Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Plant Physiol ; 283: 153950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889102

RESUMO

Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Glicina/metabolismo , NAD/metabolismo , NADP/metabolismo , Serina/metabolismo
2.
ACS Synth Biol ; 12(4): 947-962, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37052416

RESUMO

The construction from scratch of synthetic cells by assembling molecular building blocks is unquestionably an ambitious goal from a scientific and technological point of view. To realize functional life-like systems, minimal enzymatic modules are required to sustain the processes underlying the out-of-equilibrium thermodynamic status hallmarking life, including the essential supply of energy in the form of electrons. The nicotinamide cofactors NAD(H) and NADP(H) are the main electron carriers fueling reductive redox reactions of the metabolic network of living cells. One way to ensure the continuous availability of reduced nicotinamide cofactors in a synthetic cell is to build a minimal enzymatic module that can oxidize an external electron donor and reduce NAD(P)+. In the diverse world of metabolism there is a plethora of potential electron donors and enzymes known from living organisms to provide reducing power to NAD(P)+ coenzymes. This perspective proposes guidelines to enable the reduction of nicotinamide cofactors enclosed in phospholipid vesicles, while avoiding high burdens of or cross-talk with other encapsulated metabolic modules. By determining key requirements, such as the feasibility of the reaction and transport of the electron donor into the cell-like compartment, we select a shortlist of potentially suitable electron donors. We review the most convenient proteins for the use of these reducing agents, highlighting their main biochemical and structural features. Noting that specificity toward either NAD(H) or NADP(H) imposes a limitation common to most of the analyzed enzymes, we discuss the need for specific enzymes─transhydrogenases─to overcome this potential bottleneck.


Assuntos
Células Artificiais , NAD , NAD/metabolismo , NADP/metabolismo , Coenzimas/metabolismo , Oxirredução , Niacinamida
3.
Comput Struct Biotechnol J ; 18: 1914-1924, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774786

RESUMO

Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.

4.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809136

RESUMO

We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/métodos , Mitocôndrias/metabolismo , NADP/metabolismo , NAD/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Camundongos , NAD/análise , NADP/análise , Células NIH 3T3 , Osteoblastos/metabolismo , Osteoblastos/ultraestrutura , Oxirredução , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/química , Rodaminas/metabolismo , Sulfametoxazol/metabolismo , Sulfapiridina/metabolismo
5.
J Biomed Opt ; 22(12): 1-10, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29222855

RESUMO

Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.


Assuntos
Microscopia de Fluorescência , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Protetores Solares/farmacologia , Humanos , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA