Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Environ Manage ; 360: 121093, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735069

RESUMO

Coastal Louisiana's ecosystems are threatened by anthropogenic factors exacerbated by climate change induced sea-level rise. The 2010 Deepwater Horizon oil spill resulted in injuries and deaths to coastal birds in Louisiana, and the ongoing loss of habitat has limited the potential for successful nesting of resident birds throughout the coast. Habitat loss is being addressed through increased large-scale ecosystem restoration as a result of settlement funds from the Deepwater Horizon oil spill. To further inform bird restoration in Louisiana, an avian restoration guidance document (Guidance for Coastal Ecosystem Restoration and Monitoring to Create or Improve Bird-NestingHabitat, 2023) was developed to maximize restoration benefits for coastal breeding birds while also achieving broader habitat restoration objectives. The developed restoration guidance was co-produced by subject-matter experts and professionals, including avian experts, engineers, and coastal restoration project managers. The result of this cross-disciplinary effort was specific and targeted guidance that presents designable habitat features that are in the control of project engineers and are also important high-value bird nesting habitats (e.g., shoreline access, elevation heterogeneity and edge habitat). For the first time in Louisiana, defined nest-site characteristics and monitoring approaches are readily available to inform ecosystem restoration project implementation. The restoration document specifically emphasizes bird species that breed and nest in coastal habitats in Louisiana, and restoration managers can use these guidelines to explicitly incorporate bird nesting habitat features into coastal restoration planning, design, and implementation. In developing this guidance, many knowledge gaps and data needs were identified specific to engineering and project design, enabling the research community to frame research questions around specific coastal restoration questions. The co-production of science model applied here for avian resources is applicable to a wide range of other living marine resources that may benefit from large-scale ecosystem restoration and is an example of the benefits of working relationships, communications, and common goal setting.


Assuntos
Aves , Conservação dos Recursos Naturais , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Louisiana , Mudança Climática , Poluição por Petróleo , Recuperação e Remediação Ambiental/métodos
2.
Restor Ecol ; 30(8): e13652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589387

RESUMO

Restoration of degraded coastal and estuarine habitats owing to human activities is a major global concern. In Puget Sound, Washington, U.S.A., removal of hard armor from beaches and intertidal zones has become a priority for state and local agencies. However, the effectiveness of these shoreline restoration programs for subtidal habitats and fish is unknown. We surveyed six restoration sites in Puget Sound over 2 years to evaluate associations between shoreline restoration and subtidal fish abundance. We measured the abundance of juvenile salmonids and forage fishes along armored, restored, and reference shorelines. Bayesian generalized linear models showed limited support for associations between shoreline restoration and these fishes in the 3-7 years since armor removal. Pacific herring were more abundant at reference shorelines; the shoreline effect for surf smelt varied by survey site. Shoreline restoration was not an important predictor of salmonid abundance; the best models for Chinook and chum salmon included predictors for survey site and eelgrass, respectively. The retention of survey site in several species' top models reveals the influence of the broader landscape context. We also found seasonal variation in abundance for chum salmon and surf smelt. Our results suggest that juvenile forage fish and salmonids in estuaries likely have unique responses to shoreline features, and that the positive effects of armor removal either do not extend into subtidal areas or are not detectable at local scales. To be most effective, coastal restoration programs should consider broader landscape patterns as well as species-specific habitat needs when prioritizing investments.

3.
J Environ Manage ; 318: 115589, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772270

RESUMO

Outcomes of landscape scale restoration and conservation can be maximized when planning is based upon quantitative and decision-relevant information. Existing tools to support data-driven planning are hindered by regionally inconsistent information and a need for advanced methods to analyze data of varying spatial resolution and coverage. We present a synthesis methodology for region-wide derived metrics to characterize natural resource value, ecosystem stress, and social vulnerability to inform implementation of conservation and restoration projects. Our three-part methodology was developed and tested for the Gulf of Mexico in support of the Southeast Conservation Blueprint that was created to advance the Southeast Conservation and Adaptation Strategy. The first step included integration of prioritized natural resource metrics alongside socio-ecological metrics to create a data layer of synthesized natural resource priority across the northern Gulf of Mexico. The second component was calculation of ecosystem stress indices based on ecologically relevant thresholds and a cumulative ecosystem stress layer, in addition to analyzing correlations between individual stressors and their relative importance. The final component was development of a social vulnerability (SoVI) index. Analysis of these metrics illustrate their ability to effectively capture variability at multiple scales in the Gulf of Mexico, including expected spatial correlation of stressors such as road density and non-point source pollution in populated areas and the dominance of sea-level rise as a future stressor along the coast. Significant composite components of social vulnerability for the northern Gulf of Mexico region were identified and include economic status, professional workforce, elderly population, population stability, migrant workforce, and rural population. To demonstrate the utility of the data synthesis approach, we used the developed data layers to evaluate proposed marsh creation projects in southern Louisiana. The synthesized data layers were capable of distinguishing differences at the scale of individual habitat restoration projects, and high-value projects could be aligned with the goals of key funding streams. This pilot application illustrates how restoration programs could use the methodology developed here to maximize benefits from conservation and restoration actions along the northern Gulf of Mexico or other regions globally.


Assuntos
Ecossistema , Áreas Alagadas , Idoso , Conservação dos Recursos Naturais/métodos , Golfo do México , Humanos , Recursos Naturais
4.
Conserv Biol ; 35(6): 1850-1860, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33818808

RESUMO

Marine coastal ecosystems, commonly referred to as blue ecosystems, provide valuable services to society but are under increasing threat worldwide due to a variety of drivers, including eutrophication, development, land-use change, land reclamation, and climate change. Ecological restoration is sometimes necessary to facilitate recovery in coastal ecosystems. Blue restoration (i.e., in marine coastal systems) is a developing field, and projects to date have been small scale and expensive, leading to the perception that restoration may not be economically viable. We conducted a global cost-benefit analysis to determine the net benefits of restoring coral reef, mangrove, saltmarsh, and seagrass ecosystems, where the benefit is defined as the monetary value of ecosystem services. We estimated costs from published restoration case studies and used an adjusted-value-transfer method to assign benefit values to these case studies. Benefit values were estimated as the monetary value provided by ecosystem services of the restored habitats. Benefits outweighed costs (i.e., there were positive net benefits) for restoration of all blue ecosystems. Mean benefit:cost ratios for ecosystem restoration were eight to 10 times higher than prior studies of coral reef and seagrass restoration, most likely due to the more recent lower cost estimates we used. Among ecosystems, saltmarsh had the greatest net benefits followed by mangrove; coral reef and seagrass ecosystems had lower net benefits. In general, restoration in nations with middle incomes had higher (eight times higher in coral reefs and 40 times higher in mangroves) net benefits than those with high incomes. Within an ecosystem type, net benefit varied with restoration technique (coral reef and saltmarsh), ecosystem service produced (mangrove and saltmarsh), and project duration (seagrass). These results challenge the perceptions of the low economic viability of blue restoration and should encourage further targeted investment in this field.


Análisis de Rentabilidad Espacial de la Restauración Azul y de los Factores Determinantes del Beneficio Neto Mundial Resumen Los ecosistemas costeros marinos, llamados comúnmente ecosistemas azules, proporcionan servicios valiosos para la sociedad, pero se encuentran bajo una amenaza creciente a nivel mundial causada por una variedad de determinantes, incluyendo la eutrofización, el desarrollo, el cambio en el uso de suelo, la reclamación de tierra y el cambio climático. Algunas veces se necesita de la restauración ecológica para facilitar la recuperación en los ecosistemas costeros. La restauración azul (es decir, en los sistemas costeros marinos) es un campo en desarrollo, con proyectos que a la fecha han sido a pequeña escala y costosos, lo que resulta en la percepción de que la restauración puede no ser viable económicamente. Realizamos un análisis de rentabilidad mundial para determinar los beneficios netos de la restauración de ecosistemas de arrecife de coral, manglar, marisma y pastos marinos en donde el beneficio está definido como el valor monetario de los servicios ambientales. Estimamos los costos a partir de estudios de caso de restauración publicados y usamos un método de transferencia de valor ajustado para asignar los valores de beneficio a estos estudios de caso. Los valores de los beneficios fueron estimados como el valor monetario proporcionado por los servicios ambientales de los hábitats restaurados. Los beneficios superaron los costos (es decir, fueron beneficios netos positivos) de la restauración de todos los ecosistemas azules. El beneficio promedio consistió en que la proporción de costos para la restauración del ecosistema fue 8-10 veces mayor que en los estudios anteriores de la restauración de los arrecifes de coral y los pastos marinos, probablemente debido a que usamos estimaciones de costo más bajas. Entre los ecosistemas, las marismas tuvieron los mayores beneficios netos seguidos por los manglares; los arrecifes de coral y los pastos marinos tuvieron los beneficios netos más bajos. En general, la restauración en los países con niveles medios de ingreso tuvo más beneficios netos (ocho veces más en los arrecifes de coral y 40 veces más en los manglares) que aquellos países con niveles altos de ingreso. En cuanto al tipo de ecosistema, el beneficio neto varió de acuerdo con la técnica de restauración (arrecife de coral y marisma), servicio ambiental producido (manglar y marisma) y duración del proyecto (pastos marinos). Estos resultados desafían las percepciones de la baja viabilidad económica que tiene la restauración azul y deberían fomentar una mayor inversión focalizada en este campo.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mudança Climática , Recifes de Corais , Análise Custo-Benefício
5.
J Environ Manage ; 274: 111110, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781361

RESUMO

Die-off of coastal wetlands has been reported worldwide. Planting habitat-forming species is an important strategy to reverse the decline of coastal wetlands. However, how abiotic environmental stresses and consumers affect the establishment of the planted vegetation species is unclear. We reported a large-scale restoration project in the Liaohe estuary, China, where native pioneer plant Suaeda salsa was planted. We evaluated the growth performance of the planted S. salsa, and identified the constraints on the establishment of planted S. salsa. Results showed that the growth performance (density, coverage and survival rate) of planted S. salsa was better in the low restored marsh than that in the high restored marsh. The death of planted S. salsa was primarily driven by crab herbivory, followed by abiotic stresses (low soil moisture and high salinity) in the high restored marsh, whereas plant death was only driven by crab herbivory in the low restored marsh. Herbivory strength in the high marsh was significantly higher than that in the low marsh. Our findings challenge the bottom-up paradigm used as the foundation for coastal restoration, and highlight the overlooked role of consumers. Therefore, protection measures against consumer pressure, especially in physically harsh conditions, should be considered to enhance the success of coastal wetland restoration.


Assuntos
Chenopodiaceae , Áreas Alagadas , Animais , China , Estuários , Estresse Fisiológico
6.
Environ Monit Assess ; 191(7): 462, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240492

RESUMO

Coastal soils are particularly sensitive to nonnative species invasion. In this context, spatially explicit soil information is essential for improving the knowledge of the role of soil in changing environments, supporting coastal sustainable management. Synthetic-aperture radar (SAR) data provides an attractive opportunity to monitor soil because the acquisition of images is independent of weather and daylight. However, SAR has not been commonly used for soil prediction. In this study, we firstly investigated the temporal variation of vegetation canopy and the soil-vegetation relationship using Sentinel-1 data in an invaded coastal wetland. And then we built 3D models to predict soil properties at multiple depths. A total of 16 Sentinel-1 images were acquired in a growing season. A series of soil physicochemical properties were examined including soil bulk density, texture, organic/inorganic carbon, pH, salinity, total nitrogen, and C/N ratio, relating to three depth layers in the top 1-m depth. Our results showed that time-series Sentinel-1 data can capture temporal characteristics of vegetation, and VH/VV was more sensitive to the vegetation growth than VH and VV. The soil-vegetation relationship captured by time-series SAR data was beneficial to predict soil properties, especially for soil chemical properties. The models provided permissible prediction accuracy, with an average RPD of 0.99. We concluded that the prior understanding of the temporal variation of SAR data is essential for developing practical soil prediction strategy. Our results highlight that SAR has the potential to predict a diverse set of soil properties in coastal wetlands with dense vegetation cover.


Assuntos
Monitoramento Ambiental/métodos , Imagens de Satélites/métodos , Solo/química , Áreas Alagadas , Carbono/análise , China , Espécies Introduzidas/estatística & dados numéricos , Nitrogênio/análise , Salinidade , Estações do Ano
8.
Sci Total Environ ; 915: 169881, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190895

RESUMO

The hydrological restoration of coastal wetlands is an emerging approach for mitigating and adapting to climate change and enhancing ecosystem services such as improved water quality and biodiversity. This paper synthesises current knowledge on selecting appropriate modelling approaches for hydrological restoration projects. The selection of a modelling approach is based on project-specific factors, such as costs, risks, and uncertainties, and aligns with the overall project objectives. We provide guidance on model selection, emphasising the use of simpler and less expensive modelling approaches when appropriate, and identifying situations when models may not be required for project managers to make informed decisions. This paper recognises and supports the widespread use of hydrological restoration in coastal wetlands by bridging the gap between hydrological science and restoration practices. It underscores the significance of project objectives, budget, and available data and offers decision-making frameworks, such as decision trees, to aid in matching modelling methods with specific project outcomes.

9.
Sci Total Environ ; 949: 175085, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079647

RESUMO

Blue carbon ecosystems (BCEs), encompassing mangroves, saltmarshes, and seagrasses, are vital ecosystems that deliver valuable services such as carbon sequestration, biodiversity support, and coastal protection. However, these ecosystems are threatened by various anthropogenic factors, including tidal restrictions like levees, barriers, and embankments. These structures alter the natural seawater flow, often converting coastal ecosystems into freshwater environments. Identifying tidal restrictions and assessing their suitability for tidal restoration in areas amenable for coastal management is a crucial first step to successfully restore BCEs and the associated ecosystem services they provide, i.e., managed realignment. This study presents a novel approach for detecting tidal restrictions in the state of Victoria, Australia, using high-resolution LiDAR data, geospatial analysis techniques, and a multi-criteria scoring system. Our model successfully identified 90 % of known tidal restrictions from an existing dataset, while also detecting an additional 118 potential tidal restrictions, representing a 35 % increase. The model performance analysis revealed trade-offs between precision, recall, and noise ratio when using different noise reduction thresholds, highlighting the importance of selecting an appropriate threshold based on project objectives. The multi-criteria scoring system, which considered factors such as proximity to BCEs and current land use, enabled the selection of tidal restrictions based on their hydrological suitability for restoration. The results of this study have significant implications for BCE restoration efforts not only in Victoria, but more broadly across Australia and globally, providing a systematic approach to identifying and targeting areas with the greatest potential for successful restoration projects. While the approach is low-cost and user-friendly, it is dependent on the availability of LiDAR data for the study area. This can make it accessible to researchers and practitioners worldwide, allowing for its adaptation and application in diverse regions to support global efforts in restoring BCEs through tidal restoration.

10.
Mar Environ Res ; 188: 106035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37267663

RESUMO

Brown algae of the genus Ericaria are habitat formers on Mediterranean rocky shores supporting marine biodiversity and ecosystem functioning. Their population decline has prompted attempts for restoration of threatened populations. Although epilithic microbial biofilms (EMBs) are determinant for macroalgal settlement, their role in regulating the recovery of populations through the recruitment of new thalli is yet to be explored. In this study, we assessed variations in microbial biofilms composition on the settlement of Ericaria amentacea at sites exposed to different human pressures. Artificial fouling surfaces were deployed in two areas at each of three study sites in the Ligurian Sea (Capraia Island, Secche della Meloria and the mainland coast of Livorno), to allow bacterial biofilm colonization. In the laboratory, zygotes of E. amentacea were released on these surfaces to evaluate the survival of germlings. The EMB's composition was assessed through DNA metabarcoding analysis, which revealed a difference between the EMB of Capraia Island and that of Livorno. Fouling surfaces from Capraia Island had higher rates of zygote settlement than the other two sites. This suggests that different environmental conditions can influence the EMB composition on substrata, possibly influencing algal settlement rate. Assessing the suitability of rocky substrata for E. amentacea settlement is crucial for successful restoration.


Assuntos
Ecossistema , Phaeophyceae , Animais , Humanos , Biodiversidade , Biofilmes
11.
Sci Total Environ ; 883: 163707, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37105489

RESUMO

The Atlantic ribbed mussel (Geukensia demissa) is common in southeastern US salt marshes, where they form dense aggregations (mounds), that occur in the highest densities and sizes on the marsh platform close to the tidal creeks' heads. Within these marshes, mussels help build marsh elevation via their biodeposition of organic and inorganic material, stimulate the growth of the dominant foundation species cordgrass (Spartina alterniflora), and create hotspots of invertebrate biodiversity, nutrient cycling, and drought resilience. Given their powerful role, there is rising interest in assessing natural variation in the distribution of mussel mounds and using such information to guide marsh conservation and restoration strategies. However, gathering such information is challenging, because the small dimension (∼1 m) of the mounds and the presence of overlying vegetation make it difficult to quantify mound distribution on the marsh. Therefore, this study presents a new procedure to compute the distribution, height, radius, volume, and distance of mounds in marsh environments using remote sensing. A high-resolution UAV-Lidar point cloud has been collected over a highly vegetated salt marsh in Georgia, USA, using a custom-built laser scanner system. An original detection algorithm, based on a Random Forest classifier, has been implemented to identify the mounds from the point cloud. The algorithm has been trained and tested on surveyed mounds and provides their location and geometric properties. Results indicate that the classifier can distinguish mussel mounds from non-mussel mound locations with an accuracy of 95 %. The classifier identified ∼8000 mounds, which occupy 10 % of the study domain, and a volume (shells+feces/pseudofeces) of 680 m3. The method is highly useful in efforts to monitor mussel mounds over time and scale up to assess mounds across sites, providing invaluable data for future studies related to the geomorphic evolution of marshes to sea level rise and siting marsh conservation and enhancement projects.


Assuntos
Mytilidae , Áreas Alagadas , Animais , Biodiversidade , Invertebrados , Fatores de Tempo , Ecossistema
12.
Sci Total Environ ; 828: 154397, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271927

RESUMO

Louisiana, located in the southeast United States, is home to 40% of the continental US's coastal wetlands yet accounts for 80% of the nation's coastal wetland loss. This loss is generally attributed to decreased sediment supply, hydrologic alteration from levees, channelization, subsidence, sea-level rise, and wave and tidal induced marsh edge erosion. The Mid-Barataria Sediment Diversion is a US $1.3 billion coastal restoration project that will divert up to 2100 m3 s-1 of sediment-laden Mississippi River water directly into Barataria Basin. The influx of colder, nutrient-rich, springtime river water could negatively impact water quality of the receiving basin. We quantified the effects of colder, surface water temperature on the nitrate (NO3-) reduction rate in vegetated marsh and open water bay sediments. Colder water limited NO3- removal processes averaging 17.1 mg N m-2 d-1 in the range of 5-14 °C, before increasing almost 3-fold in the 20 °C treatments at 50.6 mg N m-2 d-1. Low N removal rates, especially near the project inflow where temperatures will be coldest will favor transport of NO3- further into Barataria Basin where eutrophic conditions could become expressed. These results will inform coastal managers around the world of the potential ecosystem response to coastal restoration aimed at river reconnection where colder waters enter warmer, shallow basins.


Assuntos
Rios , Áreas Alagadas , Desnitrificação , Ecossistema , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-36231556

RESUMO

In the Mediterranean Sea, brown macroalgae represent the dominant species in intertidal and subtidal habitats. Despite conservation efforts, these canopy-forming species showed a dramatic decline, highlighting the urge for active intervention to regenerate self-sustaining populations. For this reason, the restoration of macroalgae forests through transplantation has been recognized as a promising approach. However, the potential stress caused by the handling of thalli has never been assessed. Here, we used a manipulative approach to assess the transplant-induced stress in the Mediterranean Ericaria amentacea, through the analysis of biochemical proxies, i.e., phenolic compounds, lipids, and fatty acids in both transplanted and natural macroalgae over time. The results showed that seasonal environmental variability had an important effect on the biochemical composition of macroalgae, suggesting the occurrence of acclimation responses to summer increased temperature and light irradiance. Transplant-induced stress appears to have only amplified the biochemical response, probably due to increased sensitivity of the macroalgae already subjected to mechanical and osmotic stress (e.g., handling, wounding, desiccation). The ability of E. amentacea to cope with both environmental and transplant-induced stress highlights the high plasticity of the species studied, as well as the suitability of transplantation of adult thalli to restore E. amentacea beds.


Assuntos
Phaeophyceae , Alga Marinha , Ecossistema , Ácidos Graxos , Lipídeos , Mar Mediterrâneo
14.
PeerJ ; 9: e11378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987035

RESUMO

The objective of many fish and wildlife restoration programs is to utilize management actions to change the state of a system. Because restoration programs are often expensive, iteratively assessing whether the restoration is having the desired outcome is a critical aspect of learning how to inform ongoing and sampling designs to evaluate proposed restoration programs. We provide an example of how we are using data resampling as part of an adaptive restoration process to test the effectiveness of a restoration action and associated monitoring program to restore the degraded Lone Cabbage oyster reef in Suwannee Sound, Florida in the northeast Gulf of Mexico. We use a resampling framework through simulations to inform the progress of the restoration efforts by examining the direction and magnitude of the differences in live oyster counts between restored and unrestored (wild) reefs over time. In addition, we evaluated the effort (number of sites sampled) needed to determine the effect of restoration to understand how many surveys should be conducted in subsequent sampling seasons. These efforts allow us to provide timely insight into the effectiveness of both our monitoring efforts and restoration strategy which is of critical importance not only to the restoration of Lone Cabbage Reef but to larger restoration efforts within the Gulf of Mexico as part of the consolidated Deepwater Horizon settlements and funded restoration efforts.

15.
Sustainability ; 12(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33841922

RESUMO

In the United States, extensive investments have been made to restore the ecological function and services of coastal marine habitats. Despite a growing body of science supporting coastal restoration, few studies have addressed the suite of societally enabling conditions that helped facilitate successful restoration and recovery efforts that occurred at meaningful ecological (i.e., ecosystem) scales, and where restoration efforts were sustained for longer (i.e., several years to decades) periods. Here, we examined three case studies involving large-scale and long-term restoration efforts including the seagrass restoration effort in Tampa Bay, Florida, the oyster restoration effort in the Chesapeake Bay in Maryland and Virginia, and the tidal marsh restoration effort in San Francisco Bay, California. The ecological systems and the specifics of the ecological restoration were not the focus of our study. Rather, we focused on the underlying social and political contexts of each case study and found common themes of the factors of restoration which appear to be important for maintaining support for large-scale restoration efforts. Four critical elements for sustaining public and/or political support for large-scale restoration include: (1) resources should be invested in building public support prior to significant investments into ecological restoration; (2) building political support provides a level of significance to the recovery planning efforts and creates motivation to set and achieve meaningful recovery goals; (3) recovery plans need to be science-based with clear, measurable goals that resonate with the public; and (4) the accountability of progress toward reaching goals needs to be communicated frequently and in a way that the general public comprehends. These conclusions may help other communities move away from repetitive, single, and seemingly unconnected restoration projects towards more large-scale, bigger impact, and coordinated restoration efforts.

16.
Sci Total Environ ; 701: 134497, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31710902

RESUMO

Coastal wetlands have been valued for a variety of ecosystem services including carbon sequestration and long term storage. The carbon sequestered and stored in coastal habitat including mangroves, salt marshes, and seagrass beds is termed as blue carbon. However, these systems are threatened mainly due to sea level rise, limited sediment supply, edge erosion, and anthropogenic influences. These habitats require restoration and conservation to continue providing ecosystem services. The incentive for emission reductions, referred to as carbon offsets, is well established for other ecosystems like forestry and agriculture. Some blue carbon offset methodologies or protocols have been certified by various voluntary carbon markets; however to date, a few wetland restoration carbon offset in the US has been transacted. Thus, the goal of this paper is to discuss the existing carbon market and carbon market methodologies applicable to coastal wetland restoration and conservation in the US. Currently, four wetland carbon offset methodologies have been approved in the carbon market. These methodologies are site and/or project-specific depending on the type of the wetlands, vulnerability to loss, and restoration need. The appropriate carbon stock and Green House Gas (GHG) emission assessment is the basis of determining carbon offsets. Simplification of the existing methodologies and development of new site and project-specific methodologies could potentially help to realize blue carbon offsets in practice. The slowly growing demand for carbon offsets in the carbon market could potentially be fulfilled from the blue carbon pool. While this carbon offset is in the early stages, this review may help the inclusion of carbon offset component in the coastal restoration and conservation projects in United States and potentially across the globe.

17.
Front Microbiol ; 9: 3049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619140

RESUMO

The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change.

18.
Sci Total Environ ; 609: 1248-1257, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28787799

RESUMO

Ongoing deterioration and loss of wetlands in the Mississippi River delta threatens the survival of Louisiana's coastal ecosystems and human settlements. In response, the State of Louisiana has proposed a $50 billion, 50-year restoration program. A central piece of this program is the reintroduction of Mississippi River water into the deltaic plain using managed diversions that mimic natural flood pulses. These diversions would transport critically needed sediment, but also deliver large nutrient loads. Coastal eutrophication is therefore a concern, particularly blooms of toxin-producing cyanobacteria. The Bonnet Carré Spillway (BCS) is an existing large flood diversion that protects New Orleans and provides an opportunity to investigate diversion nutrient transport. Here, we quantify sediment phosphorus (P) deposited by the BCS for the first time, and use a sequential P fractionation scheme to evaluate the likelihood of future sediment P release to the water column of the Lake Pontchartrain Estuary. In 2011, we collected sediment cores in the estuary for determination of P fractions before and after the discharge of 21.9km3 of river water through the BCS in just under 6weeks. We observed the greatest net increases in sediment total P, inorganic P forms, and more labile organic P in the region near the inflow. We estimate that the diversion deposited ≥5000 metric tons of P in the sediments of the Lake Pontchartrain Estuary. The sum of readily available inorganic P, Fe/Al-bound inorganic P, and more labile organic P equaled approximately 20-30% of post-diversion sediment total P. These fractions are more likely to be released to the water column than the other sediment P forms we quantified. Diversion designs that encourage sedimentation in coastal marshes versus open bays can likely reduce the chances that deposited particulate P creates eutrophication risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA