Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropathology ; 40(1): 30-39, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31498507

RESUMO

Lewy body disease (LBD) is characterized by the presence of Lewy bodies (LBs) and Lewy neurites and comprises a diagnostic spectrum that includes Parkinson's disease (PD), PD with dementia, and dementia with LBs. LBs and Lewy neurites are insoluble aggregates composed mainly of phosphorylated α-synuclein and can be widely distributed throughout the central and peripheral nervous systems. The distribution of LBs may determine the LBD phenotype. Braak hypothesized that Lewy pathology progresses ascendingly from the peripheral nervous system to the olfactory bulbs and brainstem and then to other brain regions. Braak's PD staging suggests that LBD is a prion-like disease. Most typical PD cases fit with Braak's PD staging, but the scheme fails in some cases. Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy, frontotemporal lobar degeneration, Creutzfeldt-Jakob disease, cerebrovascular diseases, and essential tremor are common misdiagnoses for pathologically confirmed LBD. LBD exhibits considerable heterogeneity in both clinical and pathological settings, which makes clinical diagnosis challenging.


Assuntos
Encéfalo/patologia , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Encéfalo/metabolismo , Humanos , Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Neuropatologia , alfa-Sinucleína/metabolismo
2.
Neurobiol Dis ; 130: 104509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207390

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder. Depositions of amyloid ß peptide (Aß) and tau protein are among the major pathological hallmarks of AD. Aß and tau burden follows predictable spatial patterns during the progression of AD. Nevertheless, it remains obscure why certain brain regions are more vulnerable than others; to investigate this and dysregulated pathways during AD progression, a mass spectrometry-based proteomics study was performed. METHODS: In total 103 tissue samples from regions early (entorhinal and parahippocampal cortices - medial temporal lobe (MTL)) and late affected (temporal and frontal cortices - neocortex) by tau pathology were subjected to label-free quantitative proteomics analysis. RESULTS: Considering dysregulated proteins during AD progression, the majority (625 out of 737 proteins) was region specific, while some proteins were shared between regions (101 proteins altered in two areas and 11 proteins altered in three areas). Analogously, many dysregulated pathways during disease progression were exclusive to certain regions, but a few pathways altered in two or more areas. Changes in protein expression indicate that synapse loss occurred in all analyzed regions, while translation dysregulation was preponderant in entorhinal, parahippocampal and frontal cortices. Oxidative phosphorylation impairment was prominent in MTL. Differential proteomic analysis of brain areas in health state (controls) showed higher metabolism and increased expression of AD-related proteins in the MTL compared to the neocortex. In addition, several proteins that differentiate brain regions in control tissue were dysregulated in AD. CONCLUSIONS: This work provides the comparison of proteomic changes in brain regions affected by tau pathology at different stages of AD. Although we identified commonly regulated proteins and pathways during disease advancement, we found that the dysregulated processes are predominantly region specific. In addition, a distinct proteomic signature was found between MTL and neocortex in healthy subjects that might be related to AD vulnerability. These findings highlight the need for investigating AD's cascade of events throughout the whole brain and studies spanning more brain areas are required to better understand AD etiology and region vulnerability to disease.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteoma , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteômica
3.
J Neural Transm (Vienna) ; 126(4): 423-431, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29943229

RESUMO

Braak et al. proposed that cases with Lewy pathology in the peripheral nervous sytem, spinal cord and brain stem are prodromal Parkinson's disease (PD), suggesting a hypothesized progression of PD pathology. However, the putative potential of peripheral α-synuclein to promote brain pathology has been questioned recently. The Braak staging is a matter of vigorous debate, since < 100% of cases with Lewy pathology fitting the proposed PD staging scheme; however, most studies assessing typical PD cases show that the vast majority (80-100%) fit the Braak staging scheme. Incidental Lewy body disease and PD can show Lewy pathology in substantia nigra or other brain areas without involvement of dorsal motor nucleus of the vagus nerve. The Braak staging system is valid for PD patients with young onset, long duration with motor symptoms, but not for others, e.g., late onset and rapid course PD. The validity of Braak staging and its relationship to various subtypes of PD warrants further studies.


Assuntos
Encéfalo/patologia , Corpos de Lewy/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Progressão da Doença , Humanos
4.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424585

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder resulting from degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). PD is characterized by motor dysfunctions as well as gastrointestinal symptoms and mental impairment. The pathological hallmark of PD is an accumulation of misfolded α-synuclein aggregates within the brain. The etiology of PD and related synucleinopathy is poorly understood, but recently, the hypothesis that α-synuclein pathology spreads in a prion-like fashion originating in the gut has gained much scientific attention. A crucial clue was the appearance of constipation before the onset of motor symptoms, gut dysbiosis and synucleinopathy in PD patients. Another line of evidence, demonstrating accumulation of α-synuclein within the peripheral autonomic nervous system (PANS), including the enteric nervous system (ENS), and the dorsal motor nucleus of the vagus (DMV) support the concept that α-synuclein can spread from the ENS to the brain by the vagus nerve. The decreased risk of PD following truncal vagotomy supports this. The convincing evidence of the prion-like behavior of α-synuclein came from postmortem observations that pathological α-synuclein inclusions appeared in healthy grafted neurons. In this review, we summarize the available data from human subjects' research and animal experiments, which seem to be the most suggestive for explaining the hypotheses.


Assuntos
Gastroenteropatias/patologia , Doença de Parkinson/patologia , Doenças Priônicas/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , alfa-Sinucleína/metabolismo
5.
Acta Neuropathol ; 134(4): 619-628, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28612291

RESUMO

[F-18]-AV-1451, a PET tracer specifically developed to detect brain neurofibrillary tau pathology, has the potential to facilitate accurate diagnosis of Alzheimer's disease (AD), staging of brain tau burden and monitoring disease progression. Recent PET studies show that patients with mild cognitive impairment and AD dementia exhibit significantly higher in vivo [F-18]-AV-1451 retention than cognitively normal controls. Importantly, PET patterns of [F-18]-AV-1451 correlate well with disease severity and seem to match the predicted topographic Braak staging of neurofibrillary tangles (NFTs) in AD, although this awaits confirmation. We studied the correlation of autoradiographic binding patterns of [F-18]-AV-1451 and the stereotypical spatiotemporal pattern of progression of NFTs using legacy postmortem brain samples representing different Braak NFT stages (I-VI). We performed [F-18]-AV-1451 phosphor-screen autoradiography and quantitative tau measurements (stereologically based NFT counts and biochemical analysis of tau pathology) in three brain regions (entorhinal cortex, superior temporal sulcus and visual cortex) in a total of 22 cases: low Braak (I-II, n = 6), intermediate Braak (III-IV, n = 7) and high Braak (V-VI, n = 9). Strong and selective [F-18]-AV-1451 binding was detected in all tangle-containing regions matching precisely the observed pattern of PHF-tau immunostaining across the different Braak stages. As expected, no signal was detected in the white matter or other non-tangle containing regions. Quantification of [F-18]-AV-1451 binding was very significantly correlated with the number of NFTs present in each brain region and with the total tau and phospho-tau content as reported by Western blot and ELISA. [F-18]-AV-1451 is a promising biomarker for in vivo quantification of brain tau burden in AD. Neuroimaging-pathologic studies conducted on postmortem material from individuals imaged while alive are now needed to confirm these observations.


Assuntos
Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Carbolinas , Emaranhados Neurofibrilares/patologia , Compostos Radiofarmacêuticos , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Encéfalo/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Índice de Gravidade de Doença , Proteínas tau/metabolismo
6.
Acta Neuropathol ; 133(1): 91-100, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27878366

RESUMO

Transcellular propagation of tau aggregates may underlie the progression of pathology in Alzheimer's disease (AD) and other tauopathies. Braak staging (B1, B2, B3) is based on phospho-tau accumulation within connected brain regions: entorhinal cortex (B1); hippocampus/limbic system (B2); and frontal and parietal lobes (B3). We previously developed a specific and sensitive assay that uses flow cytometry to quantify tissue seeding activity based on fluorescence resonance energy transfer (FRET) in cells that stably express tau reporter proteins. In a tauopathy mouse model, we have detected seeding activity far in advance of histopathological changes. It remains unknown whether individuals with AD also develop seeding activity prior to accumulation of phospho-tau. We measured tau seeding activity across four brain regions (hippocampus, frontal lobe, parietal lobe, and cerebellum) in 104 fresh-frozen human AD brain samples from all Braak stages. We observed widespread seeding activity, notably in regions predicted to be free of phospho-tau deposition, and in detergent-insoluble fractions that lacked tau detectable by ELISA. Seeding activity correlated positively with Braak stage and negatively with MMSE. Our results are consistent with early transcellular propagation of tau seeds that triggers subsequent development of neuropathology. The FRET-based seeding assay may also complement standard neuropathological classification of tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HEK293 , Humanos , Imuno-Histoquímica , Entrevista Psiquiátrica Padronizada , Microscopia Confocal , Índice de Gravidade de Doença
7.
Acta Neuropathol ; 133(3): 395-407, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27866231

RESUMO

Progressive accumulation of Alzheimer's disease-related pathology is associated with cognitive dysfunction. Differences in cognitive reserve may contribute to individual differences in cognitive function in the presence of comparable neuropathology. The protective effects of cognitive reserve could contribute differentially in early versus late stages of the disease. We investigated presynaptic proteins as measures of brain reserve (a subset of total cognitive reserve), and used Braak staging to estimate the progression of Alzheimer's disease. Antemortem evaluations of cognitive function, postmortem assessments of pathologic indices, and presynaptic protein analyses, including the complexins I and II as respective measures of inhibitory and excitatory terminal function, were assayed in multiple key brain regions in 418 deceased participants from a community study. After covarying for demographic variables, pathologic indices, and overall synapse density, lower brain complexin-I and -II levels contributed to cognitive dysfunction (P < 0.01). Each complexin appeared to be dysregulated at a different Braak stage. Inhibitory complexin-I explained 14.4% of the variance in global cognition in Braak 0-II, while excitatory complexin-II explained 7.3% of the variance in Braak V-VI. Unlike other presynaptic proteins, complexins did not colocalize with pathologic tau within neuritic plaques, suggesting that these functional components of the synaptic machinery are cleared early from dystrophic neurites. Moreover, complexin levels showed distinct patterns of change related to memory challenges in a rat model, supporting the functional specificity of these proteins. The present results suggest that disruption of inhibitory synaptic terminals may trigger early cognitive impairment, while excitatory terminal disruption may contribute relatively more to later cognitive impairment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/complicações , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Proteínas do Tecido Nervoso/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Autopsia , Encéfalo/patologia , Transtornos Cognitivos/metabolismo , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Aprendizagem em Labirinto , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Long-Evans , Características de Residência , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
8.
Brain ; 139(Pt 5): 1539-50, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26936940

RESUMO

SEE THAL AND VANDENBERGHE DOI101093/BRAIN/AWW057 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Post-mortem Braak staging of neurofibrillary tau tangle topographical distribution is one of the core neuropathological criteria for the diagnosis of Alzheimer's disease. The recent development of positron emission tomography tracers targeting neurofibrillary tangles has enabled the distribution of tau pathology to be imaged in living subjects. Methods for extraction of classic Braak staging from in vivo imaging of neurofibrillary tau tangles have not yet been explored. Standardized uptake value ratio images were calculated from 80-100 minute (18)F-AV-1451 (also known as T807) positron emission tomography scans obtained from n = 14 young reference subjects (age 21-39 years, Mini-Mental State Examination 29-30) and n = 173 older test subjects (age 50-95 years) comprising amyloid negative cognitively normal (n = 42), clinically-diagnosed mild cognitive impairment (amyloid positive, n = 47, and amyloid negative, n = 40) and Alzheimer's disease (amyloid positive, n = 28, and amyloid negative, n = 16). We defined seven regions of interest in anterior temporal lobe and occipital lobe sections corresponding closely to those used as decision points in Braak staging. An algorithm based on the Braak histological staging procedure was applied to estimate Braak stages directly from the region of interest profiles in each subject. Quantitative region-based analysis of (18)F-AV-1451 images yielded region of interest and voxel level profiles that mirrored key features of neuropathological tau progression including profiles consistent with Braak stages 0 through VI. A simple set of decision rules enabled plausible Braak stages corresponding to stereotypical progression patterns to be objectively estimated in 149 (86%) of test subjects. An additional 12 (7%) subjects presented with predefined variant profiles (relative sparing of the hippocampus and/or occipital lobe). The estimated Braak stage was significantly associated with amyloid status, diagnostic category and measures of global cognition. In vivo (18)F-AV-1451 positron emission tomography images across the Alzheimer's disease spectrum could be classified into patterns similar to those prescribed by Braak neuropathological staging of tau pathology.


Assuntos
Doença de Alzheimer/metabolismo , Carbolinas/metabolismo , Disfunção Cognitiva/metabolismo , Emaranhados Neurofibrilares/metabolismo , Lobo Occipital/metabolismo , Lobo Temporal/metabolismo , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem , Tomografia por Emissão de Pósitrons , Índice de Gravidade de Doença , Adulto Jovem
9.
Neuropathol Appl Neurobiol ; 42(1): 51-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666838

RESUMO

Synucleinopathies are characterized by abnormal proteinaceous aggregates, mainly composed of fibrillar α-synuclein (α-syn). It is now believed that α-syn can form small aggregates in a restricted number of cells, that propagate to neighbouring cells and seed aggregation of endogenous α-syn, in a 'prion-like manner'. This process could underlie the stereotypical progression of Lewy bodies described by Braak and colleagues across different stages of Parkinson's disease (PD). This prion-like behaviour of α-syn has been recently investigated in animal models of PD or multiple system atrophy (MSA). These models investigate the cell-to-cell transfer of α-syn seeds, or the induction and spreading of α-syn pathology in transgenic or wild-type rodent brain. In this review, we first outline the involvement of α-syn in Lewy body diseases and MSA, and discuss how 'prion-like' mechanisms can contribute to disease. Thereon, we debate the relevance of animal models used to study prion-like propagation. Finally, we review current main histological methods used to assess α-syn pathology both in animal models and in human samples and their relevance to the disease. Specifically, we discuss using α-syn phosphorylated at serine 129 as a marker of pathology, and the novel methods available that allow for more sensitive detection of early pathology, which has relevance for modelling synucleinopathies.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/metabolismo , Animais , Humanos
10.
Neurobiol Dis ; 77: 276-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25046996

RESUMO

Parkinson's disease (PD) is mainly attributed to degeneration of dopamine neurons in the substantia nigra, but its etiopathogenesis also includes impaired protein clearance and axonal transport dysfunction, among others. The spread of α-synuclein (α-syn) aggregates from one neuron to another, in a prion-like manner, is hypothesized to contribute to PD progression. Axonal transport is likely to play a crucial role in this movement of α-syn aggregates between brain regions. At the same time, deficits in axonal transport are suggested to contribute to neuronal failure in PD. In this review, we discuss the apparent contradiction that axonal transport might be essential for disease progression, while dysfunction of axonal transport could simultaneously be a cornerstone of PD pathogenesis. We speculate around models that reconcile how axonal transport can play such a paradoxical role.


Assuntos
Transporte Axonal/fisiologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Animais , Humanos , Doenças Mitocondriais/etiologia , Neuroglia/fisiologia
11.
Neurobiol Aging ; 144: 127-137, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39326302

RESUMO

In Alzheimer's disease (AD), neuropsychiatric symptoms (NPS) correlate with tau deposition in the brain. Here, we investigated the association of PET-based Braak stages with NPS and assessed whether they predict annual changes in NPS. We evaluated 231 individuals in the aging and AD continuum. Participants were assigned a Braak stage at baseline and followed for 1.97 (s.d. 0.62) years. NPS were investigated using the Mild Behavioral Impairment Checklist (MBI-C) and the Neuropsychiatric Inventory Questionnaire severity (NPI-Q-S) and distress (NPI-Q-D) scales. Multiple linear regressions (MLR) assessed the association of Braak stages with baseline NPS and the annual change in NPS scores. At baseline, stages I-II, III-IV, and V-VI were associated with higher MBI-C, NPI-Q-S, and NPI-Q-D scores. Stages V-VI were associated with a significant annual increase in MBI-C scores. These findings suggest that tau accumulation may manifest clinically with an increase in NPS, which seems to be an early event in AD pathophysiology. Moreover, PET-based Braak staging appears to be a good predictor of NPS severity progression.

12.
J Nucl Med ; 64(8): 1171-1178, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321820

RESUMO

Amyloid-ß plaques and neurofibrillary tangles (NFTs) are the 2 histopathologic hallmarks of Alzheimer disease (AD). On the basis of the pattern of NFT distribution in the brain, Braak and Braak proposed a histopathologic staging system for AD. Braak staging provides a compelling framework for staging and monitoring of NFT progression in vivo using PET imaging. Because AD staging remains based on clinical features, there is an unmet need to translate neuropathologic staging to a biologic clinical staging system. Such a biomarker staging system might play a role in staging preclinical AD or in improving recruitment strategies for clinical trials. Here, we review the literature regarding AD staging with the Braak framework using tau PET imaging, here called PET-based Braak staging. Our aim is to summarize the efforts of implementing Braak staging using PET and assess correspondence with the Braak histopathologic descriptions and with AD biomarkers. Methods: We conducted a systematic literature search in May 2022 on PubMed and Scopus combining the terms "Alzheimer" AND "Braak" AND ("positron emission tomography" OR "PET"). Results: The database search returned 262 results, and after assessment for eligibility, 21 studies were selected. Overall, most studies indicate that PET-based Braak staging may be an efficient method to stage AD since it presents an adequate ability to discriminate between phases of the AD continuum and correlates with clinical, fluid, and imaging biomarkers of AD. However, the translation of the original Braak descriptions to tau PET was done taking into account the limitations of this imaging technique. This led to important interstudy variability in the anatomic definitions of Braak stage regions of interest. Conclusion: Refinements in this staging system are necessary to incorporate atypical variants and Braak-nonconformant cases. Further studies are needed to understand the possible applications of PET-based Braak staging to clinical practice and research. Furthermore, there is a need for standardization in the topographic definitions of Braak stage regions of interest to guarantee reproducibility and methodologic homogeneity across studies.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Reprodutibilidade dos Testes , Proteínas tau , Emaranhados Neurofibrilares , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Placa Amiloide
13.
Brain Commun ; 5(3): fcad146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252014

RESUMO

A classical early sign of typical Alzheimer's disease is memory decline, which has been linked to the aggregation of tau in the medial temporal lobe. Verbal delayed free recall and recognition tests have consistently probed useful to detect early memory decline, and there is substantial debate on how performance, particularly in recognition tests, is differentially affected through health and disease in older adults. Using in vivo PET-Braak staging, we investigated delayed recall and recognition memory dysfunction across the Alzheimer's disease spectrum. Our cross-sectional study included 144 cognitively unimpaired elderly, 39 amyloid-ß+ individuals with mild cognitive impairment and 29 amyloid-ß+ Alzheimer's disease patients from the Translational Biomarkers in Aging and Dementia cohort, who underwent [18F]MK6240 tau and [18F]AZD4694 amyloid PET imaging, structural MRI and memory assessments. We applied non-parametric comparisons, correlation analyses, regression models and voxel-wise analyses. In comparison with PET-Braak Stage 0, we found that reduced, but not clinically significant, delayed recall starts at PET-Braak Stage II (adjusted P < 0.0015), and that recognition (adjusted P = 0.011) displayed a significant decline starting at PET-Braak Stage IV. While performance in both delayed recall and recognition related to tau in nearly the same cortical areas, further analyses showed that delayed recall rendered stronger associations in areas of early tau accumulation, whereas recognition displayed stronger correlations in mostly posterior neocortical regions. Our results support the notion that delayed recall and recognition deficits are predominantly associated with tau load in allocortical and neocortical areas, respectively. Overall, delayed recall seems to be more dependent on the integrity of anterior medial temporal lobe structures, while recognition appears to be more affected by tau accumulation in cortices beyond medial temporal regions.

14.
Brain Inform ; 10(1): 33, 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38043122

RESUMO

Mild cognitive impairment (MCI) is a transitional stage between normal aging and early Alzheimer's disease (AD). The presence of extracellular amyloid-beta (Aß) in Braak regions suggests a connection with cognitive dysfunction in MCI/AD. Investigating the multivariate predictive relationships between regional Aß biomarkers and cognitive function can aid in the early detection and prevention of AD. We introduced machine learning approaches to estimate cognitive dysfunction from regional Aß biomarkers and identify the Aß-related dominant brain regions involved with cognitive impairment. We employed Aß biomarkers and cognitive measurements from the same individuals to train support vector regression (SVR) and artificial neural network (ANN) models and predict cognitive performance solely based on Aß biomarkers on the test set. To identify Aß-related dominant brain regions involved in cognitive prediction, we built the local interpretable model-agnostic explanations (LIME) model. We found elevated Aß in MCI compared to controls and a stronger correlation between Aß and cognition, particularly in Braak stages III-IV and V-VII (p < 0.05) biomarkers. Both SVR and ANN, especially ANN, showed strong predictive relationships between regional Aß biomarkers and cognitive impairment (p < 0.05). LIME integrated with ANN showed that the parahippocampal gyrus, inferior temporal gyrus, and hippocampus were the most decisive Braak regions for predicting cognitive decline. Consistent with previous findings, this new approach suggests relationships between Aß biomarkers and cognitive impairment. The proposed analytical framework can estimate cognitive impairment from Braak staging Aß biomarkers and delineate the dominant brain regions collectively involved in AD pathophysiology.

15.
Biomolecules ; 12(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35327650

RESUMO

Tau aggregates accumulate in the Alzheimer's disease (AD) brain according to the established Braak staging scheme and spread from transentorhinal over limbic regions to the neocortex. To impact the management of AD patients, an in vivo tool for tau Braak staging is needed. First-generation tau tracers have limited performance in detecting early stages of tau. Therefore, we tested the corresponding capability of the next-generation tau tracer, 18F-PI-2620. We analyzed 18F-PI-2620 multicenter PET data from 37 beta-amyloid-positive AD dementia patients and those from 26 healthy controls. We applied kinetic modeling of the 0-60 min p.i. PET data using MRTM2 with the lower cerebellum as the reference region to extract Braak stage-dependent distribution volume ratios, whereas controls were used to define Braak stage PET positivity thresholds. Stage-dependent PET positivity widely followed the Braak scheme (except Braak stage III) presenting descending frequency of PET positivity from Braak I (43%), II (38%), III (49%), IV (35%), V (30%) to VI (14%). A strictly hierarchical model was met by 64% of AD dementia cases. Nineteen percent showed a hippocampal sparing tauopathy pattern. Thus, we could assign 87% to the six-stage hierarchical Braak model including tauopathy variants. 18F-PI-2620 PET appears to be able to perform Braak tau staging of AD in vivo.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Radioisótopos de Flúor , Humanos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Tomografia por Emissão de Pósitrons , Piridinas , Tauopatias/patologia , Proteínas tau/metabolismo
16.
Trends Neurosci ; 44(12): 927-929, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34674877

RESUMO

Autopsy and imaging studies have demonstrated a typical pattern of tau progression in Alzheimer's disease (AD), spreading to previously unaffected regions in an anatomical sequence of 'Braak' stages. In a recent study, Pascoal et al. provide evidence that microgliosis colocalizes with tau in a Braak-like pattern, furthering the notion that microglial activation is strongly related to the propagation of tangle pathology.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/patologia , Humanos , Emaranhados Neurofibrilares/patologia , Proteínas tau
17.
Alzheimers Res Ther ; 13(1): 137, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384484

RESUMO

BACKGROUND: To systematically examine the clinical utility of tau-PET and Braak-staging as prognostic markers of future cognitive decline in older adults with and without cognitive impairment. METHODS: In this longitudinal study, we included 396 cognitively normal to dementia subjects with 18F-Florbetapir/18F-Florbetaben-amyloid-PET, 18F-Flortaucipir-tau-PET and ~ 2-year cognitive follow-up. Annual change rates in global cognition (i.e., MMSE, ADAS13) and episodic memory were calculated via linear-mixed models. We determined global amyloid-PET (Centiloid) plus global and Braak-stage-specific tau-PET SUVRs, which were stratified as positive(+)/negative(-) at pre-established cut-offs, classifying subjects as Braak0/BraakI+/BraakI-IV+/BraakI-VI+/Braakatypical+. In bootstrapped linear regression, we assessed the predictive accuracy of global tau-PET SUVRs vs. Centiloid on subsequent cognitive decline. To test for independent tau vs. amyloid effects, analyses were further controlled for the contrary PET-tracer. Using ANCOVAs, we tested whether more advanced Braak-stage predicted accelerated future cognitive decline. All models were controlled for age, sex, education, diagnosis, and baseline cognition. Lastly, we determined Braak-stage-specific conversion risk to mild cognitive impairment (MCI) or dementia. RESULTS: Baseline global tau-PET SUVRs explained more variance (partial R2) in future cognitive decline than Centiloid across all cognitive tests (Cohen's d ~ 2, all tests p < 0.001) and diagnostic groups. Associations between tau-PET and cognitive decline remained consistent when controlling for Centiloid, while associations between amyloid-PET and cognitive decline were non-significant when controlling for tau-PET. More advanced Braak-stage was associated with gradually worsening future cognitive decline, independent of Centiloid or diagnostic group (p < 0.001), and elevated conversion risk to MCI/dementia. CONCLUSION: Tau-PET and Braak-staging are highly predictive markers of future cognitive decline and may be promising single-modality estimates for prognostication of patient-specific progression risk in clinical settings.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Estudos Longitudinais , Tomografia por Emissão de Pósitrons , Prognóstico , Proteínas tau
18.
J Alzheimers Dis ; 79(1): 25-30, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33216037

RESUMO

Nasu-Hakola disease is a rare autosomal recessive disorder associated to mutations in TREM2 and DAP12 genes, neuropathologically characterized by leukoencephalopathy with axonal spheroids. We report the neuropathologic findings of a 51-year-old female with a homozygous mutation (Q33X) of TREM2 gene. Beside severe cerebral atrophy and hallmarks of Nasu-Hakola disease, significant Alzheimer's disease lesions were present. Neurofibrillary changes showed an atypical topographic distribution being severe at spots in the neocortex while sparing the mesial temporal structures. Our finding suggests that TREM2 genetic defects may favor Alzheimer's disease pathology with neurofibrillary changes not following the hierarchical staging of cortical involvement identified by Braak.


Assuntos
Encéfalo/patologia , Lipodistrofia/patologia , Emaranhados Neurofibrilares/patologia , Osteocondrodisplasias/patologia , Placa Amiloide/patologia , Panencefalite Esclerosante Subaguda/patologia , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Neocórtex/patologia , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Receptores Imunológicos/genética , Panencefalite Esclerosante Subaguda/diagnóstico por imagem , Panencefalite Esclerosante Subaguda/genética , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia
19.
Brain Pathol ; 31(1): 144-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810333

RESUMO

Some aged community dogs acquire a degenerative syndrome termed Canine Cognitive Dysfunction (CCD) that resembles human dementia because of Alzheimer's Disease (AD), with comparable cognitive and behavioral deficits. Dogs also have similar neuroanatomy, share our domestic environment and develop amyloid-ß plaques, making them likely a valuable ecological model of AD. However, prior investigations have demonstrated a lack of neurofibrillary tau pathology in aged dogs, an important hallmark of AD, though elevated phosphorylated tau (p-tau) at the Serine 396 (S396) epitope has been reported in CCD. Here using enhanced immunohistochemical methods, we investigated p-tau in six CCD brains and six controls using the AT8 antibody (later stage neurofibrillary pathology), and an antibody against S396 p-tau (earlier stage tau dysfunction). For the first time, we systematically assessed the Papez circuit and regions associated with Braak staging and found that all CCD dogs displayed elevated S396 p-tau labeling throughout the circuit. The limbic thalamus was particularly implicated, with a similar labeling pattern to that reported for AD neurofibrillary pathology, especially the anterior nuclei, while the hippocampus exhibited dysfunction confined to synaptic layers and efferent pathways. The cingulate and temporal lobes displayed significantly greater tauopathy than the frontal and occipital cortices, also reflective of early Braak staging patterns in AD. Immunofluorescence confirmed that S396 was accumulating within neuronal axons, somata and oligodendrocytes. We also observed AT8 labeling in one CCD brain, near the transentorhinal cortex in layer II neurons, one of the first regions to be affected in AD. Together, these data demonstrate a concordance in regional distribution of tauopathy between CCD and AD, most evident in the limbic thalamus, an important step in further validating CCD as a translational model for human AD and understanding early AD pathogenic mechanisms.


Assuntos
Encéfalo/patologia , Disfunção Cognitiva/patologia , Doenças do Cão/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Doença de Alzheimer , Animais , Disfunção Cognitiva/metabolismo , Doenças do Cão/metabolismo , Cães , Feminino , Masculino , Fosforilação , Tauopatias/metabolismo
20.
Alzheimers Res Ther ; 12(1): 54, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384937

RESUMO

BACKGROUND: The contributions of brain intercellular communication mechanisms, specifically extracellular vesicles (EV), to the progression of Alzheimer's disease (AD) remain poorly understood. METHODS: Here, we investigated the role(s) of brain EV in the progressive course of AD through unbiased proteome-wide analyses of temporal lobe-derived EV and proteome-label quantitation of complementary remaining brain portions. Furthermore, relevant proteins identified were further screened by multiple reaction monitoring. RESULTS: Our data indicate that EV biogenesis was altered during preclinical AD with the genesis of a specific population of EV containing MHC class-type markers. The significant presence of the prion protein PrP was also manifested in these brain vesicles during preclinical AD. Similarly, sequestration of amyloid protein APP in brain EV coincided with the observed PrP patterns. In contrast, active incorporation of the mitophagy protein GABARAP in these brain vesicles was disrupted as AD progressed. Likewise, disrupted incorporation of LAMP1 in brain EV was evident from the initial manifestation of AD clinical symptoms, although the levels of the protein remained significantly upregulated in the temporal lobe of diseased brains. CONCLUSIONS: Our findings indicate that impaired autophagy in preclinical AD coincides with the appearance of proinflammatory and neuropathological features in brain extracellular vesicles, facts that moderately remain throughout the entire AD progression. Thus, these data highlight the significance of brain EV in the establishment of AD neuropathology and represent a further leap toward therapeutic interventions with these vesicles in human dementias.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Príons , Doença de Alzheimer/genética , Encéfalo/metabolismo , Progressão da Doença , Vesículas Extracelulares/metabolismo , Humanos , Príons/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA