Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(8): 6775-6789, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623247

RESUMO

Alzheimer's disease (AD) is characterized by memory impairment and existence of amyloid-ß (Aß) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)-Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus-cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aß aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aß immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aß immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aß plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aß plaque accumulation and neuroinflammation, by impeding Aß-induced neurotoxicity.

2.
Microb Cell Fact ; 22(1): 11, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647087

RESUMO

Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.


Assuntos
Agaricales , Basidiomycota , Agaricales/genética , Genômica , Biologia de Sistemas/métodos
3.
Molecules ; 29(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202796

RESUMO

Xylobolus subpileatus is a widely distributed crust fungus reported from all continents except Antarctica, although considered a rare species in several European countries. Profound mycochemical analysis of the methanol extract of X. subpileatus resulted in the isolation of seven compounds (1-7). Among them, (3ß,22E)-3-methoxy-ergosta-4,6,814,22-tetraene (1) is a new natural product, while the NMR assignment of its already known epimer (2) has been revised. In addition to a benzohydrofuran derivative fomannoxin (3), four ergostane-type triterpenes 4-7 were identified. The structure elucidation of the isolated metabolites was performed by one- and two-dimensional NMR and MS analysis. Compounds 2-7 as well as the chloroform, n-hexane, and methanol extracts of X. subpileatus were evaluated for their tyrosinase, acetylcholinesterase, and butyrylcholinesterase inhibitory properties. Among the examined compounds, only fomannoxin (3) displayed the antityrosinase property with 51% of inhibition, and the fungal steroids proved to be inactive. Regarding the potential acetylcholinesterase (AChE) inhibitory activity of the fungal extracts and metabolites, it was demonstrated that the chloroform extract and compounds 3-4 exerted noteworthy inhibitory activity, with 83.86 and 32.99%, respectively. The butyrylcholinesterase (BChE) inhibitory assay revealed that methanol and chloroform extracts, as well as compounds 3 and 4, exerted notable activity, while the rest of the compounds proved to be only weak enzyme inhibitors. Our study represents the first report on the chemical profile of basidiome of the wild-growing X. subpileatus, offering a thorough study on the isolation and structure determination of the most characteristic biologically active constituents of this species.


Assuntos
Basidiomycota , Inibidores da Colinesterase , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Butirilcolinesterase , Clorofórmio , Metanol , Extratos Vegetais
4.
Mol Biol Rep ; 49(10): 9605-9612, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36038810

RESUMO

BACKGROUND: HCC is among the most common cancer. Ganoderma lucidum (G.lucidum) has been essential in preventing and treating cancer. The Nrf2 signaling cascade is a cell protective mechanism against further damage, such as cancer development. This signaling pathway upregulates the cytoprotective genes and is vital in eliminating xenobiotics and reactive oxygen. This study aimed to show the potential cytotoxic activity of G. lucidum aqueous extract in HCC. METHODS AND RESULTS: MTT assay was used to detect cell viability. Nrf2-related proteins were measured by western blotting, and the flow cytometry method assayed cell population in different cycle phases. Cell viability was 49% and 47% following G. lucidum extract at 100 µg/ml at 24 and 48 h treatments, respectively. G. lucidum extract (aqueous, 100 or 50 µg/ml) treatments for 24, 48, or 72 h were able to significantly change the cytoplasmic/nuclear amount of Nrf2 and HO-1, NQO1 protein levels. Moreover, at both concentrations, arrest of the G0/G1 cell cycle was stimulated in HCC. CONCLUSIONS: The activation of the Nrf2 signaling pathways seems to be among the mechanisms underlining the protective and therapeutic action of G. lucidum against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Reishi , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio , Reishi/metabolismo , Xenobióticos
5.
Molecules ; 27(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35566094

RESUMO

The aim of the present study was to identify the structure of active compounds in Cyathus stratus that previously demonstrated anti-pancreatic cancer activity. The active compounds were purified from a crude extract by a series of RP-18 preparative chromatography using homemade octadecyl silica gel column. HPLC injection of the crude extract revealed a chromatogram with three main peaks with retention times (RT) 15.6, 18.2, and 22.5 min. Each fraction that exhibited promising activity in vitro was further separated using various available chromatographic techniques. The purified compound with the ultimate anti-cancer activity appeared at RT of 15.8 in the HPLC chromatogram with more than 90% purity. The main peak at the mass spectra appeared at m/z = 446.2304 with the calculated molecular formula of C25H34O7. One- and two-dimensional NMR analyses indicated that the structure of the active molecule (peak 15.8 min in HPLC) was identified as striatal C. Exposure of human pancreatic cancer cells to purified striatal C resulted in induction of apoptosis. Further studies are needed in order to develop a method for the synthesis of striatal in order to use it in clinical studies for treatment of cancer.


Assuntos
Cyathus , Neoplasias Pancreáticas , Apoptose , Cromatografia Líquida de Alta Pressão , Misturas Complexas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias Pancreáticas
6.
Appl Environ Microbiol ; 87(23): e0151021, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34524900

RESUMO

Targeted gene insertion or replacement is a promising genome-editing tool for molecular breeding and gene engineering. Although CRISPR/Cas9 works well for gene disruption and deletion in Ganoderma lucidum, targeted gene insertion and replacement remain a serious challenge due to the low efficiency of homologous recombination (HR) in this species. In this work, we demonstrate that the DNA double-strand breaks induced by Cas9 were mainly repaired via the nonhomologous end joining (NHEJ) pathway, at a frequency of 96.7%. To establish an efficient target gene insertion and replacement tool in Ganoderma, we first inactivated the NHEJ pathway via disruption of the Ku70 gene (ku70) using a dual single guide RNA (sgRNA)-directed gene deletion method. Disruption of the ku70 gene significantly decreased NHEJ activity in G. lucidum. Moreover, ku70 disruption strains exhibited 96.3% and 93.1% frequencies of targeted gene insertion and replacement, respectively, when target DNA with the orotidine 5'-monophosphate decarboxylase (ura3) gene and 1.5-kb homologous 5'- and 3'-flanking sequences was used as a donor template, compared to 3.3% and 0%, respectively, at these targeted sites for a control strain (Cas9 strain). Our results indicated that ku70 disruption strains were efficient recipients for targeted gene insertion and replacement. This tool will advance our understanding of functional genomics in G. lucidum. IMPORTANCE Functional genomic studies in Ganoderma have been hindered by the absence of adequate genome-engineering tools. Although CRISPR/Cas9 works well for gene disruption and deletion in G. lucidum, targeted gene insertion and replacement have remained a serious challenge due to the low efficiency of HR in these species, although such precise genome modifications, including site mutations, site-specific integrations, and allele or promoter replacements, would be incredibly valuable. In this work, we inactivated the NHEJ repair mechanism in G. lucidum by disrupting the ku70 gene using the CRISPR/Cas9 system. Moreover, we established a target gene insertion and replacement method in ku70-disrupted G. lucidum that possessed high-efficiency gene targeting. This technology will advance our understanding of the functional genomics of G. lucidum.


Assuntos
Sistemas CRISPR-Cas , Mutagênese Insercional , Reishi , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Genômica , Reishi/genética
7.
Appl Microbiol Biotechnol ; 104(4): 1661-1671, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865439

RESUMO

The genetic manipulation of basidiomycete mushrooms is notoriously difficult and immature, and there is a lack of research reports on clustered regularly interspaced short palindromic repeat (CRISPR) based gene editing of functional genes in mushrooms. In this work, Ganoderma lucidum, a famous traditional medicinal basidiomycete mushroom, which produces a type of unique triterpenoid-anti-tumor ganoderic acids (GAs), was used, and a CRISPR/CRISPR-associated protein-9 nuclease (Cas9) editing system for functional genes of GA biosynthesis was constructed in the mushroom. As proof of concept, the effect of different gRNA constructs with endogenous u6 promoter and self-cleaving ribozyme HDV on ura3 disruption efficiency was investigated at first. The established system was applied to edit a cytochrome P450 monooxygenase (CYP450) gene cyp5150l8, which is responsible for a three-step biotransformation of lanosterol at C-26 to ganoderic acid 3-hydroxy-lanosta-8, 24-dien-26 oic acid. As a result, precisely edited cyp5150l8 disruptants were obtained after sequencing confirmation. The fermentation products of the wild type (WT) and cyp5150l8 disruptant were analyzed, and a significant decrease in the titer of four identified GAs was found in the mutant compared to WT. Another CYP gene involved in the biosynthesis of squalene-type triterpenoid 2, 3; 22, 23-squalene dioxide, cyp505d13, was also disrupted using the established CRISPR-Cas9 based gene editing platform of G. lucidum. The work will be helpful to strain molecular breeding and biotechnological applications of G. lucidum and other basidiomycete mushrooms.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Reishi/genética , Proteína 9 Associada à CRISPR , Sistema Enzimático do Citocromo P-450/genética , Fermentação , Microbiologia Industrial
8.
Chem Biodivers ; 17(6): e2000213, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32271491

RESUMO

Medicinal mushrooms of the order Polyporales have a long history of use, which is evidenced by the finding of dissected fruiting bodies with Ötzi, who lived over 5000 years ago. Because of its valuable biological properties and its use in 18th and 19th-century pharmacy, Fomitopsis officinalis used to be mass-collected. Moreover, the large demand for larch wood and non-wood materials (resin) caused an excessive exploitation of larch forests, which directly contributed to the disappearance of F. officinalis from its natural environment. The qualities of medicinal preparations obtained from the F. officinalis fruiting bodies are determined by the unique composition of its bioactive compounds, such as: triterpenoids, polysaccharides, organic acids, coumarins and phenolic compounds. It has been proved that both crude extracts and the compounds isolated from F. officinalis have a wide spectrum of therapeutic effects, including anti-inflammatory, cytotoxic, and antimicrobial effects.


Assuntos
Coriolaceae/química , Medicina Tradicional , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Bactérias/efeitos dos fármacos , Coriolaceae/metabolismo , Carpóforos/química , Carpóforos/metabolismo , Fungos/efeitos dos fármacos , Humanos , Polissacarídeos/química , Polissacarídeos/farmacologia , Triterpenos/química , Triterpenos/farmacologia
9.
J Basic Microbiol ; 60(11-12): 1014-1028, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33107089

RESUMO

Melanin is a hydrophobic biomolecule produced widely in fungi. Compared with other fungi, health benefits have been associated with medicinal mushrooms, which may provide an excellent source of natural melanin. Nevertheless, the hydrophobicity of melanin may limit its applications. Consequently, the present study was carried out on isolation of melanin from the medicinal mushroom Ganoderma lucidum (GLM) and modification with arginine to improve its solubility. The physicochemical and biochemical properties of melanin were evaluated including structural characterization, solubility, stability, antioxidant activities, and inhibitory effect on pancreatic lipase activity. Arginine-modified melanin showed better solubility, higher color value, stronger antioxidant activity, and stronger inhibitory effect on pancreatic lipase activity in vitro than GLM. In addition, both have good stability in the dark and natural light. These results opened possibilities for providing an excellent source of natural melanin in health food or food additives fields.


Assuntos
Arginina/química , Melaninas/química , Melaninas/metabolismo , Reishi/química , Antioxidantes/metabolismo , Humanos , Luz , Lipase/antagonistas & inibidores , Melaninas/isolamento & purificação , Solubilidade
10.
Molecules ; 25(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545666

RESUMO

Cordyceps is a rare naturally occurring entomopathogenic fungus usually found at high altitudes on the Himalayan plateau and a well-known medicinal mushroom in traditional Chinese medicine. Cordyceps contains various bioactive components, out of which, cordycepin is considered most vital, due to its utmost therapeutic as well as nutraceutical potential. Moreover, the structure similarity of cordycepin with adenosine makes it an important bioactive component, with difference of only hydroxyl group, lacking in the 3' position of its ribose moiety. Cordycepin is known for various nutraceutical and therapeutic potential, such as anti-diabetic, anti-hyperlipidemia, anti-fungal, anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anticancer, antiviral, hepato-protective, hypo-sexuality, cardiovascular diseases, antimalarial, anti-osteoporotic, anti-arthritic, cosmeceutical etc. which makes it a most valuable medicinal mushroom for helping in maintaining good health. In this review, effort has been made to bring altogether the possible wide range of cordycepin's nutraceutical potential along with its pharmacological actions and possible mechanism. Additionally, it also summarizes the details of cordycepin based nutraceuticals predominantly available in the market with expected global value. Moreover, this review will attract the attention of food scientists, nutritionists, pharmaceutical and food industries to improve the use of bioactive molecule cordycepin for nutraceutical purposes with commercialization to aid and promote healthy lifestyle, wellness and wellbeing.


Assuntos
Cordyceps/química , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacologia , Cordyceps/isolamento & purificação , Cordyceps/metabolismo , Suplementos Nutricionais , Humanos , Medicina Tradicional Chinesa/métodos
11.
Molecules ; 25(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392710

RESUMO

Few data exist about the effect of substrates' elemental content on the respective concentrations in cultivated mushrooms, on the degradation of lignocellulosics or on production parameters. Sixteen elements (14 metals and 2 metalloids) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in Pleurotus ostreatus and Cyclocybe cylindracea mushrooms, and in their seven cultivation substrates composed of various plant-based residues. Results revealed a high variability in elemental concentration among substrates which generally led to significant differences in the respective mushroom contents. High bioconcentration factors (BCFs) were noted for Cd, Cu, Mg and Zn for both species in all substrates. BCF of each element was variously affected by substrates' pH, crude composition, and P and K content. Significant positive correlations were demonstrated for Cu, Fe, Mn and Li concentrations vs. a decrease of cellulose and hemicellulose in P. ostreatus substrates, and vs. mushrooms' biological efficiency. In the case of C. cylindracea, Be, Mg and Mn concentrations were positively correlated with the decrease of hemicellulose in substrates, while a significant positive correlation was also recorded vs. mushroom productivity. Finally, it was found that 15% to 35% of the daily dietary needs in Mg, Se and Zn could be covered by mushroom consumption.


Assuntos
Agaricales/química , Lignina/análise , Metais/análise , Pleurotus/química , Solo/química , Oligoelementos/análise , Cádmio/análise , Cobre/análise , Dieta/efeitos adversos , Concentração de Íons de Hidrogênio , Magnésio/análise , Espectrometria de Massas , Fósforo/análise , Potássio/análise , Análise de Componente Principal , Fatores de Risco , Sódio/análise , Oligoelementos/química , Zinco/análise
12.
Crit Rev Biotechnol ; 39(4): 541-554, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810393

RESUMO

Edible and medicinal mushrooms have usually been considered as a sustainable source of unique bioactive metabolites, which are valued as promising provisions for human health. Antrodia cinnamomea is a unique edible and medicinal fungus widespread in Taiwan, which has attracted much attention in recent years for its high value in both scientific research and commercial applications owing to its potent therapeutic effects, especially for its hepatic protection and anticancer activity. Due to the scarcity of the fruiting bodies, the cultivation of A. cinnamomea by submerged fermentation appears to be a promising substitute which possesses some unique advantages, such as short culture time period and its high feasibility for scale-up production. However, the amount of fungal bioactive metabolites derived from the cultured mycelia of A. cinnamomea grown by submerged fermentation is much less than those obtained from the wild fruiting bodies. Hence, there is an urgent need to bridge such a discrepancy on bioactive metabolites between the wild fruiting bodies and the cultured mycelia. The objective of this article is to review recent advances and the future development of the mycelial submerged fermentation of A. cinnamomea in terms of enhancement for the production of fungal bioactive components by the optimization of culture conditions and the regulation of fungal metabolism. This review provides valuable information for further biotechnological applications of A. cinnamomea as well as other mushrooms being the source of bioactive ingredients by submerged fermentation.


Assuntos
Antrodia/química , Produtos Biológicos/uso terapêutico , Biotecnologia , Agaricales/química , Produtos Biológicos/química , Fermentação , Carpóforos/química , Humanos , Micélio/química
13.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569709

RESUMO

Hericium erinaceus is a medicinal mushroom that contains many molecules promising a plethora of therapeutic properties. In this study, the strain H.e.2 (MicUNIPV, University of Pavia, Italy) was isolated from a sporophore collected in Tuscany (Italy). Mycelium, primordium, and wild type and cultivated sporophores were analyzed by HPLC-UV-ESI/MS. Erinacine A in the mycelium and hericenones C and D in the sporophores were quantified by comparison with their standard molecules. For the first time, H. erinaceus primordium was also investigated for the presence of these molecules. Comparing with the literature data, hericenes, molecules structurally similar to hericenones, were present in all our samples. The highest contents of hericenones C and D were detected in cultivated sporophores, compared to the wild type. The comparison of these data with those of another Italian H. erinaceus strain (H.e.1 MicUNIPV) was discussed. The results led us to select H. erinaceus strains more suitable for mycelium production or sporophore cultivation to obtain extracts with a higher content of bioactive compounds. This work provides a further step towards standardizing the procedures in the development of dietary supplements made from mushrooms.


Assuntos
Agaricales/metabolismo , Metaboloma , Metabolômica , Micélio/metabolismo , Esporos Fúngicos/metabolismo , Agaricales/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Metabolômica/métodos , Estrutura Molecular , Micélio/química , Esporos Fúngicos/química
14.
Biotechnol Bioeng ; 115(7): 1842-1854, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29476632

RESUMO

Ganoderic acid (GA), a triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, possesses antitumor and other significant pharmacological activities. Owing to the notorious difficulty and immaturity in genetic manipulation of higher fungi as well as their slow growth, biosynthesis of GAs in a heterologous host is an attractive alternative for their efficient bioproduction. In this study, using Saccharomyces cerevisiae as a host, we did a systematic screening of cytochrome P450 monooxygenase (CYP450) gene candidates from G. lucidum, which may be responsible for the GA biosynthesis from lanosterol but have not been functionally characterized. As a result, overexpression of a CYP450 gene cyp5150l8 was firstly found to produce an antitumor GA, 3-hydroxy-lanosta-8, 24-dien-26 oic acid (HLDOA) in S. cerevisiae, as confirmed by HPLC, LC-MS and NMR. A final titer of 14.5 mg/L of HLDOA was obtained at 120 hr of the yeast fermentation. Furthermore, our in vitro enzymatic experiments indicate that CYP5150L8 catalyzes a three-step biotransformation of lanosterol at C-26 to synthesize HLDOA. To our knowledge, this is the first report on the heterologous biosynthesis of GAs. The results will be helpful to the GA biosynthetic pathway elucidation and to future optimization of heterologous cell factories for GA production.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica , Reishi/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Lanosterol/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reishi/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
15.
Bioprocess Biosyst Eng ; 39(1): 75-80, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26508324

RESUMO

To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.


Assuntos
Cálcio/metabolismo , Nitrogênio/metabolismo , Reishi/crescimento & desenvolvimento , Triterpenos/metabolismo , Cálcio/farmacologia
16.
Crit Rev Biotechnol ; 35(3): 355-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24654802

RESUMO

Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.


Assuntos
Agaricales , Antioxidantes , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Camundongos , Regeneração Nervosa , Neuritos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia
17.
Biotechnol Bioeng ; 111(11): 2358-65, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24870062

RESUMO

Metal ions affect cell physiology and metabolism significantly, but the role of Mn(2+) in the secondary metabolism of mushrooms is yet unclear. In static liquid cultivation of Ganoderma lucidum for producing antitumor ganoderic acids (GAs), the Mn(2+) addition was performed. Addition of 10 mM Mn(2+) at the start of the static liquid cultivation resulted in 2.2-fold improvement of total GAs production. The expression levels of GA biosynthetic and Ca(2+) sensors' genes were up-regulated with Mn(2+) induction while down-regulated by adding cyclosporin A (calcineurin inhibitor), suggesting that higher GA production might result from calcineurin signal regulation. Intracellular Ca(2+) imaging and calcineurin inhibitor study revealed that addition of Mn(2+) led to Ca(2+) influx from medium to the cells to trigger calcineurin signals. Mn(2+) addition was therefore an efficient induction strategy for improving GAs production, whose regulation mechanism was via calcineurin signaling transduction.


Assuntos
Cátions Bivalentes/metabolismo , Manganês/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/metabolismo , Triterpenos/metabolismo , Cálcio/metabolismo
18.
J Environ Sci Health B ; 49(12): 929-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310808

RESUMO

The aim of the study was to evaluate the possibility of supplementation with inorganic forms of selenium (Na2SeO4 and Na2SeO3) in concentrations of 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.5 mM of three medicinal mushroom species: Agrocybe aegerita, Hericium erinaceus and Ganoderma lucidum. Tested mushroom species grew in Se additions of 0-0.6 mM (A. aegerita and H. erinaceus), while growth of G. lucidum bodies was observed for 0-0.8 mM. For the latter mushroom species, the total Se content was the highest. Content of Seorg was diverse; for control bodies it was the highest for G. lucidum (only organic forms were present), lower for A. aegerita (84% organic forms) and the lowest for H. erinaceus (56% organic forms). Accumulation of Se(IV) was generally significantly higher than Se(VI) for all tested mushroom species. There was no significant decrease of A. aegerita or G. lucidum biomass with the exception of G. lucidum bodies growing under 0.8 mM of Se species addition (15.51 ± 6.53 g). Biomass of H. erinaceus bodies was the highest under 0.2 (197.04 ± 8.73 g), control (191.80 ± 6.06 g) and 0.1 mM (185.04 ± 8.73 g) of both inorganic salts. The addition to the medium of Se salts brought about macroscopic changes in the fruiting bodies of the examined mushrooms. Concentrations exceeding 0.4 mM caused diminution of carpophores or even their total absence. In addition, colour changes of fruiting bodies were also recorded. At Se concentrations of 0.4 and 0.6 mM, A. aegerita fruiting bodies were distinctly lighter and those of H. erinaceus changed colour from purely white to white-pink.


Assuntos
Agrocybe/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Suplementos Nutricionais , Plantas Medicinais/efeitos dos fármacos , Reishi/efeitos dos fármacos , Compostos de Selênio/farmacologia , Agrocybe/crescimento & desenvolvimento , Agrocybe/metabolismo , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/metabolismo , Biomassa , Alimentos Formulados , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Reishi/crescimento & desenvolvimento , Reishi/metabolismo , Ácido Selênico/farmacologia , Ácido Selenioso/farmacologia , Selênio/farmacocinética , Selenito de Sódio/farmacologia
19.
Nat Prod Res ; : 1-4, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270464

RESUMO

This pioneering study explores the structural intricacies of therapeutic ß-glucan in Shiitake (Lentinula edodes), i.e. Lentinan (LNT). Lentinan, a neutral polysaccharide [ß-(1,3; 1,6) glucan], exists in three forms; single, double, and triple-helical, but conformation-dependent bioactivity studies are lacking. In this context, we meticulously assessed indigenous Shiitake accessions from Northeast India, unveiling the conformational spectrum of LNT through an innovative pipeline. The experiment approached the simultaneous estimation of total glucan (TG), triple helical glucan (THG), and single-double helical glucan (SDG). Profiling revealed the exceptional LNT content in DMRO-623 (TG: 46.74%, SDG: 9.34%, THG: 37.39%) which emerged as the highest documented to date. Beyond the culinary delight, this research and the novel approach to LNT quantification will create a pivotal platform for advanced mushroom research, offering prospects for novel discoveries, innovative applications, and therapeutic potential.

20.
J Med Food ; 27(7): 681-691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018055

RESUMO

Fungi are a source of a variety of secondary metabolites of importance in different areas of biotechnology. Several compounds have been characterized with antioxidant, antimicrobial, and anti-inflammatory activity from fungi of the division of the Ascomycota, among which is the species Daldinia eschscholtzii, an endophyte fungus of pantropical distribution. In this study, we evaluated the effect of an ointment made with D. eschscholtzii on the wound healing of BALB/c mice. The species was corroborated using a molecular marker Internal Transcribed Spacer (ITS1 and ITS4). The extracts and dust of the fungus were considered nontoxic as they caused a mortality of <15% in the nematode Panagrellus redivivus, and experimental ointments had no adverse effects on the skin of BALB/c mice. Wounds treated with the D. eschscholtzii ointments had 99.9-100% wound contraction after 17 days, which was similar to commercial healing (positive control). As such, the ointment of D. eschscholtzii is a natural alternative to improve wound healing.


Assuntos
Camundongos Endogâmicos BALB C , Pomadas , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Pele/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Humanos , Ascomicetos/química , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA