RESUMO
It is unclear how disease mutations impact intrinsically disordered protein regions (IDRs), which lack a stable folded structure. These mutations, while prevalent in disease, are frequently neglected or annotated as variants of unknown significance. Biomolecular phase separation, a physical process often mediated by IDRs, has increasingly appreciated roles in cellular organization and regulation. We find that autism spectrum disorder (ASD)- and cancer-associated proteins are enriched for predicted phase separation propensities, suggesting that IDR mutations disrupt phase separation in key cellular processes. More generally, we hypothesize that combinations of small-effect IDR mutations perturb phase separation, potentially contributing to "missing heritability" in complex disease susceptibility.
Assuntos
Doença/genética , Mutação/genética , Cromatina/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Modelos Biológicos , Proteoma/metabolismoRESUMO
The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.
Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Estruturas Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Fosforilação , RNA/metabolismoRESUMO
Liquid-liquid phase separation (LLPS) is believed to underlie formation of biomolecular condensates, cellular compartments that concentrate macromolecules without surrounding membranes. Physical mechanisms that control condensate formation/dissolution are poorly understood. The RNA-binding protein fused in sarcoma (FUS) undergoes LLPS in vitro and associates with condensates in cells. We show that the importin karyopherin-ß2/transportin-1 inhibits LLPS of FUS. This activity depends on tight binding of karyopherin-ß2 to the C-terminal proline-tyrosine nuclear localization signal (PY-NLS) of FUS. Nuclear magnetic resonance (NMR) analyses reveal weak interactions of karyopherin-ß2 with sequence elements and structural domains distributed throughout the entirety of FUS. Biochemical analyses demonstrate that most of these same regions also contribute to LLPS of FUS. The data lead to a model where high-affinity binding of karyopherin-ß2 to the FUS PY-NLS tethers the proteins together, allowing multiple, distributed weak intermolecular contacts to disrupt FUS self-association, blocking LLPS. Karyopherin-ß2 may act analogously to control condensates in diverse cellular contexts.
Assuntos
Transporte Ativo do Núcleo Celular , Sinais de Localização Nuclear , Proteína FUS de Ligação a RNA/química , beta Carioferinas/química , Sítios de Ligação , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Carioferinas/metabolismo , Luz , Extração Líquido-Líquido , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Mutação , Nefelometria e Turbidimetria , Ligação Proteica , Domínios Proteicos , RNA/química , Espalhamento de Radiação , TemperaturaRESUMO
Phase transitions driven by intrinsically disordered protein regions (IDRs) have emerged as a ubiquitous mechanism for assembling liquid-like RNA/protein (RNP) bodies and other membrane-less organelles. However, a lack of tools to control intracellular phase transitions limits our ability to understand their role in cell physiology and disease. Here, we introduce an optogenetic platform that uses light to activate IDR-mediated phase transitions in living cells. We use this "optoDroplet" system to study condensed phases driven by the IDRs of various RNP body proteins, including FUS, DDX4, and HNRNPA1. Above a concentration threshold, these constructs undergo light-activated phase separation, forming spatiotemporally definable liquid optoDroplets. FUS optoDroplet assembly is fully reversible even after multiple activation cycles. However, cells driven deep within the phase boundary form solid-like gels that undergo aging into irreversible aggregates. This system can thus elucidate not only physiological phase transitions but also their link to pathological aggregates.
Assuntos
Imagem Molecular/métodos , Transição de Fase , Proteínas/química , Animais , Proteínas de Arabidopsis , Criptocromos , Proteínas Intrinsicamente Desordenadas , Cinética , Luz , Camundongos , Modelos Químicos , Células NIH 3T3 , Optogenética , Mapas de Interação de Proteínas , Proteínas/metabolismoRESUMO
In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1's LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.
Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Grânulos Citoplasmáticos/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Mutagênese , Proteínas de Ligação a Poli(A)/química , Proteínas de Ligação a Poli(A)/genética , Prolina/análise , Prolina/metabolismo , Domínios Proteicos , Ribonucleases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Estresse FisiológicoRESUMO
PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.
Assuntos
Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Fosforilação , Retroalimentação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismoRESUMO
Growing evidence suggests prevalence of transcriptional condensates on chromatin, yet their mechanisms of formation and functional significance remain largely unclear. In human cancer, a series of mutations in the histone acetylation reader ENL create gain-of-function mutants with increased transcriptional activation ability. Here, we show that these mutations, clustered in ENL's structured acetyl-reading YEATS domain, trigger aberrant condensates at native genomic targets through multivalent homotypic and heterotypic interactions. Mechanistically, mutation-induced structural changes in the YEATS domain, ENL's two disordered regions of opposing charges, and the incorporation of extrinsic elongation factors are all required for ENL condensate formation. Extensive mutagenesis establishes condensate formation as a driver of oncogenic gene activation. Furthermore, expression of ENL mutants beyond the endogenous level leads to non-functional condensates. Our findings provide new mechanistic and functional insights into cancer-associated condensates and support condensate dysregulation as an oncogenic mechanism.
Assuntos
Neoplasias , Corpos Nucleares , Humanos , Domínios Proteicos , Cromatina/genética , Mutação , Neoplasias/genéticaRESUMO
Intrinsically disordered protein regions (IDRs) have been implicated in diverse nuclear and cytoplasmic functions in eukaryotes, but their roles in bacteria are less clear. Here, we report that extracytoplasmic IDRs in Bacillus subtilis are required for cell wall homeostasis. The B. subtilis σI transcription factor is activated in response to envelope stress through regulated intramembrane proteolysis (RIP) of its membrane-anchored anti-σ factor, RsgI. Unlike canonical RIP pathways, we show that ectodomain (site-1) cleavage of RsgI is constitutive, but the two cleavage products remain stably associated, preventing intramembrane (site-2) proteolysis. The regulated step in this pathway is their dissociation, which is triggered by impaired cell wall synthesis and requires RsgI's extracytoplasmic IDR. Intriguingly, the major peptidoglycan polymerase PBP1 also contains an extracytoplasmic IDR, and we show that this region is important for its function. Disparate IDRs can replace the native IDRs on both RsgI and PBP1, arguing that these unstructured regions function similarly. Our data support a model in which the RsgI-σI signaling system and PBP1 represent complementary pathways to repair gaps in the PG meshwork. The IDR on RsgI senses these gaps and activates σI, while the IDR on PBP1 directs the synthase to these sites to fortify them.
Assuntos
Bacillus subtilis , Proteínas Intrinsicamente Desordenadas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , HomeostaseRESUMO
Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.
Assuntos
Carcinogênese/genética , DNA Helicases/genética , Proteínas Intrinsicamente Desordenadas/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Sequência de Bases , Carcinogênese/metabolismo , Carcinogênese/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patologia , DNA Helicases/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais , Análise de Sobrevida , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismoRESUMO
The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , Fator de Iniciação 4E em Eucariotos/química , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Proteína Regulatória Associada a mTOR/química , Serina-Treonina Quinases TOR/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais , Homologia Estrutural de Proteína , Especificidade por Substrato , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino acid sequences, making it difficult to recognize features that promote their dynamic behavior, "fuzzy" interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred identifies known acidic ADs within transcription factors and accurately predicts the consequences of mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are required between activator and target to generate biologically relevant affinity and in vivo function. This mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.
Assuntos
Ensaios de Triagem em Larga Escala/métodos , Fatores de Transcrição/genética , Ativação Transcricional/genética , Sequência de Aminoácidos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/metabolismo , Aprendizado Profundo , Ligação Proteica , Domínios Proteicos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologiaRESUMO
Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.
Assuntos
Arginina/metabolismo , Núcleo Celular/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Lisina/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Arginina/genética , Núcleo Celular/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Lisina/genética , Mutação , Fosforilação , Domínios Proteicos , RNA Mensageiro/genética , Fatores de Processamento de Serina-Arginina/genéticaRESUMO
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Plantas/genética , Plantas/metabolismo , Inativação Gênica , Conformação ProteicaRESUMO
Intrinsically disordered proteins (IDPs) that lie close to the empirical boundary separating IDPs and folded proteins in Uversky's charge-hydropathy plot may behave as "marginal IDPs" and sensitively switch conformation upon changes in environment (temperature, crowding, and charge screening), sequence, or both. In our search for such a marginal IDP, we selected Huntingtin-interacting protein K (HYPK) near that boundary as a candidate; PKIα, also near that boundary, has lower secondary structure propensity; and Crk1, just across the boundary on the folded side, has higher secondary structure propensity. We used a qualitative Förster resonance energy transfer-based assay together with circular dichroism to simultaneously probe global and local conformation. HYPK shows several unique features indicating marginality: a cooperative transition in end-to-end distance with temperature, like Crk1 and folded proteins, but unlike PKIα; enhanced secondary structure upon crowding, in contrast to Crk1 and PKIα; and a cross-over from salt-induced expansion to compaction at high temperature, likely due to a structure-to-disorder transition not seen in Crk1 and PKIα. We then tested HYPK's sensitivity to charge patterning by designing charge-flipped variants including two specific sequences with identical amino acid composition that markedly differ in their predicted size and response to salt. The experimentally observed trends, also including mutants of PKIα, verify the predictions from sequence charge decoration metrics. Marginal proteins like HYPK show features of both folded and disordered proteins that make them sensitive to physicochemical perturbations and structural control by charge patterning.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Dobramento de Proteína , Dicroísmo Circular , Estrutura Secundária de Proteína , Humanos , Transferência Ressonante de Energia de Fluorescência , Temperatura , Conformação ProteicaRESUMO
Interactions mediated by intrinsically disordered protein regions (IDRs) pose formidable challenges in structural characterization. IDRs are highly versatile, capable of adopting diverse structures and engagement modes. Motivated by recent strides in protein structure prediction, we embarked on exploring the extent to which AlphaFold-Multimer can faithfully reproduce the intricacies of interactions involving IDRs. To this end, we gathered multiple datasets covering the versatile spectrum of IDR binding modes and used them to probe AlphaFold-Multimer's prediction of IDR interactions and their dynamics. Our analyses revealed that AlphaFold-Multimer is not only capable of predicting various types of bound IDR structures with high success rate, but that distinguishing true interactions from decoys, and unreliable predictions from accurate ones is achievable by appropriate use of AlphaFold-Multimer's intrinsic scores. We found that the quality of predictions drops for more heterogeneous, fuzzy interaction types, most likely due to lower interface hydrophobicity and higher coil content. Notably though, certain AlphaFold-Multimer scores, such as the Predicted Aligned Error and residue-ipTM, are highly correlated with structural heterogeneity of the bound IDR, enabling clear distinctions between predictions of fuzzy and more homogeneous binding modes. Finally, our benchmarking revealed that predictions of IDR interactions can also be successful when using full-length proteins, but not as accurate as with cognate IDRs. To facilitate identification of the cognate IDR of a given partner, we established "minD," which pinpoints potential interaction sites in a full-length protein. Our study demonstrates that AlphaFold-Multimer can correctly identify interacting IDRs and predict their mode of engagement with a given partner.
Assuntos
Proteínas Intrinsicamente Desordenadas , Dobramento de Proteína , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Conformação Proteica , Modelos Moleculares , Interações Hidrofóbicas e HidrofílicasRESUMO
Intrinsically disordered regions (IDRs) are structurally flexible protein segments with regulatory functions in multiple contexts, such as in the assembly of biomolecular condensates. Since IDRs undergo more rapid evolution than ordered regions, identifying homology of such poorly conserved regions remains challenging for state-of-the-art alignment-based methods that rely on position-specific conservation of residues. Thus, systematic functional annotation and evolutionary analysis of IDRs have been limited, despite them comprising ~21% of proteins. To accurately assess homology between unalignable sequences, we developed an alignment-free sequence comparison algorithm, SHARK (Similarity/Homology Assessment by Relating K-mers). We trained SHARK-dive, a machine learning homology classifier, which achieved superior performance to standard alignment-based approaches in assessing evolutionary homology in unalignable sequences. Furthermore, it correctly identified dissimilar but functionally analogous IDRs in IDR-replacement experiments reported in the literature, whereas alignment-based tools were incapable of detecting such functional relationships. SHARK-dive not only predicts functionally similar IDRs at a proteome-wide scale but also identifies cryptic sequence properties and motifs that drive remote homology and analogy, thereby providing interpretable and experimentally verifiable hypotheses of the sequence determinants that underlie such relationships. SHARK-dive acts as an alternative to alignment to facilitate systematic analysis and functional annotation of the unalignable protein universe.
Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Evolução Molecular , Alinhamento de Sequência/métodos , Algoritmos , Aprendizado de Máquina , Sequência de Aminoácidos , Animais , HumanosRESUMO
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.
Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Intrinsicamente Desordenadas , Prolina , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Prolina/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Humanos , Processamento de Proteína Pós-Traducional , Espectroscopia de Ressonância Magnética/métodosRESUMO
Intrinsically disordered proteins (IDPs) play a crucial role in various biological phenomena, dynamically changing their conformations in response to external environmental cues. To gain a deeper understanding of these proteins, it is essential to identify the determinants that fix their structures at the atomic level. Here, we developed a pipeline for rapid crystal structure analysis of IDP using a cell-free protein crystallization (CFPC) method. Through this approach, we successfully demonstrated the determination of the structure of an IDP to uncover the key determinants that stabilize its conformation. Specifically, we focused on the 11-residue fragment of c-Myc, which forms an α-helix through dimerization with a binding partner protein. This fragment was strategically recombined with an in-cell crystallizing protein and was expressed in a cell-free system. The resulting crystal structures of the c-Myc fragment were successfully determined at a resolution of 1.92 Å and we confirmed that they are identical to the structures of the complex with the native binding partner protein. This indicates that the environment of the scaffold crystal can fix the structure of c-Myc. Significantly, these crystals were obtained directly from a small reaction mixture (30 µL) incubated for only 72 h. Analysis of eight crystal structures derived from 22 mutants revealed two hydrophobic residues as the key determinants responsible for stabilizing the α-helical structure. These findings underscore the power of our CFPC screening method as a valuable tool for determining the structures of challenging target proteins and elucidating the essential molecular interactions that govern their stability.
Assuntos
Sistema Livre de Células , Cristalização , Proteínas Intrinsicamente Desordenadas , Proteínas Proto-Oncogênicas c-myc , Proteínas Intrinsicamente Desordenadas/química , Cristalografia por Raios X/métodos , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Humanos , Conformação Proteica , Modelos Moleculares , Ligação ProteicaRESUMO
Linker histones play an essential role in chromatin packaging by facilitating compaction of the 11-nm fiber of nucleosomal "beads on a string." The result is a heterogeneous condensed state with local properties that range from dynamic, irregular, and liquid-like to stable and regular structures (the 30-nm fiber), which in turn impact chromatin-dependent activities at a fundamental level. The properties of the condensed state depend on the type of linker histone, particularly on the highly disordered C-terminal tail, which is the most variable region of the protein, both between species, and within the various subtypes and cell-type specific variants of a given organism. We have developed an in vitro model system comprising linker histone tail and linker DNA, which although very minimal, displays surprisingly complex behavior, and is sufficient to model the known states of linker histone-condensed chromatin: disordered "fuzzy" complexes ("open" chromatin), dense liquid-like assemblies (dynamic condensates), and higher-order structures (organized 30-nm fibers). A crucial advantage of such a simple model is that it allows the study of the various condensed states by NMR, circular dichroism, and scattering methods. Moreover, it allows capture of the thermodynamics underpinning the transitions between states through calorimetry. We have leveraged this to rationalize the distinct condensing properties of linker histone subtypes and variants across species that are encoded by the amino acid content of their C-terminal tails. Three properties emerge as key to defining the condensed state: charge density, lysine/arginine ratio, and proline-free regions, and we evaluate each separately using a strategic mutagenesis approach.
Assuntos
DNA , Histonas , Nucleossomos , Histonas/química , Histonas/metabolismo , Histonas/genética , DNA/química , DNA/metabolismo , Nucleossomos/metabolismo , Nucleossomos/química , Cromatina/química , Cromatina/metabolismo , Cromatina/genética , Animais , HumanosRESUMO
Many RNA-binding proteins (RBPs) contain low-complexity domains (LCDs) with prion-like compositions. These long intrinsically disordered regions regulate their solubility, contributing to their physiological roles in RNA processing and organization. However, this also makes these RBPs prone to pathological misfolding and aggregation that are characteristic of neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) forms pathological aggregates associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While molecular chaperones are well-known suppressors of these aberrant events, we recently reported that highly disordered, hydrophilic, and charged heat-resistant obscure (Hero) proteins may have similar effects. Specifically, Hero proteins can maintain the activity of other proteins from denaturing conditions in vitro, while their overexpression can suppress cellular aggregation and toxicity associated with aggregation-prone proteins. However, it is unclear how these protective effects are achieved. Here, we used single-molecule FRET to monitor the conformations of the aggregation-prone prion-like LCD of TDP-43. While we observed high conformational heterogeneity in wild-type LCD, the ALS-associated mutation A315T promoted collapsed conformations. In contrast, an Hsp40 chaperone, DNAJA2, and a Hero protein, Hero11, stabilized extended states of the LCD, consistent with their ability to suppress the aggregation of TDP-43. Our results link single-molecule effects on conformation to macro effects on bulk aggregation, where a Hero protein, like a chaperone, can maintain the conformational integrity of a client protein to prevent its aggregation.