Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Rep ; 10: 87-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691605

RESUMO

Introduction: Cyanobacterial blooms produce toxins that may become aerosolized, increasing health risks through inhalation exposures. Health related effects on the lower respiratory tract caused by these toxins are becoming better understood. However, nasal exposures to cyanotoxins remain understudied, especially for those with neurotoxic potential. Here, we present a case series study evaluating exposure to ß-N-methylamino-l-alanine (BMAA), a cyanobacterial toxin linked to neurodegenerative disease, in postmortem olfactory tissues of individuals with varying stages of Alzheimer's disease (AD). Methods: Olfactory bulb (Ob) tissues were collected during autopsies performed between 2014 and 2017 from six South Florida brain donors (ages 47-78) with residences less than 140 m from a freshwater body. A triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) method validated according to peer AOAC International guidelines was used to detect BMAA and two BMAA isomers: 2,4-diaminobutyric acid (2,4-DAB) and N-(2-aminoethyl)glycine (AEG). Quantitative PCR was performed on the contralateral Ob to evaluate the relative expression of genes related to proinflammatory cytokines (IL-6 & IL-18), apoptotic pathways (CASP1 & BCL2), and mitochondrial stress (IRF1 & PINK1). Immunohistochemistry was also performed on the adjacent olfactory tract (Ot) to evaluate co-occurring neuropathology with BMAA tissue concentration. Results: BMAA was detected in the Ob of all cases at a median concentration of 30.4 ng/g (Range

2.
IBRO Neurosci Rep ; 13: 207-214, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36117854

RESUMO

The nature and severity of mitral/tufted (M/T) cells reactions to odorants presented in anesthesia depend on various factors, and, above all, the nature and concentration of the odor, anesthesia, and the functional state of the olfactory bulb (OB). Compared to wakefulness, under anesthesia, the intensity of OB M/T cells responses to the odorants presented increases. However, the influence of anesthesia dynamics on the intensity of such responses has not been studied. To address this problem in rats, the activity of M/T cells and the local field potentials (LFP) in OB were recorded in the course of xylazine-tiletamine-zolazepam (XTZ) anesthesia. It has been shown that in the course of the anesthesia, the average frequency of background and odorant-induced single-unit activity of M/T cells increases, while the dominant frequency value of LFP in the gamma frequency range (90-170 Hz), on the contrary, decreases. The observed effects are assumed to be associated with changes in the functional state of the OB and systems for processing olfactory information in anesthesia.

3.
EClinicalMedicine ; 25: 100484, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32838240

RESUMO

BACKGROUND: Increasing evidence supported the possible neuro-invasion potential of SARS-CoV-2. However, no studies were conducted to explore the existence of the micro-structural changes in the central nervous system after infection. We aimed to identify the existence of potential brain micro-structural changes related to SARS-CoV-2. METHODS: In this prospective study, diffusion tensor imaging (DTI) and 3D high-resolution T1WI sequences were acquired in 60 recovered COVID-19 patients (56.67% male; age: 44.10 ± 16.00) and 39 age- and sex-matched non-COVID-19 controls (56.41% male; age: 45.88 ± 13.90). Registered fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were quantified for DTI, and an index score system was introduced. Regional volumes derived from Voxel-based Morphometry (VBM) and DTI metrics were compared using analysis of covariance (ANCOVA). Two sample t-test and Spearman correlation were conducted to assess the relationships among imaging indices, index scores and clinical information. FINDINGS: In this follow-up stage, neurological symptoms were presented in 55% COVID-19 patients. COVID-19 patients had statistically significantly higher bilateral gray matter volumes (GMV) in olfactory cortices, hippocampi, insulas, left Rolandic operculum, left Heschl's gyrus and right cingulate gyrus and a general decline of MD, AD, RD accompanied with an increase of FA in white matter, especially AD in the right CR, EC and SFF, and MD in SFF compared with non-COVID-19 volunteers (corrected p value <0.05). Global GMV, GMVs in left Rolandic operculum, right cingulate, bilateral hippocampi, left Heschl's gyrus, and Global MD of WM were found to correlate with memory loss (p value <0.05). GMVs in the right cingulate gyrus and left hippocampus were related to smell loss (p value <0.05). MD-GM score, global GMV, and GMV in right cingulate gyrus were correlated with LDH level (p value <0.05). INTERPRETATION: Study findings revealed possible disruption to micro-structural and functional brain integrity in the recovery stages of COVID-19, suggesting the long-term consequences of SARS-CoV-2. FUNDING: Shanghai Natural Science Foundation, Youth Program of National Natural Science Foundation of China, Shanghai Sailing Program, Shanghai Science and Technology Development, Shanghai Municipal Science and Technology Major Project and ZJ Lab.

4.
Regen Ther ; 3: 63-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31245474

RESUMO

The cerebral cortex is responsible for higher functions of the central nervous system (CNS), such as movement, sensation, and cognition. When the cerebral cortex is severely injured, these functions are irreversibly impaired. Although recent neurobiological studies reveal that the cortex has the potential for regeneration, therapies for functional recovery face some technological obstacles. Biomaterials have been used to evoke regenerative potential and promote regeneration in several tissues, including the CNS. This review presents a brief overview of new therapeutic strategies for cortical regeneration from the perspectives of neurobiology and biomaterial engineering, and discusses a promising technology for evoking the regenerative potential of the cerebral cortex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA