RESUMO
Peroxiredoxins (Prxs) are highly conserved antioxidant enzymes and are implicated in multiple biological processes; however, their function in oocyte meiosis has not been studied. Here we show that inhibition of Prx I and II results in spindle defects, chromosome disorganization, and impaired polarization in mouse oocytes. Prx I was specifically localized at the spindle, whereas Prx II was enriched at the oocyte cortex and chromosomes. Inhibition of Prx activity with conoidin A disturbed assembly of the microtubule organizing center (MTOC) through Aurora A regulation, leading to defects in spindle formation. Moreover, conoidin A impaired actin filament and cortical granule (CG) distribution, disrupting actin cap and CG formation, respectively. Conoidin A also increased DNA damage without significantly increasing reactive oxygen species (ROS) levels, suggesting that the effects of conoidin A on meiotic maturation are not likely associated with ROS scavenging pathways. Therefore, our data suggest that Prxs are required for spindle assembly, chromosome organization, and polarization during meiotic maturation.