Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Mar Drugs ; 22(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393037

RESUMO

Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Técnicas de Cocultura , Cromatografia Líquida , Meios de Cultura , Glucose
2.
Chem Biodivers ; 21(3): e202302066, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335028

RESUMO

Fungi are microorganisms of significant biotechnological importance due to their ability to provide food and produce several value-added secondary metabolites and enzymes. Its products move billions of dollars in the pharmaceutical, cosmetics, and additives sectors. These microorganisms also play a notable role in bionanotechnology, leading to the production of hybrid biological-inorganic materials (such as cyborg cells) and the use of their enzyme complex in the biosynthesis of nanoparticles. In this sense, optimizing the fungal growth process is necessary, with selecting the cultivation medium as one of the essential factors for the microorganism to reach its maximum metabolic expression. The culture medium's composition can also impact the nanomaterial's stability and prevent the incorporation of nanoparticles into fungal cells. Therefore, our main objectives are the following: (1) compile and discuss the most commonly employed culture media for the production of fungal secondary metabolites and the formation of cyborg cells, accompanied by preparation methods; (2) provide a six-step guide to investigating the fungal metabolomic profile and (3) discuss the main procedures of microbial cultivation to produce fungal cyborg cells.


Assuntos
Fungos , Metabolômica , Metabolômica/métodos , Meios de Cultura , Fungos/metabolismo
3.
J Asian Nat Prod Res ; 26(4): 534-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37639617

RESUMO

Based on the One Strain-Many Compounds (OSMAC) strategy, the secondary metabolites of Phomopsis lithocarpus FS508 were investigated. As a result, a new secondary metabolite, 4-methoxy-3-[4-(acetyloxy)-3-methyl-2-butenyl]benzoic acid (1) as well as eleven known compounds were isolated from the fermentation product of the strain FS508. Their structures were determined by NMR, IR, UV, and MS spectroscopic data analyses. All the isolated compounds were evaluated for cytotoxic and anti-inflammatory activities. Among them, compounds 3 and 9 displayed potent cytotoxicity against HepG-2 cell line, and compounds 2, 3 and 12 showed significant anti-inflammatory activities.


Assuntos
Antineoplásicos , Ascomicetos , Phomopsis , Ascomicetos/química , Linhagem Celular Tumoral , Antineoplásicos/química , Anti-Inflamatórios/farmacologia , Estrutura Molecular
4.
Bioorg Chem ; 130: 106271, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402026

RESUMO

Nine new highly oxygenated meroterpenoids, peniciacetals A-I (1-9), along with five known analogues (10-14) were isolated from the mangrove-derived fungus Penicillium sp. HLLG-122 based on the guidance of molecular networking and OSMAC approach. Peniciacetals A-B (1-2) were characterized with a unique 6/6/6/6/5 pentacyclic system possessing an unusual 4,6-dimethyl-2,5-dioxohexahydro-6-carboxy-4H-furo[2,3-b]pyran moiety. Peniciacetals C-D (3-4) possessed an uncommon 3,6-dimethyldihydro-4H-furo[2,3-b]pyran-2,5-dione unit with 6/6/6/5/6 fused pentacyclic skeleton. The structures and absolute configurations of new compounds were elucidated by HR-ESI-MS, 1D and 2D NMR spectroscopic data, X-ray diffraction analysis, and quantum chemical electronic circular dichroism (ECD) calculation. The plausible biosynthetic pathway of 1-9 were also proposed. Compound 14 showed good cytotoxicity against HepG2, MCF-7, HL-60, A549, HCT116 and H929 cell with IC50 values of 6.6, 14.8, 3.2, 5.7, 6.9 and 3.0 µM, respectively. Further research showed that the compound 14 induced necrosis or late apoptosis contributes to the HL-60 cells toxicity.


Assuntos
Penicillium , Terpenos , Humanos , Apoptose/efeitos dos fármacos , Fungos/química , Células HL-60/efeitos dos fármacos , Penicillium/química , Piranos , Terpenos/química
5.
Mar Drugs ; 21(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37888461

RESUMO

Using the OSMAC (One Strain Many Compounds) approach, the actinobacterium Streptomyces griseorubiginosus, derived from an unidentified cnidarian collected from a reef near Pointe de Bellevue in Réunion Island (France), was subjected to cultivation under diverse conditions. This endeavour yielded the isolation of a repertoire of 23 secondary metabolites (1-23), wherein five compounds were unprecedented as natural products (19-23). Specifically, compounds 19 and 20 showcased novel anthrone backbones, while compound 23 displayed a distinctive tetralone structure. Additionally, compounds 21 and 22 presented an unusual naphtho [2,3-c]furan-4(9H)-one chromophore. Interestingly, the detection of all these novel compounds (19-23) was exclusively achieved when the bacterium was cultured in FA-1 liquid medium supplemented with the epigenetic modifier γ-butyrolactone. The elucidation of the structural features of the newfound compounds was accomplished through a combination of HRESIMS, 1D and 2D NMR spectroscopy, as well as QM-NMR (Quantum Mechanical-Nuclear Magnetic Resonance) methods and by comparison with existing literature. Moreover, the determination of the relative configuration of compound 23 was facilitated by employing the mix-J-DP4 computational approach.


Assuntos
Produtos Biológicos , Policetídeos , Streptomyces , Policetídeos/farmacologia , Espectroscopia de Ressonância Magnética , Streptomyces/metabolismo , Estrutura Molecular
6.
Mar Drugs ; 21(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37103395

RESUMO

Two linear proline-rich peptides (1-2), bearing an N-terminal pyroglutamate, were isolated from the marine bacterium Microbacterium sp. V1, associated with the marine sponge Petrosia ficiformis, collected in the volcanic CO2 vents in Ischia Island (South Italy). Peptide production was triggered at low temperature following the one strain many compounds (OSMAC) method. Both peptides were detected together with other peptides (3-8) via an integrated, untargeted MS/MS-based molecular networking and cheminformatic approach. The planar structure of the peptides was determined by extensive 1D and 2D NMR and HR-MS analysis, and the stereochemistry of the aminoacyl residues was inferred by Marfey's analysis. Peptides 1-8 are likely to arise from Microbacterium V1 tailor-made proteolysis of tryptone. Peptides 1 and 2 were shown to display antioxidant properties in the ferric-reducing antioxidant power (FRAP) assay.


Assuntos
Antioxidantes , Peptídeos Cíclicos , Animais , Peptídeos Cíclicos/química , Microbacterium , Prolina , Espectrometria de Massas em Tandem , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos , Bactérias
7.
Mar Drugs ; 21(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132955

RESUMO

The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain-many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (1-4), together with thirteen known derivatives (5-17) and two reported diketopiperazines (18, 19), were isolated from this strain. The chemical structures and absolute configurations of the new compounds were determined through extensive NMR and HRESIMS spectroscopic studies and ECD calculation. Thirteen of the isolated eremophilanes were examined for cytotoxic and antimicrobial activities. PR toxin (16) exhibited cytotoxic activity against HepG2, MCF-7, A549, A2058, and Mia PaCa-2 human cancer cell lines with IC50 values ranging from 3.75 to 33.44 µM. (+)-Aristolochene (10) exhibited selective activity against the fungal strains Aspergillus fumigatus ATCC46645 and Candida albicans ATCC64124 at 471 µM.


Assuntos
Anti-Infecciosos , Antineoplásicos , Hypocreales , Sesquiterpenos , Humanos , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Antineoplásicos/química , Sedimentos Geológicos/microbiologia , Anti-Infecciosos/química , Estrutura Molecular
8.
Mar Drugs ; 22(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248647

RESUMO

The one strain many compounds (OSMAC) strategy is an effective method for activating silent gene clusters by cultivating microorganisms under various conditions. The whole genome sequence of the marine-derived strain Streptomyces globisporus SCSIO LCY30 revealed that it contains 30 biosynthetic gene clusters (BGCs). By using the OSMAC strategy, three types of secondary metabolites were activated and identified, including three angucyclines, mayamycin A (1), mayamycin B (2), and rabolemycin (3); two streptophenazines (streptophenazin O (4) and M (5)); and a macrolide dimeric dinactin (6), respectively. The biosynthetic pathways of the secondary metabolites in these three families were proposed based on the gene function prediction and structural information. The bioactivity assays showed that angucycline compounds 1-3 exhibited potent antitumor activities against 11 human cancer cell lines and antibacterial activities against a series of Gram-positive bacteria. Mayamycin (1) selectively exhibited potent cytotoxicity activity against triple-negative breast cancer (TNBC) cell lines such as MDA-MB-231, MDA-MB-468, and Bt-549, with IC50 values of 0.60-2.22 µM.


Assuntos
Família Multigênica , Streptomyces , Humanos , Benzo(a)Antracenos , Streptomyces/genética , Antibacterianos/farmacologia
9.
Mar Drugs ; 21(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38132967

RESUMO

The secondary metabolites of marine fungi with rich chemical diversity and biological activity are an important and exciting target for natural product research. This study aimed to investigate the fungal community in Quanzhou Bay, Fujian, and identified 28 strains of marine fungi. A total of 28 strains of marine fungi were screened for small-scale fermentation by the OSMAC (One Strain-Many Compounds) strategy, and 77 EtOAc crude extracts were obtained and assayed for cancer cell inhibition rate. A total of six strains of marine fungi (P-WZ-2, P-WZ-3-2, P-WZ-4, P-WZ-5, P56, and P341) with significant changes in cancer cell inhibition induced by the OSMAC strategy were analysed by UPLC-QTOF-MS. The ACD/MS Structure ID Suite software was used to predict the possible structures with inhibitory effects on cancer cells. A total of 23 compounds were identified, of which 10 compounds have been reported to have potential anticancer activity or cytotoxicity. In this study, the OSMAC strategy was combined with an untargeted metabolomics approach based on UPLC-QTOF-MS to efficiently analyse the effect of changes in culture conditions on anticancer potentials and to rapidly find active substances that inhibit cancer cell growth.


Assuntos
Fungos , Metabolômica , Cromatografia Líquida de Alta Pressão , Fungos/metabolismo , Fermentação
10.
Mar Drugs ; 22(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248648

RESUMO

Actinobacteria are known for their production of bioactive specialized metabolites, but they are still under-exploited. This study uses the "One Strain Many Compounds" (OSMAC) method to explore the potential of three preselected marine-derived actinobacteria: Salinispora arenicola (SH-78) and two Micromonospora sp. strains (SH-82 and SH-57). Various parameters, including the duration of the culture and the nature of the growth medium, were modified to assess their impact on the production of specialized metabolites. This approach involved a characterization based on chemical analysis completed with the construction of molecular networks and biological testing to evaluate cytotoxic and antiplasmodial activities. The results indicated that the influence of culture parameters depended on the studied species and also varied in relation with the microbial metabolites targeted. However, common favorable parameters could be observed for all strains such as an increase in the duration of the culture or the use of the A1 medium. For Micromonospora sp. SH-82, the solid A1 medium culture over 21 days favored a greater chemical diversity. A rise in the antiplasmodial activity was observed with this culture duration, with a IC50 twice as low as for the 14-day culture. Micromonospora sp. SH-57 produced more diverse natural products in liquid culture, with approximately 54% of nodes from the molecular network specifically linked to the type of culture support. Enhanced biological activities were also observed with specific sets of parameters. Finally, for Salinispora arenicola SH-78, liquid culture allowed a greater diversity of metabolites, but intensity variations were specifically observed for some metabolites under other conditions. Notably, compounds related to staurosporine were more abundant in solid culture. Consequently, in the range of the chosen parameters, optimal conditions to enhance metabolic diversity and biological activities in these three marine-derived actinobacteria were identified, paving the way for future isolation works.


Assuntos
Actinobacteria , Antimaláricos , Micromonospora , Micromonosporaceae , Antimaláricos/farmacologia , Metabolômica , Bactérias
11.
Mar Drugs ; 21(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36827136

RESUMO

Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Filogenia , Espectroscopia de Infravermelho com Transformada de Fourier , Aspergillus , Fungos/metabolismo , Metaboloma , Antibacterianos/metabolismo , Extratos Vegetais/metabolismo
12.
Chem Biodivers ; 20(4): e202201087, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36919620

RESUMO

Endophytic fungi possess a versatile metabolism which is related to their ability to live in diverse ecological niches. While culturing under laboratory conditions, their metabolism is mainly influenced by the culture media, time of incubation and other physicochemical factors. In this study, we focused on the production of 3 thiodiketopiperazines (TDKPs) botryosulfuranols A-C produced by an endophytic strain of Cophinforma mamane isolated from the leaves of Bixa orellana L collected in the Peruvian Amazon. We studied the time-course production of botryosulfuranols A-C during 28 days and evaluated the variations in the production of secondary metabolites, including the TDKPs, produced by C. mamane in response to different culture media, light versus dark conditions and different incubation times. We observed a short time-frame production of botryosulfuranol C while its production was significantly affected by the light conditions and nutrients of the culture media. Botryosulfuranols A and B showed a similar production pattern and a similar response to culturing conditions. Molecular networking allowed us to detect three compounds related to TDKPs that will be the focus of future experiments.


Assuntos
Ascomicetos , Endófitos , Piperazinas , Ascomicetos/química , Bixaceae/microbiologia , Endófitos/metabolismo , Fungos/metabolismo , Piperazinas/química
13.
Mar Drugs ; 20(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200614

RESUMO

Marine microorganisms have proven to be a source of new natural products with a wide spectrum of biological activities relevant in different industrial sectors. The ever-increasing number of sequenced microbial genomes has highlighted a discrepancy between the number of gene clusters potentially encoding the production of natural products and the actual number of chemically characterized metabolites for a given microorganism. Homologous and heterologous expression of these biosynthetic genes, which are often silent under experimental laboratory culture conditions, may lead to the discovery of new cryptic natural products of medical and biotechnological interest. Several new genetic and cultivation-based strategies have been developed to meet this challenge. The OSMAC approach (one strain-many compounds), based on modification of growth conditions, has proven to be a powerful strategy for the discovery of new cryptic natural products. As a direct extension of this approach, the addition of chemical elicitors or epigenetic modifiers have also been used to activate silent genes. This review looks at the structures and biological activities of new cryptic metabolites from marine-derived microorganisms obtained using the OSMAC approach, the addition of chemical elicitors, and enzymatic inhibitors and epigenetic modifiers. It covers works published up to June 2021.


Assuntos
Organismos Aquáticos/microbiologia , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Biotecnologia/métodos , Técnicas de Cultura , Epigênese Genética , Humanos
14.
Mar Drugs ; 20(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36547925

RESUMO

Three new dibenzo-α-pyrone derivatives, alternolides A-C (1-3), and seven known congeners (4-10) were isolated from the marine-derived fungus of Alternaria alternata LW37 assisted by the one strain-many compounds (OSMAC) strategy. The structures of 1-3 were established by extensive spectroscopic analyses, and their absolute configurations were determined by modified Snatzke's method and electronic circular dichroism (ECD) calculations. Compounds 6 and 7 showed good 1,1-diphenyl-2-picrylhydrazyl (DPPH) antioxidant scavenging activities with IC50 values of 83.94 ± 4.14 and 23.60 ± 1.23 µM, respectively. Additionally, 2, 3 and 7 exhibited inhibitory effects against α-glucosidase with IC50 values of 725.85 ± 4.75, 451.25 ± 6.95 and 6.27 ± 0.68 µM, respectively. The enzyme kinetics study indicated 2 and 3 were mixed-type inhibitors of α-glucosidase with Ki values of 347.0 and 108.5 µM, respectively. Furthermore, the interactions of 2, 3 and 7 with α-glucosidase were investigated by molecular docking.


Assuntos
Pironas , alfa-Glucosidases , alfa-Glucosidases/metabolismo , Pironas/farmacologia , Simulação de Acoplamento Molecular , Alternaria/química , Antioxidantes/química , Estrutura Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química
15.
Bioorg Med Chem ; 29: 115883, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248353

RESUMO

Fermentation of the marine-derived fungus Aspergillus falconensis, isolated from sediment collected from the Red Sea, Egypt on solid rice medium containing 3.5% NaCl yielded a new dibenzoxepin derivative (1) and a new natural isocoumarin (2) along with six known compounds (3-8). Changes in the metabolic profile of the fungus were induced by replacing NaCl with 3.5% (NH4)2SO4 that resulted in the accumulation of three further known compounds (9-11), which were not detected when the fungus was cultivated in the presence of NaCl. The structures of the new compounds were elucidated by HRESIMS and 1D/2D NMR as well as by comparison with the literature. Molecular docking was conducted for all isolated compounds on crucial enzymes involved in the formation, progression and metastasis of cancer which included human cyclin-dependent kinase 2 (CDK-2), human DNA topoisomerase II (TOP-2) and matrix metalloproteinase 13 (MMP-13). Diorcinol (7), sulochrin (9) and monochlorosulochrin (10) displayed notable stability within the active pocket of CDK-2 with free binding energy (ΔG) equals to -25.72, -25.03 and -25.37 Kcal/mol, respectively whereas sulochrin (9) exerted the highest fitting score within MMP-13 active center (ΔG = -33.83 Kcal/mol). In vitro cytotoxic assessment using MTT assay showed that sulochrin (9) exhibited cytotoxic activity versus L5178Y mouse lymphoma cells with an IC50 value of 5.1 µM and inhibition of migration of MDA-MB 231 breast cancer cells at a concentration of 70 µM.


Assuntos
Antineoplásicos/farmacologia , Aspergillus/química , Policetídeos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Imagem Óptica , Policetídeos/química , Policetídeos/isolamento & purificação , Relação Estrutura-Atividade
16.
J Appl Microbiol ; 131(3): 1193-1211, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33559270

RESUMO

AIMS: To identify the metabolites produced by the endophytic fungus, Aspergillus terreus and to explore the anti-viral activity of the identified metabolites against the pandemic disease COVID-19 in-silico. METHODS AND RESULTS: Herein, we reported the isolation of A. terreus, the endophytic fungus associated with soybean roots, which is then subcultured using OSMAC approach in five different culture media. Analytical analysis of media ethylacetate extracts using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was carried out. Furthermore, the obtained LC-MS data were statistically processed with MetaboAnalyst 4.0. Molecular docking studies were performed for the dereplicated metabolites against COVID-19 main protease (Mpro ). Metabolomic profiling revealed the presence of 18 compounds belonging to different chemical classes. Quinones, polyketides and isocoumarins were the most abundant classes. Multivariate analysis revealed that potato dextrose broth and modified potato dextrose broth are the optimal media for metabolites production. Molecular docking studies declared that the metabolites, Aspergillide B1 and 3a-Hydroxy-3, 5-dihydromonacolin L showed the highest binding energy scores towards COVID-19 main protease (Mpro ) (-9·473) and (-9·386), respectively, and they interact strongly with the catalytic dyad (His41 and Cys145) amino acid residues of Mpro . CONCLUSIONS: A combination of metabolomics and in-silico approaches have allowed a shorter route to search for anti-COVID-19 natural products in a shorter time. The dereplicated metabolites, aspergillide B1 and 3α-Hydroxy-3, 5-dihydromonacolin L were found to be potent anti-COVID-19 drug candidates in the molecular docking study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study revealed that the endophytic fungus, A. terreus can be considered as a potential source of natural bioactive products. In addition to, the possibility of developing the metabolites, aspergillide B1 and 3α-Hydroxy-3, 5-dihydromonacolin L to be used as phytopharmaceuticals for the management of COVID-19.


Assuntos
Aspergillus , COVID-19 , Glycine max , Simulação de Acoplamento Molecular , Aspergillus/metabolismo , COVID-19/terapia , Simulação por Computador , Fungos , Humanos , Metabolômica , SARS-CoV-2
17.
Bioorg Chem ; 108: 104671, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33550072

RESUMO

Andrastones are unusual 6,6,6,5-tetracyclic meroterpenoids that are rarely found in nature. Previously, three andrastones were obtained from the rice static fermentation extract of the deep-sea-derived fungus Penicillium allii-sativi MCCC 3A00580. Inspired by one strain many compounds (OSMAC) approach, the oat static fermentation on P. allii-sativi was conducted. As a result, 14 andrastones were isolated by UV-guided isolation. The chemical structures of the nine new compounds (1-9) was established by comprehensive analysis of the NMR, MS, ECD, and X-ray crystallography and the five known ones (10-14) were assigned by comparing their NMR, MS, and OR data with those reported in literature. Compound 1 bears a novel hemiketal moiety while 2 is the first example to possess a novel tetrahydrofuran moiety via C-7 and C-15. All isolates were tested for anti-allergic bioactivity. Compound 10, 3-deacetylcitreohybridonol, significantly decreased degranulation with the IC50 value of 14.8 µM, compared to that of 92.5 µM for the positive control, loratadine. Mechanism study indicated 10 could decrease the generation of histamine and TNF-α by reducing the accumulation of Ca2+ in RBL-2H3 cells. These findings indicate andrastones could be potential to discover new anti-allergic candidate drugs.


Assuntos
Descoberta de Drogas , Penicillium/química , Sesquiterpenos/química , Animais , Relação Dose-Resposta a Droga , Fermentação , Histamina/metabolismo , Estrutura Molecular , Penicillium/metabolismo , Ratos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Bioorg Chem ; 114: 105148, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34246973

RESUMO

Eight new compounds (1-8) were discovered from Trichoderma harzianum associated with edible mushroom by the one strain many compounds (OSMAC) strategy. Triharzianin A (1) is the first naturally scaffold characterized by a C13-prostaglandin skeleton. The configurations of 1-3, and 5 were determined by the Mosher's method, experimental and calculated ECD spectra, and plausible biosynthesis of stereospecific epoxidation. Most compounds indicated obvious feeding attractant activities to silkworm with attraction rates at 30-90%. Compound 7 showed anti-acetylcholinesterase (anti-AChE) activity with a ratio of 29% at a concentration of 50 µM for insecticidal potential. So 2,​3-​dialkylchromone (7) had potential of chemical entrapment and killing of insects. Compounds 2, 3 and 7-11 showed antifungal activities against Aspergillus fumigates, and Trichoderma sp. from mushroom with MICs ≤ 300 µM. The four fermentation extracts also indicated obvious feeding attractant activities to silkworm for the activities brought by active metabolites from T. harzianum. The material base of biocontrol induced by the interaction of host-fungal symbiont can be investigated by the antifungal metabolites against pathogen fungi.


Assuntos
Acetilcolinesterase/metabolismo , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Trichoderma/química , Trichoderma/efeitos dos fármacos , Animais , Antifúngicos/química , Antifúngicos/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
19.
Mar Drugs ; 19(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546196

RESUMO

"One strain many compounds" (OSMAC) based approaches have been widely used in the search for bioactive compounds. Introducing stress factors like nutrient limitation, UV-light or cocultivation with competing organisms has successfully been used in prokaryote cultivation. It is known that diatom physiology is affected by changed cultivation conditions such as temperature, nutrient concentration and light conditions. Cocultivation, though, is less explored. Hence, we wanted to investigate whether grazing pressure can affect the metabolome of the marine diatom Porosira glacialis, and if the stress reaction could be detected as changes in bioactivity. P. glacialis cultures were mass cultivated in large volume bioreactor (6000 L), first as a monoculture and then as a coculture with live zooplankton. Extracts of the diatom biomass were screened in a selection of bioactivity assays: inhibition of biofilm formation, antibacterial and cell viability assay on human cells. Bioactivity was found in all bioassays performed. The viability assay towards normal lung fibroblasts revealed that P. glacialis had higher bioactivity when cocultivated with zooplankton than in monoculture. Cocultivation with diatoms had no noticeable effect on the activity against biofilm formation or bacterial growth. The metabolic profiles were analyzed showing the differences in diatom metabolomes between the two culture conditions. The experiment demonstrates that grazing stress affects the biochemistry of P. glacialis and thus represents a potential tool in the OSMAC toolkit.


Assuntos
Biomassa , Diatomáceas/metabolismo , Zooplâncton/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/fisiologia , Diatomáceas/isolamento & purificação , Células HT29 , Humanos , Metaboloma/fisiologia , Zooplâncton/isolamento & purificação
20.
Mar Drugs ; 19(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210084

RESUMO

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives-5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1'R, 2'S)-LL-P880ß (3), 5,6-dihydro-4-methoxy-6S-(1'S, 2'S-dihydroxy pent-3'(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1'R, 2'S-dihydroxy pent-3'(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)-together with the known (6S, 1'S, 2'S)-LL-P880ß (2), (1'R, 2'S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1'S, 2'R)-LL-P880ß (9), (6S, 1'S)-pestalotin (10), 1'R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Assuntos
Bivalves , Penicillium/metabolismo , Piranos/metabolismo , Animais , Organismos Aquáticos , França , Metabolômica , Penicillium/química , Piranos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA