Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38969944

RESUMO

PURPOSE: We have previously reported that protracted Cyclooxygenase-2 (COX-2) activity in bone marrow-derived cells (BMDCs) infiltrating into biopsy wounds adjacent to the biopsy cavity of breast tumors in mice promotes M2-shift of macrophages and pro-metastatic changes in cancer cells, effects which were suppressed by oral administration of COX-2 inhibitors. Thus, local control of COX-2 activity in the biopsy wound may mitigate biopsy-induced pro-metastatic changes. METHODS: A combinatorial delivery system-thermosensitive biodegradable poly(lactic acid) hydrogel (PLA-gel) incorporating celecoxib-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Cx-NP/PLA-gel)-was injected into the biopsy cavity of Py230 murine breast tumors to achieve local control of COX-2 activity in the wound stroma. RESULTS: A single intra-biopsy cavity injection of PLA-gel loaded with rhodamine-encapsulated nanoparticles (NPs) showed sustained local delivery of rhodamine preferentially to infiltrating BMDCs with minimal to no rhodamine uptake by the reticuloendothelial organs in mice. Moreover, significant reductions in M2-like macrophage density, cancer cell epithelial-to-mesenchymal transition, and blood vessel density were observed in response to a single intra-biopsy cavity injection of Cx-NP/PLA-gel compared to PLA-gel loaded with NPs containing no payload. Accordingly, intra-biopsy cavity injection of Cx-NP/PLA-gel led to significantly fewer metastatic cells in the lungs than control-treated mice. CONCLUSION: This study provides evidence for the feasibility of sustained, local delivery of payload preferential to BMDCs in the wound stroma adjacent to the biopsy cavity using a combinatorial delivery system to reduce localized inflammation and effectively mitigate breast cancer cell dissemination.

2.
J Clin Periodontol ; 51(6): 774-786, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38462847

RESUMO

AIM: To evaluate the effect of subgingival delivery of progranulin (PGRN)/gelatin methacryloyl (GelMA) complex as an adjunct to scaling and root planing (SRP) on an experimental periodontitis dog model with Class II furcation involvement (FI). MATERIALS AND METHODS: A Class II FI model was established, and the defects were divided into four treatment groups: (a) no treatment (control); (b) SRP; (c) SRP + GelMA; (d) SRP + PGRN/GelMA. Eight weeks after treatment, periodontal parameters were recorded, gingival crevicular fluid and gingival tissue were collected for ELISA and RT-qPCR, respectively, and mandibular tissue blocks were collected for micro computed tomography (micro-CT) scanning and hematoxylin and eosin (H&E) staining. RESULTS: The SRP + PGRN/GelMA group showed significant improvement in all periodontal parameters compared with those in the other groups. The expression of markers related to M1 macrophage and Th17 cell significantly decreased, and the expression of markers related to M2 macrophage and Treg cell significantly increased in the SRP + PGRN/GelMA group compared with those in the other groups. The volume, quality and area of new bone and the length of new cementum in the root furcation defects of the PGRN/GelMA group were significantly increased compared to those in the other groups. CONCLUSIONS: Subgingival delivery of the PGRN/GelMA complex could be a promising non-surgical adjunctive therapy for anti-inflammation, immunomodulation and periodontal regeneration.


Assuntos
Raspagem Dentária , Defeitos da Furca , Hidrogéis , Progranulinas , Animais , Cães , Defeitos da Furca/terapia , Hidrogéis/uso terapêutico , Raspagem Dentária/métodos , Imunomodulação , Aplainamento Radicular/métodos , Modelos Animais de Doenças , Periodontite/terapia , Periodontite/imunologia , Gelatina , Masculino , Microtomografia por Raio-X
3.
J Nanobiotechnology ; 22(1): 482, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135039

RESUMO

Treatment-induced ototoxicity and accompanying hearing loss are a great concern associated with chemotherapeutic or antibiotic drug regimens. Thus, prophylactic cure or early treatment is desirable by local delivery to the inner ear. In this study, we examined a novel way of intratympanically delivered sustained nanoformulation by using crosslinked hybrid nanoparticle (cHy-NPs) in a thermoresponsive hydrogel i.e. thermogel that can potentially provide a safe and effective treatment towards the treatment-induced or drug-induced ototoxicity. The prophylactic treatment of the ototoxicity can be achieved by using two therapeutic molecules, Flunarizine (FL: T-type calcium channel blocker) and Honokiol (HK: antioxidant) co-encapsulated in the same delivery system. Here we investigated, FL and HK as cytoprotective molecules against cisplatin-induced toxic effects in the House Ear Institute - Organ of Corti 1 (HEI-OC1) cells and in vivo assessments on the neuromast hair cell protection in the zebrafish lateral line. We observed that cytotoxic protective effect can be enhanced by using FL and HK in combination and developing a robust drug delivery formulation. Therefore, FL-and HK-loaded crosslinked hybrid nanoparticles (FL-cHy-NPs and HK-cHy-NPs) were synthesized using a quality-by-design approach (QbD) in which design of experiment-central composite design (DoE-CCD) following the standard least-square model was used for nanoformulation optimization. The physicochemical characterization of FL and HK loaded-NPs suggested the successful synthesis of spherical NPs with polydispersity index < 0.3, drugs encapsulation (> 75%), drugs loading (~ 10%), stability (> 2 months) in the neutral solution, and appropriate cryoprotectant selection. We assessed caspase 3/7 apopototic pathway in vitro that showed significantly reduced signals of caspase 3/7 activation after the FL-cHy-NPs and HK-cHy-NPs (alone or in combination) compared to the CisPt. The final formulation i.e. crosslinked-hybrid-nanoparticle-embedded-in-thermogel was developed by incorporating drug-loaded cHy-NPs in poloxamer-407, poloxamer-188, and carbomer-940-based hydrogel. A combination of artificial intelligence (AI)-based qualitative and quantitative image analysis determined the particle size and distribution throughout the visible segment. The developed formulation was able to release the FL and HK for at least a month. Overall, a highly stable nanoformulation was successfully developed for combating treatment-induced or drug-induced ototoxicity via local administration to the inner ear.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Nanopartículas/química , Orelha Interna/efeitos dos fármacos , Hidrogéis/química , Cisplatino/farmacologia , Cisplatino/química , Linhagem Celular , Compostos de Bifenilo/química , Sistemas de Liberação de Medicamentos/métodos , Lignanas/química , Lignanas/farmacologia , Lignanas/administração & dosagem , Camundongos , Sobrevivência Celular/efeitos dos fármacos
4.
Clin Oral Investig ; 27(3): 955-970, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36729235

RESUMO

OBJECTIVES: To evaluate the effect of subgingival administration of various antimicrobials and host-modulating agents in furcation defects as an adjunct to scaling and root planing (SRP) compared to SRP alone or combined with placebo. METHODS: A systematic review was carried out using MEDLINE-PubMed, Embase, and Scopus for articles up to October 2022 in addition to hand searches. All longitudinal studies that evaluated the effect of subgingival application of antimicrobial and host-modulating agents in furcation defects as adjuncts to SRP compared to SRP alone or SRP + placebo with at least 3 months of follow-up were eligible for inclusion. RESULTS: A total of eight studies were included. Superior clinical treatment outcomes were shown when alendronate, rosuvastatin, boric acid, simvastatin, and tetracycline (only at 3 months) were utilized in furcation defects in conjunction with SRP alone or SRP + placebo. Significant improvement was reported in radiographic bone defect depth and defect depth reduction when SRP was supplemented with alendronate, rosuvastatin, boric acid, and simvastatin. CONCLUSIONS: Within the limitations of this review, the adjunctive subgingival administration of medications and host-modulating agents in furcation defects may confer additional clinical and radiographic benefits than non-surgical periodontal treatment alone. Future investigations are needed to confirm their long-term effectiveness. CLINICAL RELEVANCE: Local host modulators and antimicrobials may be used supplementary to enhance the clinical and radiographic treatment outcomes of conventional periodontal therapy in furcation defects.


Assuntos
Defeitos da Furca , Periodontite , Humanos , Defeitos da Furca/tratamento farmacológico , Rosuvastatina Cálcica/uso terapêutico , Alendronato/uso terapêutico , Periodontite/terapia , Raspagem Dentária , Aplainamento Radicular , Resultado do Tratamento , Sinvastatina/uso terapêutico
5.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003661

RESUMO

This study is designed to formulate and characterize chitosan-based nanogels that provide the controlled delivery of anesthetic drugs, such as bupivacaine (BPV), for effective postoperative pain management over prolonged periods of time. Drug carriers of chitosan/poly (MMA-co-HEMA-cl-EGDMA) (CsPMH) nanogels were prepared by varying the composition of comonomers such as MMA, HEMA, and redox initiator CAN. The nanogels were then characterized using FTIR, TGA, SEM, and TEM. The CsPMH nanogels showed greater encapsulation efficiencies from 43.20-91.77%. Computational studies were also conducted to evaluate the interaction between the drug and CsPMH nanoparticles. Finally, BPV-loaded nanoparticles were used to examine their in vitro release behavior. At pH 7.4, all the drug carriers displayed the "n" value around 0.7, thus the BPV release follows anomalous diffusion. Drug carrier 7 demonstrated a steady and sustained release of BPV for approximately 24 h and released about 91% of BPV, following the K-P mechanism of drug release. On the other hand, drug carrier 6 exhibited controlled release for approximately 12 h and released only 62% of BPV.


Assuntos
Quitosana , Nanopartículas , Nanogéis , Quitosana/química , Bupivacaína , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio
6.
Medicina (Kaunas) ; 59(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837504

RESUMO

Background and objectives: this study aims to evaluate the clinical and microbiological effects of a single subgingival administration of a locally delivered antibiotic gel containing piperacillin plus tazobactam and compare it with a slow-release doxycycline (14%) gel and a placebo gel, following subgingival instrumentation (SI) in patients with severe periodontitis. Materials and methods: sixty-four patients diagnosed with stage III-IV periodontitis were enrolled, were randomly assigned into three groups, and were treated additionally with a single subgingival administration of piperacillin plus tazobactam gel (group A); doxycycline gel (group B); and placebo gel (group C). The primary outcome variable was the change in mean probing pocket depth (PPD) 6 months after the intervention. Secondary outcome variables were changes in mean full-mouth bleeding score (FMBS); full-mouth plaque score (FMPS); overall bleeding index (BOP); pocket closure; and clinical attachment level (CAL), along with changes in the numbers of five keystone bacteria: Aggregatibacter actinomycetemcomitans (A.a.), Porphyromonas gingivalis (P.g.), Prevotella intermedia (P.i.), Tannerella forsythia (T.f.), and Treponema denticola (T.d.). Intergroup and intragroup differences were evaluated at 3 and 6 months. Results: at baseline, the three groups were comparable. An improvement in clinical parameters such as PPD, CAL, and BOP between groups was observed at 3 and 6 months, but without statistical significance (p > 0.05). At 6 months, the intragroup analysis showed a significant reduction in clinical parameters. Even though the piperacillin plus tazobactam group showed slightly higher PPD reduction, this was not statistically significant when compared to both control groups. Conclusions: The groups had similar results, and subgingival instrumentation can be executed without adjunctive antimicrobials, reducing the costs for the patient and the working time/load of the professional.


Assuntos
Antibacterianos , Periodontite , Humanos , Antibacterianos/uso terapêutico , Doxiciclina , Bolsa Periodontal/tratamento farmacológico , Bolsa Periodontal/microbiologia , Combinação Piperacilina e Tazobactam/farmacologia , Combinação Piperacilina e Tazobactam/uso terapêutico , Porphyromonas gingivalis
7.
J Contemp Dent Pract ; 24(3): 162-167, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272127

RESUMO

AIM: The aim of this study was to evaluate the efficacy of three different local drug delivery medications in the treatment of chronic periodontitis. MATERIALS AND METHODS: Sixty participants, aged 30-55 years, were involved in the current research. Participants who fulfilled the inclusion criteria entered the study and were allocated at random to one of the three groups, each comprising 20 patients as: group A: Scaling and root planing (SRP) with local application of doxycycline gel, group B: SRP with local application of tetracycline fibers, and group C: SRP with local application of chlorhexidine gel. The plaque index (PI), the gingival index (GI), and periodontal pocket depth (PPD) were documented at baseline visit (prior to local drug delivery), and these indices were again documented 30 and 90 days post-local drug delivery. RESULTS: At baseline, GI score for doxycycline gel use decreased from 1.38 ± 0.05 to 0.94 ± 0.02, 1.36 ± 0.11 to 0.76 ± 0.19 for tetracycline fibers use, as well as from 1.38 ± 0.10 to 0.84 ± 0.21 for chlorhexidine gel use post 90 days. The PI value at baseline for doxycycline gel use lessened from 1.26 ± 0.01 to 1.02 ± 0.06, 1.30 ± 0.14 to 0.82 ± 0.16 for tetracycline fibers use, as well as 1.30 ± 0.22 to 0.98 ± 0.11 for chlorhexidine gel use post 90 days. At baseline, PPD values for doxycycline gel use decreased from 5.88 ± 0.24 to 3.72 ± 0.11, tetracycline fibers use lessened from 5.90 ± 0.09 to 3.02 ± 0.06, as well as for chlorhexidine gel group from 5.82 ± 0.18 to 3.44 ± 0.16 post 90 days. CONCLUSION: Within the limitations of the current research, it may be inferred that tetracycline fibers exhibited somewhat superior enhancement to chlorhexidine as well as doxycycline gel. CLINICAL SIGNIFICANCE: Local administration of antibacterial agents in continued or regulated delivery arrangement is employed to augment the actions of nonsurgical periodontal management, and it may be likely to attain gingival well-being by eliminating the requirement for invasive methods with the aid of local drug delivery arrangements. Chosen elimination or prohibition of microbial pathogens with locally administered antibacterial agents coupled with SRP is an efficient move toward treatment of chronic periodontitis.


Assuntos
Periodontite Crônica , Humanos , Antibacterianos/uso terapêutico , Clorexidina/uso terapêutico , Periodontite Crônica/tratamento farmacológico , Raspagem Dentária , Doxiciclina/uso terapêutico , Aplainamento Radicular/métodos , Tetraciclina/uso terapêutico , Adulto , Pessoa de Meia-Idade
8.
Mol Pharm ; 19(8): 2690-2711, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33605146

RESUMO

The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.


Assuntos
Nanomedicina , Neoplasias , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Humanos , Nanotecnologia
9.
J Endovasc Ther ; : 15266028221120755, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052425

RESUMO

OBJECTIVE: Local Liquid drug (LLD) delivery devices have recently emerged as a novel approach to treat peripheral arterial disease. This systemic review aims to identify and evaluate the clinical utility of the most commonly used delivery devices. METHODS: A systemic review was performed using the Medical Subjects Heading terms of "drug delivery," "liquid," "local," and "cardiovascular disease" in PubMed, Google Scholar, and Scopus. RESULTS: Four commonly used delivery devices were identified, including (1) the Bullfrog Micro-Infusion Device, (2) the ClearWay RX Catheter, (3) the Occlusion Perfusion Catheter, and (4) the Targeted Adjustable Pharmaceutical Administration. All have shown to successfully deliver liquid therapeutic into the target lesion and have exhibited favorable safety and efficacy profiles in preclinical and clinical trials. The LLD devices have the ability to treat very long or multiple lesions with a single device, providing a more economical option. The safety profile in LLD clinical studies is also favorable in view of recent concerns regarding adverse events with crystalline-paclitaxel-coated devices. CONCLUSION: There is clear clinical evidence to support the concept of local liquid delivery to treat occlusive arterial disease. CLINICAL IMPACT: The 'leave nothing behind' strategy has been at the forefront of the most recent innovations in the field of interventional cardiology and vascular interventions. Although drug coated balloons have overcome limitations associated with plain old balloon angioplasty and peripheral stents, recent safety concerns and cost considerations have impacted their usage. In this review, various liquid drug delivery devices are presented, showcasing their capabilities and success in both preclinical and clinical settings. These innovative liquid delivery devices, capable of targeted delivery and their ability to be re-used for multiple treatment sites, may provide solutions for current unmet clinical needs.

10.
J Pharmacokinet Pharmacodyn ; 49(6): 657-671, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36282445

RESUMO

Cerebrospinal fluid (CSF) plays a vital role in maintaining brain homeostasis and recent research has focused on elucidating the role that convective flow of CSF plays in brain health. This paper describes a computational compartmental model of how CSF dynamics affect drug pharmacokinetics in the rat brain. Our model implements a local, sustained release approach for drug delivery to the brain. Simulation outputs highlight the potential for modulating CSF flow to improve overall drug pharmacokinetics in the central nervous system and suggest that concomitant CSF modulation and optimized drug release rates from implantable depots can be used to engineer the duration of action of chemotherapeutics. As an example, the tissue exposure of temozolomide, the standard of care treatment for glioblastoma, was modeled in conjunction with two CSF-modulating drugs: acetazolamide and verapamil. Simulations indicate that temozolomide exposure in the interstitial fluid is increased by 25% when using local sustained release delivery systems and concomitant acetazolamide delivery to reduce CSF production. This computational model can be used to produce insight on how to appropriately modulate CSF production and engineer drug release to tailor drug exposure in the brain while limiting off-target effects. As new research continues to elucidate the dynamic roles of CSF, this model can be further improved and leveraged to provide information on how CSF modulation may play a beneficial role in treating a wide variety of neurological disease.


Assuntos
Acetazolamida , Encéfalo , Animais , Ratos , Temozolomida , Preparações de Ação Retardada , Líquido Extracelular , Líquido Cefalorraquidiano
11.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216484

RESUMO

Local drug delivery is an effective strategy for achieving direct and instant therapeutic effects. Current clinical treatments have fallen short and are limited by traditional technologies. Bioadhesive nanoparticles (NPs), however, may be a promising carrier for optimized local drug delivery, offering prolonged drug retention time and steadily maintained therapeutic concentrations. In addition, the possibility of clinical applications of this platform are abundant, as most polymers used for bioadhesion are both biodegradable and biocompatible. This review highlights the major advances in the investigations of polymer-based bioadhesive nanoparticles and their innumerable applications in local drug delivery.


Assuntos
Adesivos/química , Nanopartículas/química , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Excipientes/química , Humanos , Polímeros/química
12.
Small ; 17(23): e2007963, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33719187

RESUMO

Mucosal surfaces pose a challenging environment for efficient drug delivery. Various delivery strategies such as nanoparticles have been employed so far; yet, still yielding limited success. To address the need of efficient transmucosal drug delivery, this report presents the synthesis of novel disulfide-containing dendritic polyglycerol (dPG)-based nanogels and their preclinical testing. A bifunctional disulfide-containing linker is coupled to dPG to act as a macromolecular crosslinker for poly-N-isopropylacrylamide (PNIPAM) and poly-N-isopropylmethacrylamide (PNIPMAM) in a precipitation polymerization process. A systematic analysis of the polymerization reveals the importance of a careful polymer choice to yield mucus-degradable nanogels with diameters between 100 and 200 nm, low polydispersity, and intact disulfide linkers. Absorption studies in porcine intestinal tissue and human bronchial epithelial models demonstrate that disulfide-containing nanogels are highly efficient in overcoming mucosal barriers. The nanogels efficiently degrade and deliver the anti-inflammatory biomacromolecule etanercept into epithelial tissues yielding local anti-inflammatory effects. Over the course of this work, several problems are encountered due to a limited availability of valid test systems for mucosal drug-delivery systems. Hence, this study also emphasizes how critical a combined and multifaceted approach is for the preclinical testing of mucosal drug-delivery systems, discusses potential pitfalls, and provides suggestions for solutions.


Assuntos
Portadores de Fármacos , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Humanos , Muco , Nanogéis , Polimerização , Suínos
13.
Biotechnol Bioeng ; 118(11): 4477-4487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34396506

RESUMO

BACKGROUND: The aim of this study was to investigate the combined effect of mesenchymal stem cells (MSC) and local delivery of tacrolimus (FK506) on nerve regeneration when applied to nerve autografts and decellularized allografts. METHODS: A three-dimensional in vitro compartmented cell culture system consisting of a neonatal dorsal root ganglion adjacent to a nerve graft was used to evaluate the regenerating neurites into the peripheral nerve scaffold. Nerve autografts and allografts were treated with (i) undifferentiated MSCs, (ii) FK506 (100 ng/mL) or (iii) both (N = 9/group). After 48 hours, neurite extension was measured to quantify nerve regeneration and stem cell viability was evaluated. RESULTS: Stem cell viability was confirmed in all MSC-treated grafts. Neurite extension was superior in autografts treated with FK506, and MSCs and FK506 combined (p < 0.001 and p = 0.0001, respectively), and autografts treated with MSCs (p = 0.12) were comparable to untreated autografts. In allografts, FK506 treatment and combined treatment were superior to controls (p < 0.001 and p = 0.0001, respectively), and treatment with MSCs (p = 0.09) was comparable to controls. All autograft groups were superior compared to their respective allograft treatment group (p < 0.05) in neurite extension. CONCLUSIONS: Alone, either MSC or FK506 treatment improved neurite outgrowth, and combined they further enhanced neurite extension in both autografts and allografts.


Assuntos
Gânglios Espinais/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Neuritos/metabolismo , Tacrolimo/farmacologia , Aloenxertos , Animais , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
14.
Pharm Res ; 38(4): 669-680, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33796952

RESUMO

PURPOSE: To address the issue of local drug delivery in tumor treatment, a novel nanoparticle-hydrogel superstructure, namely semi-interpenetrating polymer networks (semi-IPNs) hydrogel composed of poly (ethylene glycol) diacrylate (PEGDA) and hyaluronic acid (HA) and incorporated with paclitaxel (PTX) loaded PLGA nanoparticles (PEGDA-HA/PLGA-PTX), was prepared by in situ UV photopolymerization for the use of local drug delivery. METHODS: Using the gelation time, swelling rate and degradation rate as indicators, the optimal proportion of Irgacure 2959 initiator and the concentration of HA was screened and obtained for preparing hydrogels. Next, paclitaxel (PTX) loaded PLGA nanoparticles (PLGA-PTX NPs) were prepared by the emulsion solvent evaporation method. RESULTS: The mass ratio of the initiator was 1%, and the best concentration of HA was 5 mg/mL in PEGDA-HA hydrogel. In vitro experiments showed that PLGA-PTX NPs had similar cytotoxicity to free PTX, and the cell uptake ratio on NCI-H460 cells was up to 96% by laser confocal microscopy and flow cytometry. The drug release of the PEGDA-HA/PLGA-PTX hydrogel local drug delivery system could last for 13 days. In vivo experiments proved that PEGDAHA/PLGA-PTX hydrogel could effectively inhibit the tumor growth without causing toxic effects in mice. CONCLUSIONS: This study demonstrated that the PEGDA-HA/PLGA-PTX hydrogel is a promising local drug delivery system in future clinical applications for tumor therapy. A photopolymerized semi-interpenetrating polymer networks-based hydrogel incorporated with paclitaxel-loaded nanoparticles was fabricated by in situ UV photopolymerization, providing a promised nanoplatform for local chemotherapy of tumors.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Hidrogéis/química , Neoplasias/tratamento farmacológico , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Neoplasias/patologia , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Nanobiotechnology ; 19(1): 198, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217325

RESUMO

BACKGROUND: The postoperative recurrence of malignant gliomas has presented a clinical conundrum currently. Worse, there is no standard treatment for these recurrent tumours. Therefore, novel promising methods of clinical treatment are urgently needed. METHODS: In this study, we synthesized reactive oxygen species (ROS)-triggered poly(propylene sulfide)60 (PPS60) mixed with matrix metalloproteinases (MMPs)-responsive triglycerol monostearate (T) lipids and TMZ. The mixed solution could self-assemble at 50 â„ƒ to generate hydrogels with MMPs- and ROS-responsiveness. We explored whether the T/PPS + TMZ hydrogel could achieve the MMP- and ROS-responsive delivery of TMZ and exert anti-glioma regrowth effects in vitro and in vivo. These results demonstrated that the T/PPS + TMZ hydrogel significantly improved the curative effect of TMZ to inhibit postsurgical recurrent glioma. RESULTS: The results confirmed the responsive release of TMZ encapsulated in the T/PPS + TMZ hydrogel, and the hydrogel showed excellent performance against glioma in an incomplete glioma operation model, which indicated that the T/PPS + TMZ hydrogel effectively inhibited the growth of recurrent glioma. CONCLUSION: In summary, we successfully developed injectable MMPs- and ROS-responsive hydrogels that could achieve the sustained release of TMZ in the surgical cavity to inhibit local recurrent glioma after surgery.


Assuntos
Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Hidrogéis/química , Nanofibras/química , Recidiva Local de Neoplasia/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Espécies Reativas de Oxigênio
16.
Sci Technol Adv Mater ; 22(1): 522-531, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34220340

RESUMO

We reports a novel thermally enhanced drug release system synthesized via a dynamic Diels-Alder (DA) reaction to develop chemotherapy for pancreatic cancer. The anticancer prodrug was designed by tethering gemcitabine (GEM) to poly(furfuryl methacrylate) (PFMA) via N-(3-maleimidopropionyloxy)succinimide as a linker by DA reaction (PFMA-L-GEM). The conversion rate of the DA reaction was found to be approximately 60% at room temperature for 120 h. The reversible deconstruction of the DA covalent bond in retro Diels-Alder (rDA) reaction was confirmed by proton nuclear magnetic resonance, and the reaction was significantly accelerated at 90 °C. A PFMA-LGEM film containing magnetic nanoparticles (MNPs) was prepared for thermally enhanced release of the drug via the rDA reaction. Drug release was initiated by heating MNPs by alternating magnetic field. This enables local heating within the film above the rDA reaction temperature while maintaining a constant surrounding medium temperature. The MNPs/PFMA-L-GEM film decreased the viability of pancreatic cancer cells by 49% over 24 h. Our results suggest that DA/rDA-based thermally enhanced drug release systems can serve as a local drug release platform and deliver the target drug within locally heated tissue, thereby improving the therapeutic efficiency and overcoming the side effects of conventional drugs used to treat pancreatic cancer.

17.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34948352

RESUMO

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.


Assuntos
Antibacterianos/administração & dosagem , Prótese Vascular , Sistemas de Liberação de Medicamentos , Tobramicina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos , Tobramicina/química , Tobramicina/farmacologia , Enxerto Vascular
18.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299106

RESUMO

Atherosclerosis involves an ongoing inflammatory response of the vascular endothelium and vessel wall of the aorta and vein. The pleiotropic effects of statins have been well described in many in vitro and in vivo studies, but these effects are difficult to achieve in clinical practice due to the low bioavailability of statins and their first-pass metabolism in the liver. The aim of this study was to test a vessel wall local drug delivery system (DDS) using PLA microstructures loaded with simvastatin. Wistar rats were fed high cholesterol chow as a model. The rat vessels were chemically injured by repeated injections of perivascular paclitaxel and 5-fluorouracil. The vessels were then cultured and treated by the injection of several concentrations of poly(L,L-lactide) microparticles loaded with the high local HMG-CoA inhibitor simvastatin (0.58 mg/kg) concentration (SVPLA). Histopathological examinations of the harvested vessels and vital organs after 24 h, 7 days and 4 weeks were performed. Microcirculation in mice as an additional test was performed to demonstrate the safety of this approach. A single dose of SVPLA microspheres with an average diameter of 6.4 µm and a drug concentration equal to 8.1% of particles limited the inflammatory reaction of the endothelium and vessel wall and had no influence on microcirculation in vivo or in vitro. A potent pleiotropic (anti-inflammatory) effect of simvastatin after local SVPLA administration was observed. Moreover, significant concentrations of free simvastatin were observed in the vessel wall (compared to the maximum serum level). In addition, it appeared that simvastatin, once locally administered as SVPLA particles, exerted potent pleiotropic effects on chemically injured vessels and presented anti-inflammatory action. Presumably, this effect was due to the high local concentrations of simvastatin. No local or systemic side effects were observed. This approach could be useful for local simvastatin DDSs when high, local drug concentrations are difficult to obtain, or systemic side effects are present.


Assuntos
Anti-Inflamatórios/farmacologia , Anticolesterolemiantes/farmacologia , Dioxanos/química , Sistemas de Liberação de Medicamentos , Inflamação/tratamento farmacológico , Sinvastatina/farmacologia , Animais , Anti-Inflamatórios/química , Anticolesterolemiantes/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Ratos , Ratos Wistar , Sinvastatina/administração & dosagem
19.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769180

RESUMO

Advances in the intratumor measurement of drug responses have included a pioneering biomedical microdevice for high throughput drug screening in vivo, which was further advanced by integrating a graded-index lens based two-dimensional fluorescence micro-endoscope to monitor tissue responses in situ across time. While the previous system provided a bulk measurement of both drug delivery and tissue response from a given region of the tumor, it was incapable of visualizing drug distribution and tissue responses in a three-dimensional (3D) way, thus missing the critical relationship between drug concentration and effect. Here we demonstrate a next-generation system that couples multiplexed intratumor drug release with continuous 3D spatial imaging of the tumor microenvironment via the integration of a miniaturized two-photon micro-endoscope. This enables optical sectioning within the live tissue microenvironment to effectively profile the entire tumor region adjacent to the microdevice across time. Using this novel microimaging-microdevice (MI-MD) system, we successfully demonstrated the four-dimensional imaging (3 spatial dimensions plus time) of local drug delivery in tissue phantom and tumors. Future studies include the use of the MI-MD system for monitoring of localized intra-tissue drug release and concurrent measurement of tissue responses in live organisms, with applications to study drug resistance due to nonuniform drug distribution in tumors, or immune cell responses to anti-cancer agents.


Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Neoplasias Experimentais/diagnóstico por imagem , Imagem Óptica/instrumentação , Animais , Linhagem Celular Tumoral , Galinhas , Camundongos , Imagens de Fantasmas
20.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361098

RESUMO

In this paper, injectable, thermosensitive smart hydrogel local drug delivery systems (LDDSs) releasing the model antitumour drug 5-fluorouracil (5-FU) were developed. The systems were based on biodegradable triblock copolymers synthesized via ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) and zirconium(IV) acetylacetonate (Zr(acac)4), as co-initiator and catalyst, respectively. The structure, molecular weight (Mn) and molecular weight distribution (D) of the synthesized materials was studied in detail using nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the optimal synthesis conditions were determined. The structure corresponded well to the theoretical assumptions. The produced hydrogels demonstrated a sharp sol-gel transition at temperature close to physiological value, forming a stable gel with good mechanical properties at 37 °C. The kinetics and mechanism of in vitro 5-FU release were characterized by zero order, first order, Higuchi and Korsmeyer-Peppas mathematical models. The obtained results indicate good release control; the kinetics were generally defined as first order according to the predominant diffusion mechanism; and the total drug release time was approximately 12 h. The copolymers were considered to be biodegradable and non-toxic; the resulting hydrogels appear to be promising as short-term LDDSs, potentially useful in antitumor therapy.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Sistemas de Liberação de Medicamentos , Fibroblastos/efeitos dos fármacos , Fluoruracila/administração & dosagem , Hidrogéis/administração & dosagem , Temperatura , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Hidrogéis/síntese química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA