Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099563

RESUMO

Tetraspanins are an evolutionary conserved family of proteins involved in multiple aspects of cell physiology, including proliferation, migration and invasion, protein trafficking, and signal transduction; yet their detailed mechanism of action is unknown. Tetraspanins have no known natural ligands, but their engagement by antibodies has begun to reveal their role in cell biology. Studies of tetraspanin knockout mice and of germline mutations in humans have highlighted their role under normal and pathological conditions. Previously, we have shown that mice deficient in the tetraspanin CD81 developed fewer breast cancer metastases compared to their wild-type (WT) counterparts. Here, we show that a unique anti-human CD81 antibody (5A6) effectively halts invasion of triple-negative breast cancer (TNBC) cell lines. We demonstrate that 5A6 induces CD81 clustering at the cell membrane and we implicate JAM-A protein in the ability of this antibody to inhibit tumor cell invasion and migration. Furthermore, in a series of in vivo studies we demonstrate that this antibody inhibits metastases in xenograft models, as well as in syngeneic mice bearing a mouse tumor into which we knocked in the human CD81 epitope recognized by the 5A6 antibody.


Assuntos
Neoplasias da Mama/patologia , Tetraspanina 28/metabolismo , Animais , Anticorpos/farmacologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epitopos/metabolismo , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Receptores de Superfície Celular/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473701

RESUMO

This work analyzes the role of the tight junction (TJ) protein ZO-2 on mechanosensation. We found that the lack of ZO-2 reduced apical membrane rigidity measured with atomic force microscopy, inhibited the association of γ-actin and JAM-A to the cell border, and instead facilitated p114RhoGEF and afadin accumulation at the junction, leading to an enhanced mechanical tension at the TJ measured by FRET, with a ZO-1 tension probe, and increased tricellular TJ tension. Simultaneously, adherens junction tension measured with an E-cadherin probe was unaltered. The stability of JAM-A and ZO-2 binding was assessed by a collaborative in silico study. The absence of ZO-2 also impacted the cell response to the substrate, as monolayers plated in 20 kPa hydrogels developed holes not seen in parental cultures and displayed a retarded elongation and formation of cell aggregates. The absence of ZO-2 was sufficient to induce YAP and Snail nuclear accumulation in cells cultured over glass, but when ZO-2 KD cells were plated in nanostructured ridge arrays, they displayed an increased abundance of nuclear Snail and conspicuous internalization of claudin-4. These results indicate that the absence of ZO-2 also impairs the response of cells to substrate stiffness and exacerbates transformation triggered by substrate topography.


Assuntos
Actinas , Junções Íntimas , Actinas/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Fosfoproteínas/metabolismo
3.
J Virol ; 96(8): e0005522, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35353001

RESUMO

Engagement of host receptors is essential for viruses to enter target cells and initiate infection. Expression patterns of receptors in turn dictate host range, tissue tropism, and disease pathogenesis during infection. Mammalian orthoreovirus (reovirus) displays serotype-dependent patterns of tropism in the murine central nervous system (CNS) that are dictated by the viral attachment protein σ1. However, the receptor that mediates reovirus CNS tropism is unknown. Two proteinaceous receptors have been identified for reovirus, junctional adhesion molecule A (JAM-A) and Nogo-66 receptor 1 (NgR1). Engagement of JAM-A is required for reovirus hematogenous dissemination but is dispensable for neural spread and infection of the CNS. To determine whether NgR1 functions in reovirus neuropathogenesis, we compared virus replication and disease in wild-type (WT) and NgR1-/- mice. Genetic ablation of NgR1 did not alter reovirus replication in the intestine or transmission to the brain following peroral inoculation. Viral titers in neural tissues following intramuscular inoculation, which provides access to neural dissemination routes, also were comparable in WT and NgR1-/- mice, suggesting that NgR1 is dispensable for reovirus neural spread to the CNS. The absence of NgR1 also did not alter reovirus replication, neural tropism, and virulence following direct intracranial inoculation. In agreement with these findings, we found that the human but not the murine homolog of NgR1 functions as a receptor and confers efficient reovirus binding and infection of nonsusceptible cells in vitro. Thus, neither JAM-A nor NgR1 is required for reovirus CNS tropism in mice, suggesting that other unidentified receptors support this function. IMPORTANCE Viruses engage diverse molecules on host cell surfaces to navigate barriers, gain cell entry, and establish infection. Despite discovery of several reovirus receptors, host factors responsible for reovirus neurotropism are unknown. Human NgR1 functions as a reovirus receptor in vitro and is expressed in CNS neurons in a pattern overlapping reovirus tropism. We used mice lacking NgR1 to test whether NgR1 functions as a reovirus neural receptor. Following different routes of inoculation, we found that murine NgR1 is dispensable for reovirus dissemination to the CNS, tropism and replication in the brain, and resultant disease. Concordantly, expression of human but not murine NgR1 confers reovirus binding and infection of nonsusceptible cells in vitro. These results highlight species-specific use of alternate receptors by reovirus. A detailed understanding of species- and tissue-specific factors that dictate viral tropism will inform development of antiviral interventions and targeted gene delivery and therapeutic viral vectors.


Assuntos
Receptor Nogo 1 , Reoviridae , Animais , Molécula A de Adesão Juncional/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor Nogo 1/genética , Receptor Nogo 1/metabolismo , Reoviridae/metabolismo , Infecções por Reoviridae/virologia
4.
Cancer Cell Int ; 23(1): 160, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37563645

RESUMO

BACKGROUND: The F11R/JAM-A cell adhesion protein was examined as the therapeutic target in triple negative breast cancer (TNBC) with the use of the peptide antagonist to F11R/JAM-A, that previously inhibited the early stages of breast cancer metastasis in vitro. METHODS: The online in silico analysis was performed by TNMPlot, UALCAN, and KM plotter. The in vitro experiments were performed to verify the effect of peptide 4D (P4D) on human endothelial cell lines EA.hy926 and HMEC-1 as well as on human TNBC cell line MDA-MB-231. The cell morphology upon P4D treatment was verified by light microscopy, while the cell functions were assessed by colony forming assay, MTT cell viability assay, BrdU cell proliferation assay, and Transepithelial/Endothelial Electrical Resistance measurements. The in vivo experiments on 4T1 murine breast cancer model were followed by histopathological analysis and a series of quantitative analyses of murine tissues. RESULTS: By in silico analysis we have found the elevated gene expression in breast cancer with particular emphasis on TNBC. The elevated F11R expression in TNBC was related with poorer survival prognosis. Peptide 4D has altered the morphology and increased the permeability of endothelial monolayers. The colony formation, viability, and proliferation of MDA-MB-231 cells were decreased. P4D inhibited the metastasis in 4T1 breast cancer murine model in a statistically significant manner that was demonstrated by the resampling bootstrap technique. CONCLUSIONS: The P4D peptide antagonist to F11R/JAM-A is able to hinder the metastasis in TNBC. This assumption needs to be confirmed by additional 4T1 mouse model study performed on larger group size, before making the decision on human clinical trials.

5.
Platelets ; 34(1): 2214618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37246517

RESUMO

F11 receptor (F11R)/Junctional Adhesion Molecule -A (JAM-A) is a transmembrane protein which belongs to the immunoglobulin superfamily of cell adhesion molecules. F11R/JAM-A is present in epithelial cells, endothelial cells, leukocytes, and blood platelets. In epithelial and endothelial cells, it takes part in the formation of tight junctions. In these structures, molecules of F11R/JAM-A located on adjacent cells form homodimers and thus take part in stabilization of cellular layer integrity. In leukocytes, F11R/JAM-A was shown to play role in their transmigration through the vascular wall. Paradoxically, the function of F11R/JAM-A in blood platelets, where it was primarily discovered, is much less understood. It has been proven to regulate downstream signaling of αIIbß3 integrin and to mediate platelet adhesion under static conditions. It was also shown to contribute to transient interactions of platelets with inflamed vascular wall. The review is aimed at summarizing the current state of knowledge of the platelet pool of F11R/JAM-A. The article also presents perspectives of the future research to better understand the role of this protein in hemostasis, thrombosis, and other processes where blood platelets are involved.


The molecule of a complex name F11R/JAM-A is a protein which was primarily discovered on blood platelets. Later, the presence of the same molecule was confirmed on endothelial cells and epithelial cells. From the moment of the discovery, most of the research was focused on the role of this protein in the latter types of cells. It was found to be an important element of so-called tight junctions. These structures are crucial for maintaining of integrity and selective permeability of cellular layers composed of these types of cells. In the following years, the presence of F11R/JAM-A has also been reported on leukocytes. An important role of specific type of leukocytes is their penetration to the sites of inflammation. Interplay of F11R/JAM-A present on endothelium and that on leukocyte is involved in this process. But what about the role of this protein in blood platelets where it was originally discovered? There is limited knowledge regarding this issue. It was found to play a role in the ability of platelets to adhere to a surface under static conditions, but it is not known if the same is true under flow. Is the protein necessary for platelets to aggregate and form thrombus? Genetically engineered mice were created which lack this protein in blood platelets to answer this question. These platelets were abnormally reactive, as it transpired that the protein plays a role of a negative regulator to one of the most important mechanisms, which triggers platelet aggregation. But is this inhibitory function the only task F11R/JAM-A has to fulfil in platelets? Presented review collects all the knowledge regarding this protein in blood platelets and tries to show interesting routes which need exploration.


Assuntos
Plaquetas , Molécula A de Adesão Juncional , Humanos , Plaquetas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Células Endoteliais/metabolismo , Junções Íntimas/metabolismo , Moléculas de Adesão Celular/metabolismo , Receptores de Superfície Celular/metabolismo
6.
Mol Cell Biochem ; 477(1): 79-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34533648

RESUMO

The F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularização Patológica/genética , Receptores de Superfície Celular/genética
7.
Cell Biol Int ; 46(8): 1227-1235, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35419903

RESUMO

A better understanding of the molecular regulation of wound healing may provide novel therapeutic targets. A previous study revealed that junctional adhesion molecule A (JAM-A)-modified mesenchymal stem cells promoted wound healing. However, whether direct JAM-A modification in the skin wound edge area accelerates the wound repair process is not clear. We determined whether JAM-A modification at the skin wound edge accelerated the wound healing process. We established JAM-A modification mouse wound models and mouse primary fibroblast cell models. Wound pictures were taken to compare the wound size. H&E staining was performed to monitor the morphology of the wound and quality of the newborn skin. CCK-8 assays and immunofluorescence (IF) for Ki67 were used to measure the cell proliferation of mouse primary fibroblasts. Quantitative real-time PCR, immunohistochemistry, IF, and Western blot analysis were used to detect bFGF and EGF expression in vivo and in vitro. The JAM-A-overexpressing group exhibited a smaller residual wound size than the control group at Day 7. Thicker epidermal layers and more hair follicle-like structures were found in the JAM-A-overexpressing group at Day 21. Cell proliferation capacity was higher in JAM-A-modified mouse fibroblasts. Elevated levels of bFGF and EGF were found in the JAM-A-modified group in vivo and in vitro. JAM-A modification significantly promoted fibroblast proliferation and wound healing. Increased levels of bFGF and EGF growth factors may be part of the mechanism.


Assuntos
Molécula A de Adesão Juncional , Animais , Proliferação de Células , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Fibroblastos/metabolismo , Molécula A de Adesão Juncional/metabolismo , Lentivirus , Camundongos , Pele/metabolismo , Cicatrização/fisiologia
8.
J Cell Biochem ; 121(2): 1703-1715, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595574

RESUMO

MiR-145 has been shown to suppress cell invasiveness and proliferation in endometriosis, whereas prostate cancer-associated transcript 1 (PCAT1) was reported to act as a sponge of miR-145 with one single-nucleotide polymorphism (SNP), rs710886, located in the chromosomal segment of PCAT1. Therefore, this study aimed to explore the association between rs710886 SNP and the risk of endometriosis, as well as the effect of this SNP on the activation of the signaling pathway downstream of PCAT1. Real-time polymerase chain reaction (PCR) was performed to observe the expression of miR-145 in transfected cells, while Matrigel invasion chamber assays and MTT assay were conducted to examine the invasiveness/proliferation among different cell groups. Moreover, bioinformatics tools, luciferase assays, real-time PCR, and Western blot analysis were used to measure the expression of these target genes in the presence of miR-145. Finally, a statistical analysis was conducted to compare the genotypes of rs710886 SNP between fertile healthy women and infertile women with endometriosis. PCAT1 small interfering RNA (siRNA) evidently increased the expression of miR-145 but reduced the invasiveness/proliferation of cells. P-PCAT1 exhibited an opposite effect as that of PCAT1 siRNA, indicating PCAT1 could promote the proliferation and invasiveness of endometriosis stem cells via inhibiting the expression of miR-145. Meanwhile, FASCIN1, SOX2, MSI2, SERPINE1, and JAM-A were identified as target genes of miR-145 via computational analysis and luciferase assays. Finally, a significant genetic effect was observed in both the dominant (AG+GG vs AA) and recessive models (GG vs AG+AA), indicating the presence of an association between the genotype of SNP rs710886 and the risk of endometriosis. SNP rs710886 A>G could lower the expression of PCAT1, thus leading to the overexpression of miR-145. Highly expressed miR-145 would inhibit the invasiveness and proliferation of endometriosis stem cells via targeting specific genes, thus decreasing the risk of endometriosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Endometriose/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Ciclo Celular , Movimento Celular , Proliferação de Células , Endometriose/genética , Endometriose/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Células Tumorais Cultivadas
9.
Breast Cancer Res Treat ; 179(2): 325-335, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31650345

RESUMO

PURPOSE: To examine the involvement of the F11R/JAM-A protein in breast cancer metastasis, we utilized the F11R/JAM-A antagonistic peptide 4D (P4D) in experiments of transendothelial migration (TEM) of breast cancer cells. METHODS: Experiments were conducted in the mouse 4T1 breast cancer model utilizing the human mammary epithelial cell and endothelial cell lines. The levels of soluble F11R/JAM-A (sJAM-A) in the murine plasmas were measured by ELISA. Levels of F11R/JAM-A mRNA and protein in cell lines were assessed by qRT-PCR and Western blot, respectively. Cell surface expression of F11R/JAM-A was demonstrated by flow cytometry. Functional tests included the TEM of breast cancer cells and adhesion of breast cancer cells to the endothelium. The endothelial permeability was studied by fluorescent tracer assay and by the Real-Time Cell Analysis (RTCA). RESULTS: The tumor inducers Tß4 and TGF-ß1 reduced the levels of sJAM-A in murine plasma, and reduced the F11R/JAM-A protein levels in the human microvascular endothelial cell line HMEC-1. The adhesion and TEM measured between breast cancer cells and inflamed or Tß4-treated endothelium were inhibited by P4D. The presence of P4D did not destabilize the pre-existing tight junctions in the endothelial monolayer. The barrier-protecting effect of P4D was stronger than that of forskolin, when a booster dose of P4D was applied to the inflamed endothelium. CONCLUSIONS: F11R/JAM-A protein can be considered as a novel target in the treatment of breast cancer metastasis. In vivo and clinical studies are needed to further investigate the effectiveness of F11R/JAM-A-derived peptide as a possible anti-metastatic drug.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Animais , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Camundongos , Substâncias Protetoras/farmacologia , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
10.
Cell Mol Life Sci ; 75(8): 1393-1409, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29238845

RESUMO

Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell-cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell-cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.


Assuntos
Proteínas de Transporte/metabolismo , Células Eucarióticas/metabolismo , Imunoglobulinas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/genética , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Eucarióticas/ultraestrutura , Regulação da Expressão Gênica , Humanos , Imunoglobulinas/genética , Molécula A de Adesão Juncional/genética , Proteínas dos Microfilamentos/genética , Morfogênese/genética , Proteínas Nucleares/genética , Domínios PDZ , Fosforilação , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura
11.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075901

RESUMO

The alveolar epithelial cells represent an important part of the alveolar barrier, which is maintained by tight junction proteins, particularly JAM-A, occludin, and claudin-18, which regulate paracellular permeability. In this study, we report on a strong increase in epithelial JAM-A expression in P2X7 receptor knockout mice when compared to the wildtype. Precision-cut lung slices of wildtype and knockout lungs and immortal epithelial lung E10 cells were treated with bleomycin, the P2X7 receptor inhibitor oxATP, and the agonist BzATP, respectively, to evaluate early changes in JAM-A expression. Biochemical and immunohistochemical data showed evidence for P2X7 receptor-dependent JAM-A expression in vitro. Inhibition of the P2X7 receptor using oxATP increased JAM-A, whereas activation of the receptor decreased the JAM-A protein level. In order to examine the role of GSK-3ß in the expression of JAM-A in alveolar epithelial cells, we used lithium chloride for GSK-3ß inhibiting experiments, which showed a modulating effect on bleomycin-induced alterations in JAM-A levels. Our data suggest that an increased constitutive JAM-A protein level in P2X7 receptor knockout mice may have a protective effect against bleomycin-induced lung injury. Bleomycin-treated precision-cut lung slices from P2X7 receptor knockout mice responded with a lower increase in mRNA expression of JAM-A than bleomycin-treated precision-cut lung slices from wildtype mice.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina , Moléculas de Adesão Celular/genética , Camundongos , Agonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Receptores Purinérgicos P2X7/deficiência
12.
Med Mol Morphol ; 52(1): 23-35, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29955965

RESUMO

The expression pattern of tight junction proteins (TJPs) varies among organs and tumor types. In this study, we examined the immunoreactivity of claudin (CLDN)-1, -4, and -7, and JAM-A in salivary gland tumors (SGTs) by histological types and cell types to estimate their usefulness as differential diagnostic markers. Immunoreactivity of CLDN1 was higher in ductal epithelium cells of SGTs than in non-tumor tissues. Conversely, immunoreactivity of CLDN1 was significantly decreased in basal/myoepithelium cells of SGTs compared with that in non-tumor tissues. There was no significant difference between the immunoreactivity of CLDN1 in benign tumors and that in malignant tumors. Immunoreactivity of CLDN4, CLDN7, and JAM-A in ductal epithelium cells was higher in many SGTs than in non-tumor tissues. There was a difference depending on the histological type of SGT in immunoreactivity of CLDN4, CLDN7, and JAM-A in basaloid/myoepithelial cells. It was possible to classify SGTs by a hierarchical clustering using immunoreactivity of TJPs. The results suggest that an immunohistochemical marker panel including these TJPs may be useful for differential diagnosis of SGTs and that CLDN1 is associated with tumorigenesis of SGTs.


Assuntos
Claudina-1/análise , Imuno-Histoquímica , Neoplasias das Glândulas Salivares/diagnóstico , Proteínas de Junções Íntimas/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/imunologia , Claudina-1/imunologia , Claudina-4/análise , Claudina-4/imunologia , Claudinas/análise , Claudinas/imunologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/imunologia , Neoplasias das Glândulas Salivares/metabolismo , Proteínas de Junções Íntimas/imunologia , Adulto Jovem
13.
Breast Cancer Res ; 20(1): 140, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458861

RESUMO

BACKGROUND: Junctional adhesion molecule-A (JAM-A) is an adhesion molecule whose overexpression on breast tumor tissue has been associated with aggressive cancer phenotypes, including human epidermal growth factor receptor-2 (HER2)-positive disease. Since JAM-A has been described to regulate HER2 expression in breast cancer cells, we hypothesized that JAM-dependent stabilization of HER2 could participate in resistance to HER2-targeted therapies. METHODS: Using breast cancer cell line models resistant to anti-HER2 drugs, we investigated JAM-A expression and the effect of JAM-A silencing on biochemical/functional parameters. We also tested whether altered JAM-A expression/processing underpinned differences between drug-sensitive and -resistant cells and acted as a biomarker of patients who developed resistance to HER2-targeted therapies. RESULTS: Silencing JAM-A enhanced the anti-proliferative effects of anti-HER2 treatments in trastuzumab- and lapatinib-resistant breast cancer cells and further reduced HER2 protein expression and Akt phosphorylation in drug-treated cells. Increased epidermal growth factor receptor expression observed in drug-resistant models was normalized upon JAM-A silencing. JAM-A was highly expressed in all of a small cohort of HER2-positive patients whose disease recurred following anti-HER2 therapy. High JAM-A expression also correlated with metastatic disease at the time of diagnosis in another patient cohort resistant to trastuzumab therapy. Importantly, cleavage of JAM-A was increased in drug-resistant cell lines in conjunction with increased expression of ADAM-10 and -17 metalloproteases. Pharmacological inhibition or genetic silencing studies suggested a particular role for ADAM-10 in reducing JAM-A cleavage and partially re-sensitizing drug-resistant cells to the anti-proliferative effects of HER2-targeted drugs. Functionally, recombinant cleaved JAM-A enhanced breast cancer cell invasion in vitro and both invasion and proliferation in a semi-in vivo model. Finally, cleaved JAM-A was detectable in the serum of a small cohort of HER2-positive patients and correlated significantly with resistance to HER2-targeted therapy. CONCLUSIONS: Collectively, our data suggest a novel model whereby increased expression and cleavage of JAM-A drive tumorigenic behavior and act as a biomarker and potential therapeutic target for resistance to HER2-targeted therapies.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Moléculas de Adesão Celular/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Embrião de Galinha , Membrana Corioalantoide , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Invasividade Neoplásica/patologia , RNA Interferente Pequeno/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Fish Shellfish Immunol ; 76: 206-215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29477498

RESUMO

The hemorrhagic disease of grass carp (Ctenopharyngodon idellus) induced by grass carp reovirus (GCRV) leads to huge economic losses in China and currently, there are no effective methods available for prevention and treatment. The various GCRV genotypes may be one of the major obstacles in the pursuit of an effective antiviral treatment. In this study, we exploited CRISPR/Cas9 gene editing to specifically knockout the DNA sequence of the grass carp Junctional Adhesion Molecule-A (gcJAM-A) and evaluated in vitro resistance against various GCRV genotypes. Our results show that CRISPR/Cas9 effectively knocked out gcJAM-A and reduced GCRV infection for two different genotypes in permissive grass carp kidney cells (CIK), as evidenced by suppressed cytopathic effect (CPE) and GCRV progeny production in infected cells. In addition, with ectopic expression of gcJAM-A in cells, non-permissive cells derived from Chinese giant salamander (Andrias davidianus) muscle (GSM) could be highly infected by both GCRV-JX0901 and Hubei grass carp disease reovirus (HGDRV) strains that have different genotypes. Taken together, the results demonstrate that gcJAM-A is necessary for GCRV infection, implying a potential approach for viral control in aquaculture.


Assuntos
Sistemas CRISPR-Cas/genética , Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Molécula A de Adesão Juncional/deficiência , Animais , Linhagem Celular , Edição de Genes/veterinária , Interações Hospedeiro-Patógeno , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia
15.
Adv Gerontol ; 31(3): 362-367, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30584875

RESUMO

Essential hypertension (EG) is an age-associated disease. Often EG of elderly patients haven't good way of treatment. Thus, the search of new target molecules for EG therapy is an actual goal of gerontology and molecular medicine. It was shown, that during EG concentrations of GDF11 «youth protein¼ decreased in 3,3 times and GDF15, JAM-A/1, CCL11 «aging proteins¼ increased in 1,4-2,4 times. EG patients have abnormal microcirculation processes. It was shown as decreasing in 1,3 and 1,7 times of hemodynamic HI1 and H1-H3 indexes. EG patients have negative correlation of GDF15 concentration with arterial pressure. EG patients have no correlation of JAM-A/1 concentration with arterial pressure. Normal is positive correlation with GDF15, JAM-A/1 concentration with arterial pressure. GDF15 blood level during EG have positive correlation with HI1-HI3 and negative correlation with NEUR_HI2 and MAYER_HI3 indexes. It can show on pathogenesis mechanisms of endothelial and smooth muscles function of vessels tissues. We suppose, that the regulation of GDF11, GDF15, JAM-A/1, CCL11 «youth and aging proteins¼ can be target object of EG therapy.


Assuntos
Envelhecimento/fisiologia , Hipertensão Essencial/etiologia , Proteínas/fisiologia , Idoso , Pressão Arterial , Fator 15 de Diferenciação de Crescimento , Hemodinâmica , Humanos
16.
Cancer Sci ; 108(11): 2306-2314, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28837251

RESUMO

A cell-cell adhesion protein, junctional adhesion molecule-A (JAM-A), has been shown to be involved in neoplasia of various organs. However, the fundamental role of JAM-A in tumorigenesis is still under debate because dysregulated expression of this protein has distinct effects, playing opposite roles in carcinogenesis depending on the target tissues. In the present study, we found elevated levels of JAM-A expression in lung adenocarcinoma and its preinvasive lesions, including atypical adenomatous hyperplasia and adenocarcinoma in situ by immunohistochemistry. We also showed that suppression of constitutive JAM-A expression conferred target cells with increased susceptibility to apoptosis in lung adenocarcinoma cells. Consequently, inhibition of JAM-A activity decreased colony-forming capability in vitro and tumorigenicity in vivo. The transformed phenotype following suppression of JAM-A expression was sufficient to reduce motile and invasive capacities. Importantly, knockout of JAM-A had striking effects on cells. Our observations suggest that increased expression of JAM-A promotes neoplasia of lung adenocarcinoma. In addition, an anti-JAM-A antibody efficiently reduced cell proliferation and provoked apoptosis, indicating the potential feasibility of JAM-A-inhibitory cancer therapy.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Carcinogênese/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Neoplasias Pulmonares/genética , Receptores de Superfície Celular/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Anticorpos Anti-Idiotípicos/administração & dosagem , Apoptose/genética , Moléculas de Adesão Celular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptores de Superfície Celular/antagonistas & inibidores
17.
Stem Cells ; 34(6): 1664-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26866290

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) reside in specialized bone marrow microenvironmental niches, with vascular elements (endothelial/mesenchymal stromal cells) and CXCR4-CXCL12 interactions playing particularly important roles for HSPC entry, retention, and maintenance. The functional effects of CXCL12 are dependent on its local concentration and rely on complex HSPC-niche interactions. Two Junctional Adhesion Molecule family proteins, Junctional Adhesion Molecule-B (JAM)-B and JAM-C, are reported to mediate HSPC-stromal cell interactions, which in turn regulate CXCL12 production by mesenchymal stromal cells (MSCs). Here, we demonstrate that another JAM family member, JAM-A, is most highly expressed on human hematopoietic stem cells with in vivo repopulating activity (p < .01 for JAM-A(high) compared to JAM-A(Int or Low) cord blood CD34(+) cells). JAM-A blockade, silencing, and overexpression show that JAM-A contributes significantly (p < .05) to the adhesion of human HSPCs to IL-1ß activated human bone marrow sinusoidal endothelium. Further studies highlight a novel association of JAM-A with CXCR4, with these molecules moving to the leading edge of the cell upon presentation with CXCL12 (p < .05 compared to no CXCL12). Therefore, we hypothesize that JAM family members differentially regulate CXCR4 function and CXCL12 secretion in the bone marrow niche. Stem Cells 2016;34:1664-1678.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Molécula A de Adesão Juncional/metabolismo , Receptores CXCR4/metabolismo , Antígeno AC133/metabolismo , Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Adesão Celular/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Células HL-60 , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células Jurkat , Ligação Proteica/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos
18.
Cell Mol Life Sci ; 73(6): 1195-207, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26698907

RESUMO

Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/citologia , Fuso Acromático/metabolismo , Animais , Polaridade Celular , Células Epiteliais/metabolismo , Humanos
19.
Clin Sci (Lond) ; 129(7): 575-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25994236

RESUMO

The homing ability and secretory function of mesenchymal stem cells (MSCs) are key factors that influence cell involvement in wound repair. These factors are controlled by multilayer regulatory circuitry, including adhesion molecules, core transcription factors (TFs) and certain other regulators. However, the role of adhesion molecules in this regulatory circuitry and their underlying mechanism remain undefined. In the present paper, we demonstrate that an adhesion molecule, junction adhesion molecule A (JAM-A), may function as a key promoter molecule to regulate skin wound healing by MSCs. In in vivo experiments, we show that JAM-A up-regulation promoted both MSC homing to full-thickness skin wounds and wound healing-related cytokine secretion by MSCs. In vitro experiments also showed that JAM-A promoted MSC proliferation and migration by activating T-cell lymphoma invasion and metastasis 1 (Tiam1). We suggest that JAM-A up-regulation can increase the proliferation, cytokine secretion and wound-homing ability of MSCs, thus accelerating the repair rate of full-thickness skin defects. These results may provide insights into a novel and potentially effective approach to improve the efficacy of MSC treatment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células-Tronco Mesenquimais/citologia , Receptores de Superfície Celular/metabolismo , Cicatrização , Animais , Adesão Celular , Diferenciação Celular , Movimento Celular , Quimiotaxia , Técnicas de Cocultura , Epiderme/metabolismo , Humanos , Lentivirus/genética , Leucócitos Mononucleares/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
20.
Adv Gerontol ; 28(4): 656-668, 2015.
Artigo em Russo | MEDLINE | ID: mdl-28509452

RESUMO

The article represents evidence about structures, properties and functions of adhesion molecule JAM-A/1 belonging to JAM subfamily. This protein plays an important role in epithelial tight junction formation and immune function. Current article focuses on the role of JAM-A protein in pathogenesis associated to ageing: atherosclerosis, apoplexy, thrombosis, hypertension, ophthalmological pathology. We propose short peptides Lys-Glu, Lys-Glu-Asp, and Ala-Glu-Asp-Gly could influence on F11R gene expression that leads to recovery of JAM-A synthesis in cells.


Assuntos
Envelhecimento , Moléculas de Adesão Celular , Receptores de Superfície Celular , Envelhecimento/genética , Envelhecimento/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Epigênese Genética , Expressão Gênica , Humanos , Oligopeptídeos/metabolismo , Fatores de Proteção , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA