Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 55(8): 1370-1385.e8, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835107

RESUMO

Mitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization. This occurred independently of mtDNA or reactive oxygen species, which induce Ox-mtDNA generation. Within mitochondria, Ox-mtDNA was either repaired by DNA glycosylase OGG1 or cleaved by the endonuclease FEN1 to 500-650 bp fragments that exited mitochondria via mPTP- and VDAC-dependent channels to initiate cytosolic NLRP3 inflammasome activation. Ox-mtDNA fragments also activated cGAS-STING signaling and gave rise to pro-inflammatory extracellular DNA. Understanding this process will advance the development of potential treatments for chronic inflammatory diseases, exemplified by FEN1 inhibitors that suppressed interleukin-1ß (IL-1ß) production and mtDNA release in mice.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , Interferons/metabolismo , Camundongos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleotidiltransferases/metabolismo
2.
J Biol Chem ; 299(11): 105308, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778730

RESUMO

Nuclear factor kappa B (NF-κB) activity is regulated by various posttranslational modifications, of which Ser276 phosphorylation of RelA/p65 is particularly impacted by reactive oxygen species (ROS). This modification is responsible for selective upregulation of a subset of NF-κB targets; however, the precise mechanism remains elusive. ROS have the ability to modify cellular molecules including DNA. One of the most common oxidation products is 8-oxo-7,8-dihydroguanine (8-oxoGua), which is repaired by the 8-oxoguanine DNA glycosylase1 (OGG1)-initiated base excision repair pathway. Recently, a new function of OGG1 has been uncovered. OGG1 binds to 8-oxoGua, facilitating the occupancy of NF-κB at promoters and enhancing transcription of pro-inflammatory cytokines and chemokines. In the present study, we demonstrated that an interaction between DNA-bound OGG1 and mitogen-and stress-activated kinase 1 is crucial for RelA/p65 Ser276 phosphorylation. ROS scavenging or OGG1 depletion/inhibition hindered the interaction between mitogen-and stress-activated kinase 1 and RelA/p65, thereby decreasing the level of phospho-Ser276 and leading to significantly lowered expression of ROS-responsive cytokine/chemokine genes, but not that of Nfkbis. Blockade of OGG1 binding to DNA also prevented promoter recruitment of RelA/p65, Pol II, and p-RNAP II in a gene-specific manner. Collectively, the data presented offer new insights into how ROS signaling dictates NF-κB phosphorylation codes and how the promoter-situated substrate-bound OGG1 is exploited by aerobic mammalian cells for timely transcriptional activation of ROS-responsive genes.


Assuntos
DNA Glicosilases , NF-kappa B , Animais , DNA/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Mamíferos/metabolismo , Mitógenos , NF-kappa B/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Humanos , Camundongos , Linhagem Celular , Camundongos Knockout
3.
Mol Med ; 30(1): 72, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822247

RESUMO

BACKGROUND: 8-Oxoguanine DNA glycosylase (OGG1), a well-known DNA repair enzyme, has been demonstrated to promote lung fibrosis, while the specific regulatory mechanism of OGG1 during pulmonary fibrosis remains unclarified. METHODS: A bleomycin (BLM)-induced mouse pulmonary fibrosis model was established, and TH5487 (the small molecule OGG1 inhibitor) and Mitochondrial division inhibitor 1 (Mdivi-1) were used for administration. Histopathological injury of the lung tissues was assessed. The profibrotic factors and oxidative stress-related factors were examined using the commercial kits. Western blot was used to examine protein expression and immunofluorescence analysis was conducted to assess macrophages polarization and autophagy. The conditional medium from M2 macrophages was harvested and added to HFL-1 cells for culture to simulate the immune microenvironment around fibroblasts during pulmonary fibrosis. Subsequently, the loss- and gain-of function experiments were conducted to further confirm the molecular mechanism of OGG1/PINK1. RESULTS: In BLM-induced pulmonary fibrosis, OGG1 was upregulated while PINK1/Parkin was downregulated. Macrophages were activated and polarized to M2 phenotype. TH5487 administration effectively mitigated pulmonary fibrosis, M2 macrophage polarization, oxidative stress and mitochondrial dysfunction while promoted PINK1/Parkin-mediated mitophagy in lung tissues of BLM-induced mice, which was partly hindered by Mdivi-1. PINK1 overexpression restricted M2 macrophages-induced oxidative stress, mitochondrial dysfunction and mitophagy inactivation in lung fibroblast cells, and OGG1 knockdown could promote PINK1/Parkin expression and alleviate M2 macrophages-induced mitochondrial dysfunction in HFL-1 cells. CONCLUSION: OGG1 inhibition protects against pulmonary fibrosis, which is partly via activating PINK1/Parkin-mediated mitophagy and retarding M2 macrophage polarization, providing a therapeutic target for pulmonary fibrosis.


Assuntos
Bleomicina , DNA Glicosilases , Modelos Animais de Doenças , Macrófagos , Mitofagia , Proteínas Quinases , Fibrose Pulmonar , Animais , Mitofagia/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Camundongos , Macrófagos/metabolismo , Proteínas Quinases/metabolismo , Bleomicina/efeitos adversos , Masculino , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ativação de Macrófagos , Humanos , Quinazolinonas
4.
Mol Biol Rep ; 51(1): 144, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236479

RESUMO

BACKGROUND: The role of DNA repair mechanisms is of significant importance in diseases characterized by elevated oxidative DNA damage, such as chronic kidney disease. It is imperative to thoroughly understand the functions of molecules associated with DNA repair mechanisms, not only for assessing susceptibility to diseases but also for monitoring disease progression. In this research, we investigated the APE1 and OGG1 gene expression levels, both of which are involved in the base excision repair (BER) mechanism in chronic hemodialysis patients with malignancy (HPM; n = 8) and without malignancy (HP; n = 36) in pre- and post-dialysis period and 37 healty persons. We also assessed how these values correlate with the clinical profiles of the patients. METHODS AND RESULTS: We conducted gene expression analysis using real-time polymerase chain reaction (qRT-PCR). No significant differences in APE1 gene expression levels were observed in pre-dialysis when comparing the HP and HPM groups to the control group. The expression levels of the OGG1 gene were significantly lower in both the HP and HPM groups in pre- and post-dialysis periods compared to the control group. Dialysis procedures led to a reduction in APE1 and OGG1 gene expression levels in both HP and HPM groups. CONCLUSIONS: The findings of our study elucidate the impact of alterations in the base excision repair (BER) mechanism, including the hemodialysis process, in end-stage renal disease (ESRD).


Assuntos
DNA Glicosilases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Falência Renal Crônica , Neoplasias , Insuficiência Renal Crônica , Humanos , Falência Renal Crônica/genética , Falência Renal Crônica/terapia , Diálise Renal , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Glicosilases/genética
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 184-198, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38282476

RESUMO

Cellular senescence is an important factor leading to pulmonary fibrosis. Deficiency of 8-oxoguanine DNA glycosylase (OGG1) in mice leads to alleviation of bleomycin (BLM)-induced mouse pulmonary fibrosis, and inhibition of the OGG1 enzyme reduces the epithelial mesenchymal transition (EMT) in lung cells. In the present study, we find decreased expression of OGG1 in aged mice and BLM-induced cell senescence. In addition, a decrease in OGG1 expression results in cell senescence, such as increases in the percentage of SA-ß-gal-positive cells, and in the p21 and p-H2AX protein levels in response to BLM in lung cells. Furthermore, OGG1 promotes cell transformation in A549 cells in the presence of BLM. We also find that OGG1 siRNA impedes cell cycle progression and inhibits the levels of telomerase reverse transcriptase (TERT) and LaminB1 in BLM-treated lung cells. The increase in OGG1 expression results in the opposite phenomenon. The mRNA levels of senescence-associated secretory phenotype (SASP) components, including IL-1α, IL-1ß, IL-6, IL-8, CXCL1/CXCL2, and MMP-3, in the absence of OGG1 are obviously increased in A549 cells treated with BLM. Interestingly, we demonstrate that OGG1 binds to p53 to inhibit the activation of p53 and that silencing of p53 reverses the inhibition of OGG1 on senescence in lung cells. Additionally, the augmented cell senescence is shown in vivo in OGG1-deficient mice. Overall, we provide direct evidence in vivo and in vitro that OGG1 plays an important role in protecting tissue cells against aging associated with the p53 pathway.


Assuntos
DNA Glicosilases , Guanina/análogos & derivados , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pulmão/metabolismo , Senescência Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479993

RESUMO

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Assuntos
Reparo do DNA/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Criança , Citosina/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Feminino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagênese , Recidiva Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único/genética
7.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255794

RESUMO

Hydroxyhydroquinone (HHQ) is an oxidative component produced by roasting coffee beans and has been reported to generate relatively large amounts of reactive oxygen species (ROS). In this study, we used senescence-accelerated mouse prone 8 (SAMP8) mice to determine whether HHQ consumption increases oxidative-stress-induced injury, because in SAMP8 mice, the activity of 8-oxoguanine DNA glycosylase 1, which repairs oxidative modifications in DNA, is decreased. The results showed that two out of twelve (16.7%) HHQ-treated mice presented polyuria and glucosuria around 2 months after the start of treatment, indicating that HHQ may act as a mutagen against SAMP8 mice, which is sensitive to oxidative damage. No abnormalities were observed in the chlorogenic acid (coffee polyphenol, CPP)-treated group. The concentration of hydrogen peroxide in the serum of SAMP8 mice was significantly higher than that in SAMR1 (senescence-resistant) control mice, and the concentration was further increased in the HHQ-treated group. CPP, when coexisting with HHQ at the rate contained in roasted coffee, decreased the amount of hydrogen peroxide in the serum of SAMP8 mice. Although CPP can act both oxidatively and antioxidatively as a polyphenol, CPP acts more antioxidatively when coexisting with HHQ. Thus, the oxidative effect of HHQ was shown to be counteracted by CPP.


Assuntos
Ácido Clorogênico , Hidroquinonas , Polifenóis , Animais , Camundongos , Ácido Clorogênico/farmacologia , Polifenóis/farmacologia , Mutagênicos/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , DNA
8.
Int J Neuropsychopharmacol ; 26(2): 107-115, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472850

RESUMO

BACKGROUND: Oxidative stress and oxidation-induced DNA damage may contribute to the pathophysiology of depression. Two key mediators of base excision repair (BER) in response to oxidative damage of DNA are OGG1 and PARP1. Few studies have examined changes in OGG1 or PARP1 mRNA in patients with depression or following antidepressant treatment. We examined PARP1 and OGG1 mRNA levels in patients with depression at baseline/pre-electroconvulsive therapy (baseline/pre-ECT) vs in healthy controls and in patients following a course of ECT. METHODS: PARP1 and OGG1 were examined in whole blood samples from medicated patients with depression and controls using quantitative real-time polymerase chain reaction. Exploratory subgroup correlational analyses were performed to determine associations between PARP1 and OGG1 and mood (Hamilton Depression Rating Scale 24-item version) scores as well as with vitamin B3, SIRT1, PGC1α, and tumor necrosis factor alpha levels, as previously reported on in this cohort. RESULTS: PARP1 levels were reduced in samples from patients with depression vs controls (P = .03), though no difference was noted in OGG1. ECT had no effect on PARP1 or OGG1. Higher baseline PARP1 weakly correlated with greater mood improvement post ECT (P = .008). Moreover, PARP1 positively correlated with SIRT1 at baseline and post ECT, and positive correlations were noted between change in PARP1 and change in OGG1 with change in tumor necrosis factor alpha post ECT. CONCLUSIONS: To our knowledge, this is the first study to examine the effect of ECT on BER enzymes. A better understanding of BER enzymes and DNA repair in depression could unearth new mechanisms relevant to the pathophysiology of this condition and novel antidepressant treatments.


Assuntos
DNA Glicosilases , Eletroconvulsoterapia , Humanos , Depressão/tratamento farmacológico , DNA Glicosilases/genética , Poli(ADP-Ribose) Polimerase-1/genética , RNA Mensageiro , Sirtuína 1 , Fator de Necrose Tumoral alfa
9.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982562

RESUMO

DNA damage has been extensively studied as a potentially helpful tool in assessing and preventing cancer, having been widely associated with the deregulation of DNA damage repair (DDR) genes and with an increased risk of cancer. Adipose tissue and tumoral cells engage in a reciprocal interaction to establish an inflammatory microenvironment that enhances cancer growth by modifying epigenetic and gene expression patterns. Here, we hypothesize that 8-oxoguanine DNA glycosylase 1 (OGG1)-a DNA repair enzyme-may represent an attractive target that connects colorectal cancer (CRC) and obesity. In order to understand the mechanisms underlying the development of CRC and obesity, the expression and methylation of DDR genes were analyzed in visceral adipose tissue from CRC and healthy participants. Gene expression analysis revealed an upregulation of OGG1 expression in CRC participants (p < 0.005) and a downregulation of OGG1 in normal-weight healthy patients (p < 0.05). Interestingly, the methylation analysis showed the hypermethylation of OGG1 in CRC patients (p < 0.05). Moreover, expression patterns of OGG1 were found to be regulated by vitamin D and inflammatory genes. In general, our results showed evidence that OGG1 can regulate CRC risk through obesity and may act as a biomarker for CRC.


Assuntos
Neoplasias Colorretais , DNA Glicosilases , Humanos , Neoplasias Colorretais/genética , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , Obesidade/complicações , Obesidade/genética , Fatores de Risco , Microambiente Tumoral , Regulação para Cima
10.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762489

RESUMO

Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.


Assuntos
Medicina , Humanos , Animais , Camundongos , Camundongos Knockout , Envelhecimento , Reparo do DNA , Biologia
11.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047374

RESUMO

The current study was focused on the potential of pure P25 TiO2 nanoparticles (NPs) and Fe(1%)-N co-doped P25 TiO2 NPs to induce cyto- and genotoxic effects in MRC-5 human pulmonary fibroblasts. The oxidative lesions of P25 NPs were reflected in the amount of 8-hydroxydeoxyguanosine accumulated in DNA and the lysosomal damage produced, but iron-doping partially suppressed these effects. However, neither P25 nor Fe(1%)-N co-doped P25 NPs had such a serious effect of inducing DNA fragmentation or activating apoptosis signaling. Moreover, oxo-guanine glycosylase 1/2, a key enzyme of the base excision repair mechanism, was overexpressed in response to the oxidative DNA deterioration induced by P25 and P25-Fe(1%)-N NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Nanopartículas Metálicas/toxicidade , Dano ao DNA , Titânio/toxicidade , Pulmão , Fibroblastos , DNA/farmacologia
12.
Dokl Biochem Biophys ; 513(Suppl 1): S82-S86, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38337103

RESUMO

The presence of DNA damage can increase the likelihood of DNA replication errors and promote mutations. In particular, pauses of DNA polymerase at the site of damage can lead to polymerase slippage and the formation of 1-2-nucleotide bulges. Repair of such structures using an undamaged DNA template leads to small deletions. One of the most abundant oxidative DNA lesions, 8-oxoguanine (oxoG), was shown to induce small deletions, but the mechanism of this phenomenon is currently unknown. We studied the aberrant repair of oxoG located in one- and two-nucleotide bulges by the Escherichia coli and human base excision repair systems. Our results indicate that the repair in such substrates can serve as a mechanism for fixing small deletions in bacteria but not in humans.


Assuntos
DNA Glicosilases , Reparo do DNA , Guanina/análogos & derivados , Humanos , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Dano ao DNA , DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotídeos
13.
J Biol Chem ; 296: 100229, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361155

RESUMO

DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important systems. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemotherapy and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present, they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structures. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine DNA glycosylase. In parallel, we have experimentally characterized the activity, thermostability, and DNA binding in a subset of these mutant proteins. Among the analyzed variants of 8-oxoguanine DNA glycosylase, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.


Assuntos
DNA Glicosilases/química , Reparo do DNA , DNA de Neoplasias/química , Guanina/análogos & derivados , Mutação , Proteínas de Neoplasias/química , Substituição de Aminoácidos , Sítios de Ligação , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Expressão Gênica , Guanina/química , Guanina/metabolismo , Humanos , Cinética , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Simulação de Dinâmica Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia
14.
Biochem Soc Trans ; 50(5): 1481-1488, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36305644

RESUMO

Recent data from our laboratory has shown that the nucleotide excision repair (NER) proteins UV-damaged DNA-binding protein (UV-DDB), xeroderma pigmentosum group C (XPC), and xeroderma pigmentosum group A (XPA) play important roles in the processing of 8-oxoG. This review first discusses biochemical studies demonstrating how UV-DDB stimulates human 8-oxoG glycosylase (OGG1), MUTYH, and apurinic/apyrimidinic (AP) endonuclease (APE1) to increase their turnover at damage sites. We further discuss our single-molecule studies showing that UV-DDB associates with these proteins at abasic moieties on DNA damage arrays. Data from cell experiments are then described showing that UV-DDB interacts with OGG1 at sites of 8-oxoG. Finally, since many glycosylases are inhibited from working on damage in the context of chromatin, we present a working model of how UV-DDB may be the first responder to alter the structure of damage containing-nucleosomes to allow access by base excision repair (BER) enzymes.


Assuntos
Xeroderma Pigmentoso , Humanos , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Guanina/metabolismo , Xeroderma Pigmentoso/metabolismo , Proteínas de Ligação a DNA/metabolismo
15.
J Pharmacol Sci ; 150(1): 31-40, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926946

RESUMO

BACKGROUND: Previous studies have found that blueberry anthocyanin extract (BAE) could prevent diabetic retinopathy (DR) development, but the underlying molecular mechanism is still a mystery. METHODS: Human retinal pigment epithelium cell line ARPE-19 cells were exposed to high concentration glucose (H-Glu) with 25 mM for 24 h, and the cell viability and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The endoplasmic reticulum stress (ERS) markers were determined by western blotting. Dual luciferase assay was applied to investigate the relationship between miR-182 and 8-oxoguanine-DNA glycosylase (OGG1). Furthermore, experiments in vivo were also performed to confirm the function of BAE in DR. RESULTS: The increase of apoptosis, reactive oxygen species (ROS) level and ERS in ARPE-19 cells induced by H-Glu was notably restored by BAE. Meanwhile, BAE greatly inhibited H-Glu-induced miR-182 expression in ARPE-19 cells, and OGG1 was identified to be one of the downstream target moleculars of miR-182. Furthermore, miR-182 overexpression or OGG1 knockdown restored the impact of BAE on H-Glu-treated APRE-19 cells. Even more important, BAE was further confirmed to alleviated the development of DR in diabetes rat models. CONCLUSIONS: BAE significantly inhibited the progression of DR via molecular regulation function between miR-182/OGG1 axis and ROS/ERS.


Assuntos
Mirtilos Azuis (Planta) , DNA Glicosilases , Diabetes Mellitus , Retinopatia Diabética , MicroRNAs , Animais , Antocianinas/farmacologia , Apoptose , Mirtilos Azuis (Planta)/química , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/genética , Estresse do Retículo Endoplasmático/genética , Glucose/farmacologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
J Clin Lab Anal ; 36(7): e24561, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35723423

RESUMO

BACKGROUND: This study aimed to analyze the expression of 8-oxoguanine DNA glycosylase (OGG1) in patients with hepatocellular carcinoma (HCC) and its effect on prognosis by bioinformatics techniques and to determine its possible carcinogenic mechanism through data mining. METHODS: The difference in OGG1 expression between healthy people and HCC patients was searched and analyzed by TCGA and GEO databases, and the effect of OGG1 on prognosis was judged by survival analysis. Meanwhile, the possible molecular mechanism of OGG1 in the tumorigenesis and development of HCC was explored by GO analysis, KEGG analysis, immune infiltration analysis, protein-protein interaction network, promoter methylation analysis, and so forth. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression in 36 pairs of HCC tissues and adjacent tissues. RESULTS: The expression of OGG1 in HCC patients was higher than that in healthy people, and the overexpression of OGG1 might stimulate cell proliferation by increasing the activity of cell cycle-related proteins. CONCLUSION: The alteration of OGG1 was significantly correlated with the tumorigenesis and development of HCC. OGG1 is expected to be a new biomarker for evaluating the prognosis of HCC and a new target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , DNA Glicosilases/metabolismo , Neoplasias Hepáticas , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Proteínas de Ciclo Celular , DNA Glicosilases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estresse Oxidativo
17.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232914

RESUMO

Oxidative DNA base lesions in DNA are repaired through the base excision repair (BER) pathway, which consequently plays a vital role in the maintenance of genome integrity and in suppressing mutagenesis. 8-oxoguanine DNA glycosylase (OGG1), endonuclease III-like protein 1 (NTH1), and the endonuclease VIII-like proteins 1-3 (NEIL1-3) are the key enzymes that initiate repair through the excision of the oxidized base. We have previously identified that the E3 ubiquitin ligase tripartite motif 26 (TRIM26) controls the cellular response to oxidative stress through regulating both NEIL1 and NTH1, although its potential, broader role in BER is unclear. We now show that TRIM26 is a central player in determining the response to different forms of oxidative stress. Using siRNA-mediated knockdowns, we demonstrate that the resistance of cells to X-ray radiation and hydrogen peroxide generated as a consequence of trim26 depletion can be reversed through suppression of selective DNA glycosylases. In particular, a knockdown of neil1 or ogg1 can enhance sensitivity and DNA repair rates in response to X-rays, whereas a knockdown of neil1 or neil3 can produce the same effect in response to hydrogen peroxide. Our study, therefore, highlights the importance of TRIM26 in balancing cellular DNA glycosylase levels required for an efficient BER response.


Assuntos
DNA Glicosilases , Desoxirribonuclease (Dímero de Pirimidina) , Sobrevivência Celular/genética , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Endonucleases/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Yi Chuan ; 44(6): 466-477, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35729095

RESUMO

Cells of the aerobic metabolic organism are inevitably subjected to the damage from reactive oxygen species (ROS). ROS cause multiple forms of DNA damage, among which the oxidation product of guanine G 8-hydroxyguanine (8-oxoG) is the most frequent DNA oxidative damage, recognized by the specific glycosidase OGG1 that initiates the base excision repair pathway. If left unrepaired, 8-oxoG may pair with A instead of C, leading to a mutation of G: C to T: A during replication. Thus, the accumulation of 8-oxoG or the abnormal OGG1 repair is thought to affect gene function, which in turn leads to the development of tumor or aging-related diseases. However, a series of recent studies have shown that 8-oxoG tends to be produced in regulatory regions of the genome. 8-oxoG can be regarded as an epigenetic modification, while OGG1 is a specific reader of this information. Substrate recognition, binding or resection by OGG1 can cause DNA conformation changes or affect histone modifications, causing up-regulation or down-regulation of genes with different properties. Thus, in addition to the potential genotoxicity, the association of guanine oxidative damage with development of tumors is closely related to its aberrant initiation of gene expression through epigenetic mechanisms. In this review, we summarize the underlying mechanism of 8-oxoG and repair enzyme OGG1 in tumor development and progression, with aims to interpret the relationship between DNA oxidative damage and tumor from a new perspective, and provide new ideas and targets for tumor treatment.


Assuntos
DNA Glicosilases , Neoplasias , DNA , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Neoplasias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
19.
Biol Reprod ; 104(3): 706-716, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33252132

RESUMO

Although reactive oxygen species (ROS) are required for spermatogonial stem cell (SSC) self-renewal, they induce DNA damage and are harmful to SSCs. However, little is known about how SSCs protect their genome during self-renewal. Here, we report that Ogg1 is essential for SSC protection against ROS. While cultured SSCs exhibited homologous recombination-based DNA double-strand break repair at levels comparable with those in pluripotent stem cells, they were significantly more resistant to hydrogen peroxide than pluripotent stem cells or mouse embryonic fibroblasts, suggesting that they exhibit high levels of base excision repair (BER) activity. Consistent with this observation, cultured SSCs showed significantly lower levels of point mutations than somatic cells, and showed strong expression of BER-related genes. Functional screening revealed that Ogg1 depletion significantly impairs survival of cultured SSCs upon hydrogen peroxide exposure. Thus, our results suggest increased expression of BER-related genes, including Ogg1, protects SSCs from ROS-induced damage.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , DNA Glicosilases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , DNA Glicosilases/genética , Reparo do DNA , Regulação da Expressão Gênica , Genoma , Peróxido de Hidrogênio/toxicidade , Masculino , Camundongos , Mutação
20.
FASEB J ; 34(10): 13461-13473, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808374

RESUMO

The DNA repair enzyme 8-oxoguanine DNA glycosylase-1 (OGG1) is involved in early embryonic development, as well as in multiple conditions, including cardiac fibrosis, diabetes, and neurodegenerative diseases. But, function of OGG1 in pulmonary fibrosis was not entirely clear. In this study, we identified a novel function of OGG1 in the cell transformation process in pulmonary fibrosis. We demonstrated that OGG1 and Smad7 co-localize and interact in A549 cells. Bleomycin-induced pulmonary fibrosis was established in wild-type (WT) and Ogg1-/- mice. Upon treatment with transforming growth factor (TGF)-ß1, increased OGG1 expression was observed in WT mice with pulmonary fibrosis as well as in A549 cells, MRC-5 cells, and primary rat type II alveolar epithelial cells. The increased expression of OGG1 promoted cell migration, while OGG1 depletion decreased migration ability. Expression of the transformation-associated markers vimentin and alpha-smooth muscle actin were also affected by OGG1. We also observed that OGG1 promoted TGF-ß1-induced cell transformation and activated Smad2/3 by interacting with Smad7. The interaction between OGG1 and the TGF-ß/Smad axis modulates the cell transformation process in lung epithelial cells and fibroblasts. Moreover, we demonstrated that Ogg1 deficiency relieved pulmonary fibrosis in bleomycin-treated mice. Ogg1 knockout decreased the bleomycin-induced expression of Smad7 and phosphorylation of Smad2/3 in mice. These findings suggest that OGG1 has multiple biological functions in the pathogenesis of pulmonary fibrosis.


Assuntos
DNA Glicosilases/metabolismo , Fibrose Pulmonar/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad7/metabolismo , Células A549 , Células Epiteliais Alveolares , Animais , Fibroblastos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA