Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharm Biol ; 59(1): 1117-1125, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34403300

RESUMO

CONTEXT: Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-inflammatory and antioxidative effects. OBJECTIVE: To explore the neuroprotective effect of SPJ on natural ageing of rat. MATERIALS AND METHODS: Sprague-Dawley (SD) rats 18-month-old were divided into ageing control, ageing treated with SPJ 10 or 30 mg/kg (n = 8). Five-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed or feed containing SPJ for 4 months. Cognitive level was evaluated by Morris water maze (MWM) test. The mechanisms of SPJ's neuroprotection were evaluated by transmission electron microscope, western blot analysis, and immunofluorescence in vivo and in vitro. RESULTS: SPJ attenuated ageing-induced cognitive impairment as indicated by elevated number of times crossing the target platform (from 1.63 to 3.5) and longer time spent in the target platform quadrant (from 1.33 to 1.98). Meanwhile, SPJ improved the morphology of microglia and synapse, and activated M2 microglia polarisation including increased hippocampus levels of CD206 (from 0.98 to 1.47) and YM-1 (from 0.67 to 1.1), and enhanced autophagy-related proteins LC3B (from 0.48 to 0.82), Beclin1 (from 0.32 to 0.51), Atg5 (from 0.22 to 0.89) whereas decreased p62 level (from 0.71 to 0.45) of ageing rats. In vitro study also showed that SPJ regulated the microglial polarisation and autophagy. DISCUSSION AND CONCLUSIONS: SPJ improved cognitive deficits of ageing rats through attenuating microglial inflammation and enhancing microglial autophagy, which could be used to treat neurodegenerative disorders.


Assuntos
Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Panax/química , Saponinas/farmacologia , Envelhecimento , Animais , Autofagia/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Saponinas/isolamento & purificação
2.
Life (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672714

RESUMO

Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment, influencing cancer progression and contributing to poor prognosis. However, in cervical cancer (CC), their significance and involvement are relatively less studied than in other gynecological cancers such as ovarian and endometrial cancer. This review aims to provide an overview of TAMs, covering their origins and phenotypes and their impact on CC progression, along with major TAM-targeted therapeutic approaches. Furthermore, we advocate for the integration of cutting-edge research methodologies, such as single-cell RNA sequencing and spatial RNA sequencing, to enable in-depth and comprehensive investigations into TAMs in CC, which would be beneficial in leading to more personalized and effective immunotherapy strategies for patients with CC.

3.
Int Immunopharmacol ; 96: 107791, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34162154

RESUMO

Sepsis is a life-threatening clinical syndrome caused by infection. Its pathogenesis is complex and entails coagulation dysfunction, inflammation, and immune disorders. Macrophages are important components of innate and adaptive immunity that are highly heterogeneous and plastic. They can polarize into a multi-dimensional spectrum of phenotypes with different functions relating to immune regulation in response to changes in the microenvironment of specific tissues. We reviewed studies that examined the role of macrophage polarization with a focus on the classical activated (M1-like) and alternative activated (M2-like) macrophages as the two main phenotypes involved in the host immune response to sepsis. A complex regulatory network is involved in the process of macrophage polarization, which is influenced by a variety of signaling molecules, transcription factors, epigenetic modifications, and metabolic reprogramming. M1-like macrophages release large quantities of pro-inflammatory mediators, while M2-like macrophages release large quantities of anti-inflammatory mediators. An imbalance between M1-like and M2-like macrophages induces the occurrence and development of sepsis. Therefore, targeted regulation of the process of macrophage polarization could be a useful approach to normalize the immune balance of the host, offering a new treatment modality for different stages of sepsis.


Assuntos
Macrófagos/imunologia , Sepse/imunologia , Animais , Humanos , Fenótipo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32548111

RESUMO

Macrophages are mainly divided into two phenotypes: M1-like (anti-tumoral, pro-inflammatory) and M2-like (pro-tumoral, anti-inflammatory). The more abundant M2-like phenotype of tumor associated macrophages (TAMs) has been associated with poor prognosis in various cancers, therefore, many studies have been carried out to modulate TAMs to change from an M2 to M1-like phenotype as an effective way to suppress tumor growth. Previous study indicated that the FDA-approved Ferumoxytol is an iron oxide nanoparticle that has intrinsic tumor inhibiting properties and is accompanied by the increased presence of the pro-inflammatory, anti-tumoral M1-like phenotype. Intrigued by this finding, we hypothesize that differently charged super-paramagnetic iron oxide nanoparticles (SPIONs) would have preferential differences in polarizing macrophages. Herein, we report that differently charged SPIONs have distinct preferences in the modulation of TAM phenotypes. Positively charged SPION (S+) had the highest cellular uptake and highest macrophage polarization effect. Interestingly, although negatively charged SPION (S-) should present charge-charge repulsion with cell membranes, they showed considerably high uptake in vitro, nevertheless presenting the highest cellular toxicity. Neutrally charged SPION (SN) showed minimal uptake and cellular toxicity in vitro. Both S+ and S- could effectively re-polarize M2-like macrophages toward M1-like macrophages in vitro, and significantly increased the Fenton effect and chemotaxis of macrophages. When macrophages pre-treated with these SPIONs were co-injected with tumor cells to obtain a tumor xenograft, S+ and S- treated macrophages significantly induced tumor retardation, indicating the successful repolarization of tumor macrophages by these SPIONs. Taken together, we provide an insight on the importance of SPION charge in immunomodulation of macrophages.

5.
Front Immunol ; 10: 1236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214190

RESUMO

Microglia are the brain-innate immune cells which actively surveil their environment and mediate multiple aspects of neuroinflammation, due to their ability to acquire diverse activation states and phenotypes. Simplified, M1-like microglia are defined as pro-inflammatory cells, while the alternative M2-like cells promote neuroprotection. The modulation of microglia polarization is an appealing neurotherapeutic strategy for stroke and other brain lesions, as well as neurodegenerative diseases. However, the activation profile and change of phenotype during experimental stroke is not well understood. With a combined magnetic resonance imaging (MRI) and optical imaging approach and genetic targeting of two key genes of the M1- and M2-like phenotypes, iNOS and Ym1, we were able to monitor in vivo the dynamic adaption of the microglia phenotype in response to experimental stroke.


Assuntos
Regulação da Expressão Gênica , Lectinas/genética , Microglia/imunologia , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/imunologia , beta-N-Acetil-Hexosaminidases/genética , Animais , Biomarcadores , Plasticidade Celular/genética , Plasticidade Celular/imunologia , Modelos Animais de Doenças , Imunofluorescência , Imunofenotipagem , Hibridização In Situ , Lectinas/metabolismo , Camundongos , Imagem Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA