of antioxidative defence enzymes) and aggravating protein oxidation and lipid peroxidation (assessed in terms of free carbonyl content and accumulation of thiobarbituric acid reactive substances). When compared between the indigenous aromatic rice cultivars, a clear trend in differential redox regulatory properties in which ROS-antioxidant interaction acts at metabolic interface for redox homeostasis was observed in the order Badshabhog > Tulaipanji > Sitabhog > Jamainadu. Moreover, when the efficacy of ascorbate-glutathione cycle for scavenging H2O2 generated during dehydration stress was assessed and compared between the landraces exposed to PEG-induced dehydration stress in germinating tissue, it also exhibited almost the same trend with the landrace Tulaipanji and Badsabhog exhibiting maximum and Jamainadu the minimum efficiencies of the redox cycle. The indigenous aromatic rice cultivars Tulaipanji and Badsabhog resist dehydration stress better than the other two landraces due to its early preparedness to combat oxidative stress by up-regulating expression of genes of some enzymes of ascorbate-glutathione cycle along with some other antioxidative enzymes. A model of redox homeostasis in which ROS-antioxidant (ascorbate-glutathione system) acts at metabolic interface for up-regulation of antioxidative gene expression necessary for differential drought stress tolerance among the indigenous aromatic rice varieties is suggested.

18.
Adv Exp Med Biol ; 979: 47-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28429317

RESUMO

Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP+-glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.


Assuntos
Cloroplastos/metabolismo , Euglena/fisiologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo
19.
Mycorrhiza ; 27(7): 669-682, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28593465

RESUMO

Salinity stress leads to the production of reactive oxygen species (ROS) which can cause oxidative damage in plants. A correlation between antioxidant capacity and salt tolerance has been demonstrated in several plant species, which may be enhanced by inoculation with arbuscular mycorrhizal fungi (AMF). However, plant responses to mycorrhization may differ depending on the host plant as well as AMF isolate. It has been proposed that AMF sourced from stressed environments may be better suited as stress ameliorators than non-native/exotic ones. The present study compared the effectiveness of a native inoculum from saline soil and two exotic single isolates, Funneliformis mossseae and Rhizophagus irregularis (single or dual mix), and associated their effectiveness with modulation of antioxidant defence, in two Cajanus cajan (pigeonpea) genotypes (salt sensitive-Paras, salt tolerant-Pusa 2002) under NaCl stress. Plants subjected to NaCl (0-100 mM) recorded a substantial build-up of ROS, more in Paras than Pusa 2002. Although mycorrhization with all AMF improved plant biomass and reduced oxidative burst by strengthening antioxidant enzymatic activities, inoculation with R. irregularis (alone or in combination with F. mosseae) resulted in higher biomass accumulation which correlated with its higher root colonization and improved redox stability through rapid recycling of reduced ascorbate and glutathione. The study thus suggested that mitigation of salt-induced oxidative burden by increased activation of scavenging antioxidants is an important mechanism that determined the higher effectiveness of R. irregularis over the native saline mix in pigeonpea plants.


Assuntos
Antioxidantes/metabolismo , Cajanus/metabolismo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Tolerância ao Sal , Cajanus/genética , Cajanus/microbiologia , Genótipo , Estresse Oxidativo/fisiologia
20.
Int J Mol Sci ; 18(8)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933771

RESUMO

Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.


Assuntos
Antioxidantes/farmacologia , Brassica/efeitos dos fármacos , Plântula/efeitos dos fármacos , Enxofre/farmacologia , Ácido Ascórbico/metabolismo , Brassica/crescimento & desenvolvimento , Cádmio/toxicidade , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA