Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 66(3): 332-344.e4, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475869

RESUMO

Skeletal muscle is a major site of postprandial glucose disposal. Inadequate insulin action in skeletal myocytes contributes to hyperglycemia in diabetes. Although glucose is known to stimulate insulin secretion by ß cells, whether it directly engages nutrient signaling pathways in skeletal muscle to maintain systemic glucose homeostasis remains largely unexplored. Here we identified the Baf60c-Deptor-AKT pathway as a target of muscle glucose sensing that augments insulin action in skeletal myocytes. Genetic activation of this pathway improved postprandial glucose disposal in mice, whereas its muscle-specific ablation impaired insulin action and led to postprandial glucose intolerance. Mechanistically, glucose triggers KATP channel-dependent calcium signaling, which promotes HDAC5 phosphorylation and nuclear exclusion, leading to Baf60c induction and insulin-independent AKT activation. This pathway is engaged by the anti-diabetic sulfonylurea drugs to exert their full glucose-lowering effects. These findings uncover an unexpected mechanism of glucose sensing in skeletal myocytes that contributes to homeostasis and therapeutic action.


Assuntos
Glicemia/metabolismo , Metabolismo Energético , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Canais KATP/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Período Pós-Prandial , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Fatores de Tempo , Técnicas de Cultura de Tecidos
2.
Exp Cell Res ; 427(1): 113598, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054772

RESUMO

Aberrantly activated mTOR signaling pathway is commonly found in malignancies including gastric cancer (GC). DEPTOR, as a naturally occurred inhibitor of mTOR, functions in the pro- or anti-tumor manner depending on distinct tumor contexts. However, the roles of DEPTOR in GC remain largely unknown. In this study, DEPTOR expression was identified to be significantly decreased in GC tissues compared with matched normal gastric tissues, and reduced DEPTOR level was indicative of poor prognosis in patients. Restored DEPTOR expression inhibited the propagation in AGS and NCI-N87 cells, whose DEPTOR levels are low, via deactivating mTOR signaling pathway. Likewise, cabergoline (CAB) attenuated the proliferation in AGS and NCI-N87 cells via partially rescuing DEPTOR protein level. Targeted metabolomics analysis showed that several key metabolites, such as l-serine, significantly changed in AGS cells with DEPTOR restoration. These results revealed the anti-proliferation function of DEPTOR in GC cells, suggesting that restored DEPTOR expression using CAB may be a potential therapeutic approach for patients with GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Prognóstico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral
3.
J Biol Chem ; 298(4): 101750, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35216969

RESUMO

DEPTOR is a 48 kDa protein upregulated in multiple myeloma (MM) cells. DEPTOR inhibits mTOR and, by repressing a negative feedback loop, promotes AKT activation. We previously identified a compound that binds to DEPTOR in MM cells and induces its proteasomal degradation. To identify the mechanism of degradation, here, we screened for drug-induced posttranslational modifications and identified reduced phosphorylation of DEPTOR on serine 235 (S235). We show that an S235 phosphomimetic DEPTOR mutant was resistant to degradation, confirming the importance of this posttranslational modification. In addition, a DEPTOR mutant with a serine-to-alanine substitution at S235 could only be expressed upon concurrent proteasome inhibition. Thus, S235 phosphorylation regulates DEPTOR stability. Screening the DEPTOR interactome identified that the association of USP-7 deubiquitinase with DEPTOR was dependent upon S235 phosphorylation. Inhibition of USP-7 activity resulted in DEPTOR polyubiquitination and degradation. A scansite search suggested that ERK1 may be responsible for S235 phosphorylation, which was confirmed through the use of inhibitors, ERK1 knockdown, and an in vitro kinase assay. Inhibition of ERK1 also downregulated AKT phosphorylation. To test if DEPTOR phosphorylation mediated this crosstalk, MM cells were transfected with WT or phosphomimetic DEPTOR and exposed to ERK inhibitors. Although WT DEPTOR had no effect on the inhibition of AKT phosphorylation, the phosphomimetic DEPTOR prevented inhibition. These results indicate that ERK1 maintains AKT activity in MM cells via phosphorylation of DEPTOR. We propose that DEPTOR-dependent crosstalk provides MM cells with a viability-promoting signal (through AKT) when proliferation is stimulated (through ERK).


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-akt , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inibidores de MTOR/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mutação , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 297(5): 101291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634301

RESUMO

Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor-dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Serina-Treonina Quinases TOR/genética , Tirosina/genética , Tirosina/metabolismo
5.
Am J Physiol Cell Physiol ; 320(4): C591-C601, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471625

RESUMO

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein (n = 12; milk protein concentrate) or isocaloric carbohydrate placebo (n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


Assuntos
Suplementos Nutricionais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas do Leite/administração & dosagem , Atrofia Muscular/dietoterapia , Músculo Quadríceps/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Imobilização , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas do Leite/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Período Pós-Prandial , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Fatores de Tempo , Resultado do Tratamento
6.
BMC Psychiatry ; 21(1): 388, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348681

RESUMO

BACKGROUND: The mammalian target of rapamycin protein (mTOR) signaling pathway is involved in the pathogenesis of schizophrenia and the mechanism of extrapyramidal adverse reactions to antipsychotic drugs, which might be mediated by an mTOR-dependent autophagy impairment. This study aimed to examine the expression of mTOR pathway genes in patients with schizophrenia treated with olanzapine, which is considered an mTOR inhibitor and autophagy inducer. METHODS: Thirty-two patients with acute schizophrenia who had been treated with olanzapine for four weeks (average dose 14.24 ± 4.35 mg/d) and 32 healthy volunteers were recruited. Before and after olanzapine treatment, the Positive and Negative Syndrome Scale (PANSS) was used to evaluate the symptoms of patients with schizophrenia, and the mRNA expression levels of mTOR pathway-related genes, including MTOR, RICTOR, RAPTOR, and DEPTOR, were detected in fasting venous blood samples from all subjects using real-time quantitative PCR. RESULTS: The MTOR and RICTOR mRNA expression levels in patients with acute schizophrenia were significantly decreased compared with those of healthy controls and further significantly decreased after four weeks of olanzapine treatment. The DEPTOR mRNA expression levels in patients with acute schizophrenia were not significantly different from those of healthy controls but were significantly increased after treatment. The expression levels of the RAPTOR mRNA were not significantly different among the three groups. The pairwise correlations of MTOR, DEPTOR, RAPTOR, and RICTOR mRNA expression levels in patients with acute schizophrenia and healthy controls were significant. After olanzapine treatment, the correlations between the expression levels of the DEPTOR and MTOR mRNAs and between the DEPTOR and RICTOR mRNAs disappeared. CONCLUSIONS: Abnormalities in the mTOR pathway, especially DEPTOR and mTORC2, might play important roles in the autophagy mechanism underlying the pathophysiology of schizophrenia and effects of olanzapine treatment.


Assuntos
Esquizofrenia , Sirolimo , Serina-Treonina Quinases TOR , Autofagia , Proteínas Relacionadas à Autofagia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Olanzapina/uso terapêutico , RNA Mensageiro/genética , Proteína Companheira de mTOR Insensível à Rapamicina , Proteína Regulatória Associada a mTOR , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Serina-Treonina Quinases TOR/genética
7.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710517

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Assuntos
Fibrose Pulmonar Idiopática/genética , Idoso , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinesinas/genética , Masculino , Pessoa de Meia-Idade , Medição de Risco , Transdução de Sinais , Fuso Acromático , Serina-Treonina Quinases TOR/metabolismo
8.
J Struct Biol ; 212(2): 107602, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798656

RESUMO

DEPTOR is an inhibitor of the mTOR kinase which controls cell growth. DEPTOR consists of two DEP domains and a PDZ domain connected by an unstructured linker, and its stability is tightly regulated through post-translational modifications of its linker region that contains the 286SSGYFS291 degron. Based on the mTORC1 complex, our modelling suggests a possible spatial arrangement of DEPTOR which is characterised to form a dimer. Our model shows that the two PDZ domains of a DEPTOR dimer bind separately to the dimeric mTOR's FAT domains ~130 Å apart, while each of the two extended linkers is sufficiently long to span from the FAT domain to the kinase domain of mTOR and beyond to join a shared dimer of the DEP domains. This places the linker's S299 closest to the kinase's catalytic site, indicating that phosphorylation would start with it and successively upstream towards DEPTOR's degron. The CK1α kinase is reportedly responsible for the phosphorylation of the degron, and our docking analysis further reveals that CK1α contains sites to bind DEPTOR's pS286, pS287 and pT295, which may act as priming phosphates for the phosphorylation of the degron's S291. DEPTOR's linker can also be ubiquitylated by the UbcH5A-SCFß-TrCP complex without its PDZ dissociating from mTOR according to the modelling. As the catalytic cleft of mTOR's kinase is restricted, interactions between the kinase's unstructured segment surrounding the cleft and DEPTOR's linker, which may involve S293 and S299, may be critical to controlling DEPTOR's access to the catalytic cleft and hence its phosphorylation by mTOR in a manner dependent on mTOR's activation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Caseína Quinase Ialfa/metabolismo , Simulação por Computador , Humanos , Fosforilação/fisiologia , Domínios Proteicos/fisiologia
9.
J Cell Mol Med ; 24(14): 7873-7883, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32510855

RESUMO

It had been reported miR-182 was down-regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR-182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild-type and Deptor knockout (KO) mice. Haematoxylin-eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT-qPCR assay was used to detected miR-182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3-II/LC3-I and p62. Dual-luciferase reporter assay was used to verify the relationship between miR-182 and Deptor. The results showed miR-182 was down-regulated following intestinal I/R. Up-regulation of miR-182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR-182 and was indispensable for the protection of miR-182 on intestine under I/R condition. Together, our research implicated up-regulation of miR-182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.


Assuntos
Enteropatias/etiologia , Enteropatias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/genética , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Imuno-Histoquímica , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/ultraestrutura , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Interferência de RNA
10.
J Biol Chem ; 293(13): 4883-4892, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382726

RESUMO

Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates various environmental signals to regulate cell growth and metabolism. DEPTOR, also termed DEPDC6, is an endogenous inhibitor of mTORC1 and mTORC2 activities. The abundance of DEPTOR centrally orchestrates the mTOR signaling network. However, the mechanisms by which DEPTOR stability is regulated are still elusive. Here, we report that OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) specifically deubiquitinates DEPTOR in a deubiquitination assay. We found that OTUB1 directly interacted with DEPTOR via its N-terminal domain, deubiquitinated DEPTOR, and thereby stabilized DEPTOR in a Cys-91-independent but Asp-88-dependent manner, suggesting that OTUB1 targets DEPTOR for deubiquitination via a deubiquitinase activity-independent non-canonical mechanism. The interaction between OTUB1 and DEPTOR was enhanced when the cells were treated with amino acids. Moreover, OTUB1 suppressed amino acid-induced activation of mTORC1 in a DEPTOR-dependent manner and thereby ultimately controlled cellular autophagy, cell proliferation, and size. Our findings reveal a mechanism that stabilizes the mTORC1 inhibitor DEPTOR via OTUB1's deubiquitinase activity. Our insights may inform research into various mTOR activity-related diseases, such as cancer, and may contribute to the identification of new diagnostic markers and therapeutic strategies for cancer treatments.


Assuntos
Autofagia , Proliferação de Células , Cisteína Endopeptidases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ubiquitinação , Cisteína Endopeptidases/genética , Enzimas Desubiquitinantes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Domínios Proteicos , Estabilidade Proteica
11.
Exp Cell Res ; 364(1): 5-15, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397070

RESUMO

TGFß contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFß-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFß regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFß increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFß-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFß. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFß-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.


Assuntos
Fibronectinas/metabolismo , Regulação da Expressão Gênica , Hipertrofia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/patologia , Células Mesangiais/patologia , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Hipertrofia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Células Mesangiais/metabolismo , Fosforilação , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/genética
12.
Cell Physiol Biochem ; 46(2): 520-531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614494

RESUMO

BACKGROUND/AIMS: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. METHODS: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. RESULTS: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. CONCLUSIONS: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neovascularização Fisiológica , Animais , Aorta/metabolismo , Aorta/patologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
Exp Cell Res ; 353(1): 35-45, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267437

RESUMO

There have been paradoxical findings regarding the expression of DEP domain-containing mTOR-interacting protein (DEPTOR) and its role in predicting prognosis in esophageal squamous cell carcinoma (ESCC). Here we show that DEPTOR expression was significantly increased in tumor tissues and predicted good survival in early stage ESCC patients but not in advanced stage patients. In vitro,our studies showed that ESCC cell lines could be classified into relatively high and low DEPTOR-expressing subgroups according to esophageal squamous epithelial cell line Het-1A.In our study, different levels of DEPTOR expression absolutely determined the response to chemotherapy. In relatively low-expressing cell lines, DEPTOR increased chemotherapy sensitivity via deactivation of the AKT pathway. In relatively high-expressing cell lines, DEPTOR increased cell survival and chemoresistance by strong feedback activation of the IRS1-PI3K-AKT-survivin pathway that occurred after downregulation of ribosomal protein S6 kinase (S6K). Collectively, our findings highlight the dichotomous nature of DEPTOR functions in modulating chemotherapy sensitivity in different ESCC cells.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/mortalidade , Feminino , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Survivina , Taxoides/farmacologia , Taxoides/uso terapêutico
14.
Cell Biochem Funct ; 36(8): 408-412, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318596

RESUMO

Genomic regulation and functional significance of PVT-1 gene locus, in the MYC-driven cancers, has remained enigmatic ever since its discovery. With the present study, an attempt is made to establish that cellular AATF genome encoded miR-2909 RNomics pathway involving crucial genes coding for KLF4, Deptor, mTORC1, STAT3, and p53 has the inherent capacity to ensure sustained co-amplification of PVT-1 gene locus together with c-Myc gene. Based upon these results, we propose that miR-2909 RNomics pathway may play a crucial role in the regulation of tumorigenic PVT-1 gene locus.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Antagomirs/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Loci Gênicos , Genômica , Células HeLa , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
BMC Med ; 15(1): 1, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049467

RESUMO

BACKGROUND: Placental Plasmodium falciparum malaria can trigger intervillositis, a local inflammatory response more strongly associated with low birthweight than placental malaria infection alone. Fetal growth (and therefore birthweight) is dependent on placental amino acid transport, which is impaired in placental malaria-associated intervillositis. Here, we tested the hypothesis that mechanistic target of rapamycin (mTOR) signaling, a pathway known to regulate amino acid transport, is inhibited in placental malaria-associated intervillositis, contributing to lower birthweight. METHODS: We determined the link between intervillositis, mTOR signaling activity, and amino acid uptake in tissue biopsies from both uninfected placentas and malaria-infected placentas with and without intervillositis, and in an in vitro model using primary human trophoblast (PHT) cells. RESULTS: We demonstrated that (1) placental mTOR activity is lower in cases of placental malaria with intervillositis, (2) placental mTOR activity is negatively correlated with the degree of inflammation, and (3) inhibition of placental mTOR activity is associated with reduced placental amino acid uptake and lower birthweight. In PHT cells, we showed that (1) inhibition of mTOR signaling is a mechanistic link between placental malaria-associated intervillositis and decreased amino acid uptake and (2) constitutive mTOR activation partially restores amino acid uptake. CONCLUSIONS: Our data support the concept that inhibition of placental mTOR signaling constitutes a mechanistic link between placental malaria-associated intervillositis and decreased amino acid uptake, which may contribute to lower birthweight. Restoring placental mTOR signaling in placental malaria may increase birthweight and improve neonatal survival, representing a new potential therapeutic approach.


Assuntos
Malária Falciparum/complicações , Placenta/metabolismo , Complicações Parasitárias na Gravidez/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Peso ao Nascer/fisiologia , Feminino , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Placenta/parasitologia , Gravidez
16.
Pediatr Diabetes ; 18(2): 152-158, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26871578

RESUMO

BACKGROUND: Insulin resistance (IR) is one of the major metabolic complications of obesity in children and adolescents. DEP domain-containing mammalian target of rapamycin interacting protein (DEPTOR) is involved in downstream insulin signaling and DEPTOR's effects are regulated by its level of expression. OBJECTIVES: To analyze promoter region of DEPTOR for genetic variants associated with altered IR in obese children and adolescents. SUBJECTS AND METHODS: IR was determined in 322 normoglycemic obese subjects [173 females, 149 males; mean age 13.3 ± 3.5 yr, mean BMI-SDS 2.85 ± 0.83, HbA1C 5.2 ± 0.2% (33 ± 2.5 mmol/mol)] using homeostatic model assessment - insulin resistance [HOMA-IR (>2 prepubertal and >3 pubertal)] and whole body insulin sensitivity index [WBISI (<6.5 prepubertal and <4.5 pubertal)]. Genetic variants, determined by high resolution melting analysis, were confirmed by Sanger sequencing, whereas population allele distribution was determined by TaqMan genotyping probes. RESULTS: Genetic variant c.-143T>C (rs7840156) was associated with a significant 2-fold decreased risk to present with IR, determined by HOMA-IR [odds ratio (OR) = 0.614, 95% confidence interval (CI) = 0.435-0.867, p = 0.0057) and WBISI (OR = 0.582, 95% CI = 0.414-0.817, p = 0.0018). The CC genotype had lower mean HOMA-IR value (2.47 ± 0.44 vs. 3.04 ± 0.14, p = 0.0177) and higher mean WBISI value (7.00 ± 0.71 vs. 5.27 ± 0.33, p = 0.0235) than TT genotype. Variant c.-143T>C was located in evolutionary highly conserved region in DEPTOR promoter region. CONCLUSION: Presented results on association between insulin sensitivity and genetic variants in DEPTOR gene suggest DEPTOR and mammalian target of rapamycin signaling pathway to be potential target for future research and pharmacological interventions.


Assuntos
Resistência à Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Obesidade Infantil/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Estudos de Associação Genética , Humanos , Masculino
17.
Bioorg Med Chem Lett ; 27(20): 4714-4724, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916338

RESUMO

DEPTOR is a 48kDa protein that binds to mTOR and inhibits this kinase within mTORC1 and mTORC2 complexes. Over-expression of DEPTOR specifically occurs in the multiple myeloma (MM) tumor model and DEPTOR knockdown is cytotoxic to MM cells, suggesting it is a potential therapeutic target. Since mTORC1 paralysis protects MM cells against DEPTOR knockdown, it indicates that the protein-protein interaction between DEPTOR and mTOR is key to MM viability vs death. In a previous study, we used a yeast two-hybrid screen of a small inhibitor library to identify a compound that inhibited DEPTOR/mTOR binding in yeast. This therapeutic (compound B) also prevented DEPTOR/mTOR binding in MM cells and was selectively cytotoxic to MM cells. We now present a structure-activity relationship (SAR) study around this compound as a follow-up report of this previous work. This study has led to the discovery of five new leads - namely compounds 3g, 3k, 4d, 4e and 4g - all of which have anti-myeloma cytotoxic properties superior to compound B. Due to their targeting of DEPTOR, these compounds activate mTORC1 and selectively induce MM cell apoptosis and cell cycle arrest.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Regulatória Associada a mTOR , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores
18.
Mol Cancer ; 15(1): 81, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955654

RESUMO

BACKGROUND: SAG (Sensitive to Apoptosis Gene), also known as RBX2, ROC2 or RNF7, is a RING component of CRL (Cullin-RING ligase), required for its activity. Our recent study showed that SAG/RBX2 co-operated with Kras to promote lung tumorigenesis, but antagonized Kras to inhibit skin tumorigenesis, suggesting a tissue/context dependent function of Sag. However, it is totally unknown whether and how Sag would play in prostate tumorigenesis, triggered by Pten loss. METHODS: Sag and Pten double conditional knockout mice were generated and prostate specific deletion of Sag and Pten was achieved by PB4-Cre, and their effect on prostate tumorigenesis was evaluated by H&E staining. The methods of immunohistochemistry (IHC) staining and Western blotting were utilized to examine expression of various proteins in prostate cancer tissues or cell lines. The effect of SAG knockdown in proliferation, survival and migration was evaluated in two prostate cancer cell lines. The poly-ubiquitylation of PHLPP1 and DEPTOR was evaluated by both in vivo and in vitro ubiquitylation assays. RESULTS: SAG is overexpressed progressively from early-to-late stage of human prostate cancer with the highest expression seen in metastatic lesion. Sag deletion inhibits prostate tumorigenesis triggered by Pten loss in a mouse model as a result of suppressed proliferation. SAG knockdown in human prostate cancer cells inhibits a) proliferation in monolayer and soft agar, b) clonogenic survival, and c) migration. SAG is an E3 ligase that promotes ubiquitylation and degradation of PHLPP1 and DEPTOR, leading to activation of the PI3K/AKT/mTOR axis, whereas SAG knockdown caused their accumulation. Importantly, growth suppression triggered by SAG knockdown was partially rescued by simultaneous knockdown of PHLPP1 or DEPTOR, suggesting their causal role. Accumulation of Phlpp1 and Deptor with corresponding inactivation of Akt/mTOR was also detected in Sag-null prostate cancer tissues. CONCLUSIONS: Sag is an oncogenic cooperator of Pten-loss for prostate tumorigenesis. Targeting SAG E3 ligase may, therefore, have therapeutic value for the treatment of prostate cancer associated with Pten loss.


Assuntos
Proteínas de Transporte/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Knockout , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Ubiquitinação , Regulação para Cima
19.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1322-31, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27097662

RESUMO

We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Hipotálamo Médio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Neurônios/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Glucose/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Biochem Biophys Res Commun ; 460(4): 1047-52, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25843797

RESUMO

Metformin, one of the most commonly used drugs for patients with type 2 diabetes, recently has received much attention regarding its anti-cancer action. It is thought that the suppression of mTOR signaling is involved in metformin's anti-cancer action. Although liver cancer is one of the most responsive types of cancer for reduction of incidence by metformin, the molecular mechanism of the suppression of mTOR in liver remains unknown. In this study, we investigated the mechanism of the suppressing effect of metformin on mTOR signaling and cell proliferation using human liver cancer cells. Metformin suppressed phosphorylation of p70-S6 kinase, and ribosome protein S6, downstream targets of mTOR, and suppressed cell proliferation. We found that DEPTOR, an endogenous substrate of mTOR suppression, is involved in the suppressing effect of metformin on mTOR signaling and cell proliferation in human liver cancer cells. Metformin increases the protein levels of DEPTOR, intensifies binding to mTOR, and exerts a suppressing effect on mTOR signaling. This increasing effect of DEPTOR by metformin is regulated by the proteasome degradation system; the suppressing effect of metformin on mTOR signaling and cell proliferation is in a DEPTOR-dependent manner. Furthermore, metformin exerts a suppressing effect on proteasome activity, DEPTOR-related mTOR signaling, and cell proliferation in an AMPK-dependent manner. We conclude that DEPTOR-related mTOR suppression is involved in metformin's anti-cancer action in liver, and could be a novel target for anti-cancer therapy.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Metformina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA