RESUMO
The phenylpropanoid and flavonoid pathways exhibit intricate regulation, not only influenced by environmental factors and a complex network of transcription factors but also by post-transcriptional regulation, such as silencing by microRNAs and miRNA-encoded micropeptides (miPEPs). VviMYBC2-L1 serves as a transcriptional repressor for flavonoids, playing a crucial role in coordinating the synthesis of anthocyanin and proanthocyanidin. It works in tandem with their respective transcriptional activators, VviMYBA1/2 and VviMYBPA1, to maintain an equilibrium of flavonoids. We have discovered a miPEP encoded by miR166c that appears to target VviMYBC2-L1. We conducted experiments to test the hypothesis that silencing this transcriptional repressor through miPEP166c would stimulate the synthesis of anthocyanins and proanthocyanidins. Our transcriptional analyses by qPCR revealed that the application of exogenous miPEP166c to Gamay Fréaux grape berry cells resulted in a significant upregulation in flavonoid transcriptional activators (VviMYBA1/2 and VviMYBPA1) and structural flavonoid genes (VviLDOX and VviDFR), as well as genes involved in the synthesis of proanthocyanidins (VviLAR1 and VviANR) and anthocyanins (VviUFGT1). These findings were supported by the increased enzyme activities of the key enzymes UFGT, LAR, and ANR, which were 2-fold, 14-fold, and 3-fold higher, respectively, in the miPEP166c-treated cells. Ultimately, these changes led to an elevated total content of anthocyanins and proanthocyanidins.
Assuntos
Proantocianidinas , Vitis , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Vitis/genética , Vitis/metabolismo , Micropeptídeos , Frutas/metabolismo , Flavonoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND: MicroRNAs (miRNAs) are small RNAs that regulate gene expression at a post-transcriptional level and are emerging as potentially important biomarkers for various disease states, including pancreatic cancer. In silico-based functional analysis of miRNAs usually consists of miRNA target prediction and functional enrichment analysis of miRNA targets. Since miRNA target prediction methods generate a large number of false positive target genes, further validation to narrow down interesting candidate miRNA targets is needed. One commonly used method correlates miRNA and mRNA expression to assess the regulatory effect of a particular miRNA. The aim of this study was to build a bioinformatics pipeline in R for miRNA functional analysis including correlation analyses between miRNA expression levels and its targets on mRNA and protein expression levels available from the cancer genome atlas (TCGA) and the cancer proteome atlas (TCPA). TCGA-derived expression data of specific mature miRNA isoforms from pancreatic cancer tissue was used. RESULTS: Fifteen circulating miRNAs with significantly altered expression levels detected in pancreatic cancer patients were queried separately in the pipeline. The pipeline generated predicted miRNA target genes, enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Predicted miRNA targets were evaluated by correlation analyses between each miRNA and its predicted targets. MiRNA functional analysis in combination with Kaplan-Meier survival analysis suggest that hsa-miR-885-5p could act as a tumor suppressor and should be validated as a potential prognostic biomarker in pancreatic cancer. CONCLUSIONS: Our miRNA functional analysis (miRFA) pipeline can serve as a valuable tool in biomarker discovery involving mature miRNAs associated with pancreatic cancer and could be developed to cover additional cancer types. Results for all mature miRNAs in TCGA pancreatic adenocarcinoma dataset can be studied and downloaded through a shiny web application at https://emmbor.shinyapps.io/mirfa/ .
Assuntos
MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Proteínas/genética , Interface Usuário-Computador , Automação , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Mapas de Interação de Proteínas , Proteínas/metabolismo , RNA Mensageiro/metabolismoRESUMO
Tiny single-stranded noncoding RNAs with size 19-27 nucleotides serve as microRNAs (miRNAs), which have emerged as key gene regulators in the last two decades. miRNAs serve as one of the hallmarks in regulatory pathways with critical roles in human diseases. Ever since the discovery of miRNAs, researchers have focused on how mature miRNAs are produced from precursor mRNAs. Experimental methods are faced with notorious challenges in terms of experimental design, since it is time consuming and not cost-effective. Hence, different computational methods have been employed for the identification of miRNA sequences where most of them labeled as miRNA predictors are in fact pre-miRNA predictors and provide no information about the putative miRNA location within the pre-miRNA. This chapter provides an update and the current state of the art in this area covering various methods and 15 software suites used for prediction of mature miRNA.
Assuntos
Biologia Computacional , Humanos , MicroRNAs/genética , Precursores de RNA , SoftwareRESUMO
Mature microRNAs (miRNAs) are short RNA sequences about 18-24 nucleotide long, which provide the recognition key within RISC for the posttranscriptional regulation of target RNAs. Considering the canonical pathway, mature miRNAs are produced via a multistep process. Their transcription (pri-miRNAs) and first processing step via the microprocessor complex (pre-miRNAs) occur in the nucleus. Then they are exported into the cytosol, processed again by Dicer (dsRNA) and finally a single strand (mature miRNA) is incorporated into RISC (miRISC). The sequence of the incorporated miRNA provides the function of RNA target recognition via hybridization. Following binding of the target, the mRNA is either degraded or translation is inhibited, which ultimately leads to less protein production. Conversely, it has been shown that binding within the 5' UTR of the mRNA can lead to an increase in protein product. Regulation of homeostasis is very important for a cell; therefore, all steps in the miRNA-based regulation pathway, from transcription to the incorporation of the mature miRNA into RISC, are under tight control. While much research effort has been exerted in this area, the knowledgebase is not sufficient for accurately modelling miRNA regulation computationally. The computational prediction of miRNAs is, however, necessary because it is not feasible to investigate all possible pairs of a miRNA and its target, let alone miRNAs and their targets. We here point out open challenges important for computational modelling or for our general understanding of miRNA-based regulation and show how their investigation is beneficial. It is our hope that this collection of challenges will lead to their resolution in the near future.
Assuntos
MicroRNAs/genética , Regulação da Expressão Gênica , Genômica , RNA MensageiroRESUMO
INTRODUCTION: DEAD-box RNA helicases catalyze the ATP-dependent unwinding of doublestranded RNA. In addition, they are required for protein displacement and remodelling of RNA or RNA/protein complexes. P68 RNA helicase regulates the alternative splicing of the important protooncogene H-Ras, and numerous studies have shown that p68 RNA helicase is probably involved in miRNA biogenesis, mainly through Drosha and RISC/DICER complexes. OBJECTIVE: This study aimed to determine how p68 RNA helicase affects the activity of selected mature miRNAs, including miR-342, miR-330, miR-138 and miR-206, miR-126, and miR-335, and let-7a, which are known to be related to cancer processes. METHODS: The miRNA levels were analyzed in stable HeLa cells containing p68 RNA helicase RNAi induced by doxycycline (DOX). Relevant results were repeated using transient transfection with pSuper/ pSuper-p68 RNA helicase RNAi to avoid DOX interference. RESULTS: Herein, we reported that p68 RNA helicase downregulation increases the accumulation of the mature miRNAs, such as miR-126, let-7a, miR-206, and miR-138. Interestingly, the accumulation of these mature miRNAs does not downregulate their known protein targets, thus suggesting that p68 RNA helicase is required for mature miRNA-active RISC complex activity. CONCLUSION: Furthermore, we demonstrated that this requirement is conserved, as drosophila p68 RNA helicase can complete the p68 RNA helicase depleted activity in human cells. Dicer and Drosha proteins are not affected by the downregulation of p68 RNA helicase despite the fact that Dicer is also localized in the nucleus when p68 RNA helicase activity is reduced.
Assuntos
MicroRNAs , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Células HeLa , Humanos , MicroRNAs/genética , Interferência de RNA , Complexo de Inativação Induzido por RNARESUMO
Secondary metabolic pathways in grape berries are tightly regulated by an array of molecular mechanisms, including microRNA-mediated post-transcriptional regulation. As recently discovered, before being processed into mature microRNAs (miRNAs), the primary transcripts of miRNAs (pri-miRNAs) can encode for small miRNA-encoded peptides (micropeptides - miPEPs) that ultimately lead to an accentuated downregulation of the respective miRNA-targeted genes. Although few studies about miPEPs are available, the discovery of miPEPs reveals a new layer of gene regulation at the post-transcriptional level that opens the possibility to regulate plant metabolism without resorting to gene manipulation. Here, we identified a miPEP encoded in non-mature miR164c putatively targeting grapevine transcription factor VvMYBPA1 (miPEP164c/miPEP-MYBPA1), a positive regulator of key genes in the proanthocyanidin (PA)-biosynthetic pathway, a pathway that competes directly for substrate with the anthocyanin-biosynthetic pathway. Thus, the objective of this work was to test the hypothesis that the exogenous application of miPEP164c (miPEP-MYBPA1) can modulate the secondary metabolism of grape berry cells by inhibiting PA biosynthetic pathway while simultaneously stimulating anthocyanin synthesis. The exogenous application of miPEP164c to suspension-cultured cells from grape berry (cv. Gamay) enhanced the transcription of its corresponding non-mature miR164c, with a maximum effect at 1 µM and after a period of 10 days, thus leading to a more pronounced post-transcriptional silencing of its target VvMYBPA1. This led to a significant inhibition of the PA pathway, mostly via inhibition of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) enzymatic activities and VvLAR1 downregulation. In parallel, the anthocyanin-biosynthetic route was stimulated. Anthocyanin content was 31% higher in miPEP164c-treated cells, in agreement with the observed upregulation of VvUFGT1 transcripts and UFGT enzyme activity levels.
RESUMO
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
RESUMO
Currently, the discovery of new small ncRNAs requires high throughput methods even in the case of focused research on the regulation of specific genes or set of genes. We propose herein a simple, rapid, efficient, and cost effective method to clone and sequence single, yet unknown, small ncRNA. This technique that we called "Pocket-sized RNA-Seq" or psRNA-seq is based on in vitro transcription, RNA pull down and adapted RACE-PCR methods that allow its implementation using either available commercial kits or in-house reagents.
RESUMO
Tomato (Solanum lycopersicum) is an important and the most useful plant based diet. It is widely used for its antioxidant property. Presently, only two digits, tomato microRNAs (miRNAs) are reported in miRBase: a miRNA database. This study is aimed to profile and characterize more miRNAs and their targets in tomato. A comprehensive comparative genomic approach is applied and a total of 109 new miRNAs belonging to 106 families are identified and characterized from the tomato expressed sequence tags (ESTs). All these potential miRNAs are profiled for the first time in tomato. The profiled miRNAs are also observed with stable stem-loop structures (Precursor-miRNAs), whose length ranges from 45 to 329 nucleotides (nt) with an average of 125 nt. The mature miRNAs are found in the stem of pre-miRNAs and their length ranges from 19 to 24 nt with an average of 21 nt. Furthermore, twelve miRNAs are randomly selected and experimentally validated through RT-PCR. A total of 406 putative targets are also predicted for the newly 109 tomato miRNAs. These targets are involved in structural protein, metabolism, transcription factor, growth & development, stress related, signaling pathways, storage proteins and other vital processes. Some important proteins like; 9-cisepoxycarotenoid dioxygenase (NCED), transcription factor MYB, ATP-binding cassette transporters, terpen synthase, 14-3-3 and TIR-NBS proteins are also predicted as putative targets for tomato miRNAs. These findings improve a baseline data of miRNAs and their targets in tomato. This baseline data can be utilized to fine tune this important fleshy fruit for nutritional & antioxidant properties and also under biotic & abiotic stresses.
Assuntos
Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Solanum lycopersicum/genética , Sequência de Bases , Etiquetas de Sequências Expressas , Solanum lycopersicum/classificação , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Filogenia , Alinhamento de SequênciaRESUMO
The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.
Assuntos
Brachypodium/genética , Fusariose/genética , Genes vpr/genética , MicroRNAs/genética , RNA Interferente Pequeno/genética , Sequência de Bases , Brachypodium/microbiologia , Biologia Computacional/métodos , Fusariose/microbiologia , Fusarium , Dados de Sequência Molecular , Polimorfismo Genético/genética , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
MicroRNAs are small RNA sequences of 18-24 nucleotides in length, which serve as templates to drive post-transcriptional gene silencing. The canonical microRNA pathway starts with transcription from DNA and is followed by processing via the microprocessor complex, yielding a hairpin structure. Which is then exported into the cytosol where it is processed by Dicer and then incorporated into the RNA-induced silencing complex. All of these biogenesis steps add to the overall specificity of miRNA production and effect. Unfortunately, their modes of action are just beginning to be elucidated and therefore computational prediction algorithms cannot model the process but are usually forced to employ machine learning approaches. This work focuses on ab initio prediction methods throughout; and therefore homology-based miRNA detection methods are not discussed. Current ab initio prediction algorithms, their ties to data mining, and their prediction accuracy are detailed.
RESUMO
BACKGROUND: The critical role of microRNAs (miRNAs) in the global control of gene expression in the heart has recently been postulated; however, the mechanisms of miRNA regulation in cardiac pathology are not clear. OBJECTIVE: To evaluate the levels of miR-1, miR-208a and miR-29a expressed in neonatal rat cardiomyocytes during anoxia-reoxygenation (AR). METHODS: Reverse transcription coupled with real-time polymerase chain reaction was used to evaluate the level of mature and immature miRNAs in cardiomyocyte culture during AR. RESULTS: THE INITIAL LEVELS OF THE MATURE AND IMMATURE MIRNAS WERE DIFFERENT: mature - miR-1 7.46±4.440, miR-208a 0.02±0.015 and miR-29a 5.60±2.060; immature - miR-1 0.02±0.007, miR-208a 0.05±0.029 and miR-29a 0.01±0.008. The most prominent changes were observed for immature miRNAs during AR, with immature miR-1 and miR-29a expressed at significantly higher levels during remote reoxygenation (AR [0.5 h/24 h]) compared with control, while the level of expressed immature miR-208a was significantly decreased during acute reoxygenation (AR [0.5 h /1 h]) and returned to control levels during remote reoxygenation (AR [0.5h /24 h]). Also, the ratios of mature to immature miRNAs were significantly increased during acute reoxygenation for miR-1 and miR-208a, returning to control levels during remote reoxygenation, while for miR-29a, this ratio had the progressive tendency to decrease under AR. CONCLUSION: The discordance between the estimated levels of mature and immature miRNA during AR supports the hypothesis that transcriptional and post-transcriptional regulatory mechanisms at the miRNA level play a role in the response of cardiomyocytes to AR, and could be a contributing factor in the differential resistance of cardiomyocytes to AR.