Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14401, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778555

RESUMO

BACKGROUND: It has been observed that under the single isocenter conditions, the potential shifts of the electronic portal imaging devices (EPID) may be introduced when executing portal dosimetry (PD) plans for bilateral breast cancer, pleural mesothelioma, and lymphoma. These shifts are relative to the calibration positions of EPID and result in significant discrepancies in the plan verification results. PURPOSE: To explore methods including correction model and specific correction matrices to revise the data obtained from displaced EPID. METHODS: Two methods, the correction model and the specific correction matrices, were applied to correct the data. Five experiments were designed and conducted to build correction model and to validate the effectiveness of these two methods. Gamma passing rates were calculated and data profiles along X-axis and Y-axis were captured. RESULTS: The gamma passing rates for the EPID-displaced IMRT validation plans after applying correction model, along with the application of specific correction matrices to VMAT and IMRT validation plans, exhibit results that are comparable to the cases with non-displaced EPID. Except for the VMAT plans applied correction model which showed larger discrepancies (0.041 ± 0.028, 0.049 ± 0.030), the other three exhibit minimal differences in discrepancy values. In all profiles, the corrected data from displaced EPID exhibit a high level of agreement with data obtained from non-displaced EPID. Good consistency is observed in actual application of the correction model and the specific correction matrices between gamma passing rates of data corrected and those of non-displaced data. CONCLUSIONS: The proposed methods involving correction model and specific correction matrices can correct the data collected from the displaced EPID, and the gamma passing rates of the corrected data show results that are comparable to some extent with those of non-displaced data. Particularly, the results corrected by specific correction matrices closely resemble the data from non-displaced EPID.

2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artigo em Zh | MEDLINE | ID: mdl-38605613

RESUMO

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Algoritmos , Calibragem , Eletrônica , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos
3.
J Appl Clin Med Phys ; 24(8): e14009, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158727

RESUMO

Stereotactic radiotherapy (SRT) methods have become common for the treatment of small tumors in various parts of the body. Small field dosimetry has a unique set of challenges when it comes to the pre-treatment validation of a radiotherapy plan that involves film dosimetry or high-resolution detectors. Comparison of commercial quality assurance (QA) devices to the film dosimetry method for pre-treatment evaluation of stereotactic radiosurgery (SRS), fractionated SRT, and stereotactic body radiation therapy treatment plans have been evaluated in this study. Forty stereotactic QA plans were measured using EBT-XD film, IBA Matrixx Resolution, SNC ArcCHECK, Varian aS1200 EPID, SNC SRS MapCHECK, and IBA myQA SRS. The results of the commercial devices are compared to the EBT-XD film dosimetry results for each gamma criteria. Treatment plan characteristics such as modulation factor and target volume were investigated for correlation with the passing rates. It was found that all detectors have greater than 95% passing rates at 3%/3 mm. Passing rates decrease rapidly for ArcCHECK and the Matrixx as criteria became more strict. In contrast, EBT-XD film, SNC SRS MapCHECK, and IBA myQA SRS passing rates do not decline as rapidly when compared to Matrix Resolution, ArcCHECK, and the EPID. EBT-XD film, SNC SRS MapCHECK, and IBA myQA SRS maintain greater than 90% passing rate at 2%/1 mm and greater than 80% at 1%/1 mm. Additionally, the ability of these devices to detect changes in dose distribution due to MLC positioning errors was investigated. Ten VMAT SBRT/SRS treatment plans were created with 6 MV FFF or 10 MV FFF beam energies using Eclipse 15.6. A MATLAB script was used to create two MLC positioning error scenarios from the original treatment plan. It was found that errors in MLC positioning were most reliably detected at 2%/1 mm for high-resolution detectors and that lower-resolution detectors did not consistently detect MLC positioning errors.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos
4.
J Appl Clin Med Phys ; 23(1): e13473, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34792856

RESUMO

The deep inspiration breath-hold (DIBH) technique assists in sparing the heart, lungs, and liver during breast radiotherapy (RT). The quality of DIBH is currently assessed via surrogates which correlate to varying degrees with the patient's internal anatomy. Since modern linacs are equipped with an electronic portal imaging device (EPID), images of the irradiated anatomy streamed from EPIDs and analyzed in real time could significantly improve assessment of the quality of DIBH. A system has been developed to quantify the quality of DIBH during tangential breast RT by analyzing the "beam's eye view" images of the treatment fields. The system measures the lung depth (LD) and the distance from the breast surface to the posterior tangential radiation field edge (skin distance, SD) at three user-defined locations. LD and SD measured in real time in EPID images of two RT phantoms showing different geometrical characteristics of their chest wall regions (computed tomography dose index [CTDI] and "END-TO-END" stereotactic body radiation therapy [E2E SBRT]) were compared with ground truth displacements provided by a precision motion platform. Performance of the new system was evaluated via static and dynamic (sine wave motion) measurements of LD and SD, covering clinical situations with stable and unstable breath-hold. The accuracy and precision of the system were calculated as the mean and standard deviation of the differences between the ground truth and measured values. The accuracy of the static measurements of LD and SD for the CTDI phantom was 0.31 (1.09) mm [mean (standard deviation)] and -0.10 (0.14) mm, respectively. The accuracy of the static measurements for E2E SBRT phantom was 0.01 (0.18) mm and 0.05 (0.08) mm. The accuracy of the dynamic LD and SD measurements for the CTDI phantom was -0.50 (1.18) mm and 0.01 (0.12) mm, respectively. The accuracy of the dynamic measurements for E2E SBRT phantom was -0.03 (0.19) mm and 0.01 (0.11) mm.


Assuntos
Neoplasias da Mama , Tomografia Computadorizada por Raios X , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Suspensão da Respiração , Feminino , Coração , Humanos , Pulmão/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
5.
J Appl Clin Med Phys ; 23(8): e13699, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35856943

RESUMO

PURPOSE: Well-designed routine multileaf collimator (MLC) quality assurance (QA) is important to assure external-beam radiation treatment delivery accuracy. This study evaluates the clinical necessity of a comprehensive weekly (C-Weekly) MLC QA program compared to the American Association of Physics in Medicinerecommended weekly picket fence test (PF-Weekly), based on our seven-year experience with weekly MLC QA. METHODS: The C-Weekly MLC QA program used in this study includes 5 tests to analyze: (1) absolute MLC leaf position; (2) interdigitation MLC leaf position; (3) picket fence MLC leaf positions at static gantry angle; (4) minimum leaf-gap setting; and (5) volumetric-modulated arc therapy delivery. A total of 20,226 QA images from 16,855 tests (3,371 tests × 5) for 11 linacs at 5 photon clinical sites from May 2014 to June 2021 were analyzed. Failure mode and effects analysis was performed with 5 failure modes related to the 5 tests. For each failure mode, a risk probability number (RPN) was calculated for a C-Weekly and a PF-Weekly MLC QA program. The probability of occurrence was evaluated from statistical analyses of the C-Weekly MLC QA. RESULTS: The total number of failures for these 16,855 tests was 143 (0.9%): 39 (27.3%) for absolute MLC leaf position, 13 (9.1%) for interdigitation position, 9 (6.3%) for static gantry picket fence, 2 (1.4%) for minimum leaf-gap setting, and 80 (55.9%) for VMAT delivery. RPN scores for PF-Weekly MLC QA ranged from 60 to 192 and from 48 to 96 for C-Weekly MLC QA. CONCLUSION: RPNs for the 5 failure modes of MLC QA tests were quantitatively determined and analyzed. A comprehensive weekly MLC QA is imperative to lower the RPNs of the 5 failure modes to the desired level (<125); those from the PF-Weekly MLC QA program were found to be higher (>125). This supports the clinical necessity for comprehensive weekly MLC QA.


Assuntos
Aceleradores de Partículas , Radioterapia de Intensidade Modulada , Equipamentos e Provisões Elétricas , Humanos , Radioterapia de Intensidade Modulada/métodos
6.
Wiad Lek ; 75(9 pt 1): 2060-2064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36256928

RESUMO

OBJECTIVE: The aim: This study aimed to define the factors related to irradiation field equality and target accuracy which will further influence the irradiation result. PATIENTS AND METHODS: Materials and methods: This is a prospective-qualitative study, conducted by observation of image data verification from cervical cancer patients in the Department of Radiotherapy, dr. Moewardi Hospital, Surakarta who had undergone several times a week irradiation utilizing Telecobalt60 device and by conducting an in-depth interview to ten Indonesian radiotherapy experts, in October 2018. The data was further analyzed using correlation - regression test. RESULTS: Results: From 30 verification image data of the irradiated patients, we conclude that the scheme, body size, and patient positioning factors have all revealed statistically significant correlations to the irradiation field equality. On the other hand, factors such as patient and tele-therapy device set-ups, tele-therapy device calibration, human resources quality, and tele-therapy device malfunctions have all revealed statistically significant correlations to the irradiation target accuracy. These facts were further strengthen by the supporting statements from 10 Indonesian radiotherapy experts. CONCLUSION: Conclusions: The impact factors of field equality and accuracy of the irradiation target could serve as an important control factors which is substantially required to manage and minimize site errors of the radiotherapy delivery.


Assuntos
Posicionamento do Paciente , Neoplasias do Colo do Útero , Humanos , Estudos Prospectivos , Neoplasias do Colo do Útero/radioterapia , Dosagem Radioterapêutica
7.
Rep Pract Oncol Radiother ; 26(1): 93-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046219

RESUMO

BACKGROUND: The purpose of this study was to investigate the feasibility of MOSFET dosimeter in measuring eye dose during 2D MV portal imaging for setup verification in radiotherapy. MATERIALS AND METHODS: The in-vivo dose measurements were performed by placing the dosimeters over the eyes of 30 brain patients during the acquisition of portal images in linear accelerator by delivering 1 MU with the field sizes of 10 × 10 cm2 and 15 × 15 cm2. RESULTS: The mean doses received by the left and right eyes of 10 out of 30 patients when both eyes were completely inside the anterior portal field were found to be 2.56 ± 0.2 cGy and 2.75 ± 0.2, respectively. Similarly, for next 10 patients out of the same 30 patients the mean doses to left and right eyes when both eyes were completely out of the anterior portal fields were found to be 0.13 ± 0.02 cGy and 0.17 ± 0.02 cGy, respectively. The mean doses to ipsilateral and contralateral eye for the last 10 patients when one eye was inside the anterior portal field were found to be 3.28 ± 0.2 cGy and 0.36 ± 0.1 cGy, respectively. CONCLUSION: The promising results obtained during 2D MV portal imaging using MOSFET have shown that this dosimeter is well suitable for assessing low doses during imaging thereby enabling to optimize the imaging procedure using the dosimetric data obtained. In addition, the documentation of the dose received by the patient during imaging procedure is possible with the help of an in-built software in conjunction with the MOSFET reader module.

8.
Rep Pract Oncol Radiother ; 26(6): 1019-1028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992876

RESUMO

BACKGROUND: The aim of the study was to investigate the dosimetric feasibility of using optically stimulated luminescence dosimeters (OSLD) and an electronic portal imaging device (EPID) for central axis (CA X) and off-axis (OAX) dosimetric leaf gap (DLG) measurement. MATERIALS AND METHODS: The Clinac 2100C/D linear accelerator equipped with Millennium-120 multileaf collimator (MLC) and EPID was utilized for this study. The DLG values at CA X and ± 1 cm OAX (1 cm superior and inferior to the CA X position, respectively along the plane perpendicular to MLC motion) were measured using OSLD (DLGOSLD) and validated using ionization chamber dosimetry (DLGICD). The two-dimensional DLG map (2D DLGEPID) was derived from the portal images of the DLG plan using a custom-developed software application that incorporated sliding aperture-specific correction factors. RESULTS: DLGOSLD and DLGICD, though measured with diverse setup in different media, showed similar variation both at CA X and ± 1 cm OAX positions. The corresponding DLGEPID values derived using aperture specific corrections were found to be in agreement with DLGOSLD and DLGICD. The 2D DLGEPID map provides insight into the varying patterns of the DLG with respect to each leaf pair at any position across the exposed field. CONCLUSIONS: Commensurate results of DLGOSLD with DLGICD values have proven the efficacy of OSLD as an appropriate dosimeter for DLG measurement. The 2D DLGEP ID map opens a potential pathway to accurately model the rounded-leaf end transmission with discrete leaf-specific DLG values for commissioning of a modern treatment planning system.

9.
Rep Pract Oncol Radiother ; 26(2): 281-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211779

RESUMO

BACKGROUND: The aim of the study was to evaluate analysis criteria for the identification of the presence of rectal gas during volumetric modulated arc therapy (VMAT) for prostate cancer patients by using electronic portal imaging device (EPID)-based in vivo dosimetry (IVD). MATERIALS AND METHODS: All measurements were performed by determining the cumulative EPID images in an integrated acquisition mode and analyzed using PerFRACTION commercial software. Systematic setup errors were simulated by moving the anthropomorphic phantom in each translational and rotational direction. The inhomogeneity regions were also simulated by the I'mRT phantom attached to the Quasar phantom. The presence of small and large air cavities (12 and 48 cm3) was controlled by moving the Quasar phantom in several timings during VMAT. Sixteen prostate cancer patients received EPID-based IVD during VMAT. RESULTS: In the phantom study, no systematic setup error was detected in the range that can happen in clinical (< 5-mm and < 3 degree). The pass rate of 2% dose difference (DD2%) in small and large air cavities was 98.74% and 79.05%, respectively, in the appearance of the air cavity after irradiation three quarter times. In the clinical study, some fractions caused a sharp decline in the DD2% pass rate. The proportion for DD2% < 90% was 13.4% of all fractions. Rectal gas was confirmed in 11.0% of fractions by acquiring kilo-voltage X-ray images after the treatment. CONCLUSIONS: Our results suggest that analysis criteria of 2% dose difference in EPID-based IVD was a suitable method for identification of rectal gas during VMAT for prostate cancer patients.

10.
Strahlenther Onkol ; 196(2): 182-192, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31925465

RESUMO

PURPOSE: Intra- and inter-fraction organ motion is a major concern in stereotactic body radiation therapy (SBRT). It may cause substantial differences between the planned and delivered dose distribution. Such delivery errors may lead to medical harm and reduce life expectancy for patients. The project presented here investigates and improves a rapid method to detect such errors by performing online dose verification through the analysis of electronic portal imaging device (EPID) images. METHODS: To validate the method, a respiratory phantom with inhomogeneous insert was examined under various scenarios: no-error and error-simulated measurements. Simulation of respiratory motions was practiced for target ranges up to 2 cm. Three types of treatment planning technique - 3DCRT (three-dimensional conformal radiation therapy), IMRT (intensity modulated radiation therapy), and VMAT (volumetric modulated arc therapy - were generated for lung SBRT. A total of 54 plans were generated to assess the influence of techniques on the performance of portal dose images. Subsequently, EPID images of 52 SBRT patients were verified. Both for phantom and patient cases, dose distributions were compared using the gamma index method according to analysis protocols in the target volume. RESULTS: The comparison of error-introduced EPID-measured images to reference images showed no significant differences with 3%/3 mm gamma evaluation, though target coverage was strongly underestimated. Gamma tolerance of 2%/2 mm reported noticeable detection in EPID sensitivity for simulated errors in 3DCRT and IMRT techniques. The passing rates for 3DCRT, IMRT, and VMAT with 1%/1 mm in open field were 84.86%, 92.91%, and 98.75%, and by considering MLC-CIAO + 1 cm (threshold 5%), were 68.25%, 83.19%, and 95.29%, respectively. CONCLUSION: This study demonstrates the feasibility of EPID for detecting the interplay effects. We recommend using thin computed tomography slices and adding sufficient tumor margin in order to limit the dosimetric organ motion in hypofractionated irradiation with preserved plan quality. In the presence of respiratory and gastrointestinal motion, tighter criteria and consequently using local gamma evaluation should be considered, especially for VMAT. This methodology offers a substantial step forward in in vivo dosimetry and the potential to distinguish errors depending on the gamma tolerances. Thus, the approach/prototype provides a fast and easy quality assurance procedure for treatment delivery verification.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X , Carga Tumoral/efeitos da radiação , Adulto Jovem
11.
J Appl Clin Med Phys ; 21(1): 110-116, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909889

RESUMO

PURPOSE: To investigate the effects of interfractional variation, such as anatomical changes and setup errors, on dose delivery during treatment for prostate cancer (PC) and head and neck cancer (HNC) by courses of volumetric modulated arc therapy (VMAT) aided by on-treatment electronic portal imaging device (EPID) images. METHODS: Seven patients with PC and 20 patients with HNC who had received VMAT participated in this study. After obtaining photon fluence at the position of the EPID for each treatment arc from on-treatment integrated EPID images, we calculated the differences between the fluence for the first fraction and each subsequent fraction for each arc. The passing rates were investigated based on a tolerance level of 3% of the maximum fluence during the treatment courses and the correlations between the passing rates and anatomical changes. RESULTS: In PC, the median and lowest passing rates were 99.8% and 95.2%, respectively. No correlations between passing rates and interfractional variation were found. In HNC, the median passing rate of all fractions was 93.0%, and the lowest passing rate was 79.6% during the 35th fraction. Spearman's correlation coefficients between the passing rates and changes in weight or neck volume were - 0.77 and - 0.74, respectively. CONCLUSIONS: Analyses of the on-treatment EPID images facilitates estimates of the interfractional anatomical variation in HNC patients during VMAT and thus improves assessments of the need for re-planning or adaptive strategies and the timing thereof.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
12.
Med J Armed Forces India ; 76(1): 51-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32020969

RESUMO

BACKGROUND: Inaccuracies in treatment setup during radiation therapy for breast cancers may increase risks to surrounding normal tissue toxicities, i.e. organs at risks (OARs), and compromise disease control. This study was planned to evaluate the dosimetric and isocentric variations and determine setup reproducibility and errors using an online electronic portal imaging (EPI) protocol. METHODS: A total of 360 EPIs in 60 patients receiving breast/chest wall irradiation were evaluated. Cumulative dose-volume histograms (DVHs) were analyzed for mean doses to lung (V20) and heart (V30), setup source to surface distance (SSD) and central lung distance (CLD), and shifts in anterior-posterior (AP), superior-inferior (SI), and medial lateral (ML) directions. RESULTS: Random errors ranged from 2 to 3 mm for the breast/chest wall (medial and lateral) tangential treatments and 2-2.5 mm for the anterior supraclavicular nodal field. Systematic errors ranged from 3 to 5 mm in the AP direction for the tangential fields and from 2.5 to 5 mm in the SI and ML direction for the anterior supraclavicular nodal field. For right-sided patients, V20 was 0.69-3.96 Gy, maximum lung dose was 40.5 Gy, V30 was 1.4-3 Gy, and maximum heart dose was 50.5 Gy. Similarly, for left-sided patients, the CLD (treatment planning system) was 25 mm-30 mm, CLD (EPIs) was 30-40 mm, V20 was 0.9-5.9 Gy, maximum lung dose was 45 Gy, V30 was 2.4-4.1 Gy, and maximum heart dose was 55 Gy. CONCLUSION: Online assessment of patient position with matching of EPIs with digitally reconstructed radiographs (DRRs) is a useful method in evaluation of interfraction reproducibility in breast irradiation.

13.
Strahlenther Onkol ; 195(11): 964-971, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31332457

RESUMO

OBJECTIVE: The impact of optical surface guidance on the use of portal imaging and the initial set-up duration in patients receiving postoperative radiotherapy of the breast or chest wall was investigated. MATERIAL AND METHODS: A retrospective analysis was performed including breast cancer patients who received postoperative radiotherapy between January 2016 and December 2016. One group of patients received treatment before the optical surface scanner was installed (no-OSS) and the other group was positioned using the additional information derived by the optical surface scanner (OSS). The duration of the initial set-up was recorded for each patient and a comparison of both groups was performed. Accordingly, the differences between planned and actually acquired portal images during the course of radiotherapy were compared between both groups. RESULTS: A total of 180 breast cancer patients were included (90 no-OSS, 90 OSS) in this analysis. Of these, 30 patients with left-sided breast cancer received radiotherapy in deep inspiration breath hold (DIBH). The mean set-up time was 10 min and 18 s and no significant difference between the two groups of patients was found (p = 0.931). The mean set-up time in patients treated without DIBH was 9 min and 45 s compared to 13 min with DIBH (p < 0.001), as portal imaging was performed in DIBH. No significant difference was found in the number of acquired to the planned number of portal images during the entire radiotherapy treatment for both groups (p = 0.287). CONCLUSION: Optical surface imaging is a valuable addition for primary patient set-up. The findings confirm that the addition of surface-based imaging did not prolong the clinical workflow and had no significant impact on the number of portal verification images carried out during the course of radiotherapy.


Assuntos
Posicionamento do Paciente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Adjuvante/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Óptica/métodos , Neoplasias Unilaterais da Mama/radioterapia , Terapia Combinada , Feminino , Humanos , Estudos Retrospectivos , Fatores de Tempo , Neoplasias Unilaterais da Mama/cirurgia
14.
Rep Pract Oncol Radiother ; 24(2): 133-141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723384

RESUMO

AIM: We sought to improve error detection ability during volume modulated arc therapy (VMAT) by dividing and evaluating the treatment plan. BACKGROUND: VMAT involves moving a beam source delivering radiation to tumor tissue through an arc, which significantly decreases treatment time. Treatment planning for VMAT involves many parameters. Quality assurance before treatment is a major focus of research. MATERIALS AND METHODS: We used an established VMAT prostate treatment plan and divided it into 12° × 30° sections. In all the sections, only image data that generated errors in one segment and those that were integrally acquired were evaluated by a gamma analysis. This was done with five different patient plans. RESULTS: The integrated image data resulting from errors in each section was 100% (tolerance 0.5 mm/0.5%) in the gamma analysis result in all image data. Division of the treatment plans produced a shift in the mean value of each gamma analysis in the cranial, left, and ventral directions of 94.59%, 98.83%, 96.58%, and the discrimination ability improved. CONCLUSION: The error discrimination ability was improved by dividing and verifying the portal imaging.

15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(2): 143-145, 2019 Mar 30.
Artigo em Zh | MEDLINE | ID: mdl-30977617

RESUMO

This study presents an electronic portal imaging devices (EPIDs) based on daily check tool for Linac that is usable for different cancer centers.Several images of open rectangle fields were acquired with EPID and the key items of daily Linac check were derived from the obtained images using an in-house developed automatic analysis software.The experiment results showed that each parameter calculated by this tool is as reliable as the corresponding result measured by the commercial quality assurance devices and its measuring efficiency is much higher.


Assuntos
Eletrônica Médica , Elétrons , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Software
16.
J Appl Clin Med Phys ; 19(3): 234-242, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29633542

RESUMO

The purpose of this study was to develop a simple verification method for the routine quality assurance (QA) of Dynamic WaveArc (DWA) irradiation using electronic portal imaging device (EPID) images and log data analysis. First, an automatic calibration method utilizing the outermost multileaf collimator (MLC) slits was developed to correct the misalignment between the center of the EPID and the beam axis. Moreover, to verify the detection accuracy of the MLC position according to the EPID images, various positions of the MLC with intentional errors in the range 0.1-1 mm were assessed. Second, to validate the geometric accuracy during DWA irradiation, tests were designed in consideration of three indices. Test 1 evaluated the accuracy of the MLC position. Test 2 assessed dose output consistency with variable dose rate (160-400 MU/min), gantry speed (2.2-6°/s), and ring speed (0.5-2.7°/s). Test 3 validated dose output consistency with variable values of the above parameters plus MLC speed (1.6-4.2 cm/s). All tests were delivered to the EPID and compared with those obtained using a stationary radiation beam with a 0° gantry angle. Irradiation log data were recorded simultaneously. The 0.1-mm intentional error on the MLC position could be detected by the EPID, which is smaller than the EPID pixel size. In Test 1, the MLC slit widths agreed within 0.20 mm of their exposed values. The averaged root-mean-square error (RMSE) of the dose outputs was less than 0.8% in Test 2 and Test 3. Using log data analysis in Test 3, the RMSE between the planned and recorded data was 0.1 mm, 0.12°, and 0.07° for the MLC position, gantry angle, and ring angle, respectively. The proposed method is useful for routine QA of the accuracy of DWA.


Assuntos
Algoritmos , Equipamentos e Provisões Elétricas/normas , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Calibragem , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Software
17.
J Appl Clin Med Phys ; 19(5): 398-406, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29984883

RESUMO

PURPOSE: The poor quality of megavoltage (MV) images from electronic portal imaging device (EPID) hinders visual verification of tumor targeting accuracy particularly during markerless tumor tracking. The aim of this study was to investigate the effect of a few representative image processing treatments on visual verification and detection capability of tumors under auto tracking. METHODS: Images of QC-3 quality phantom, a single patient's setup image, and cine images of two-lung cancer patients were acquired. Three image processing methods were individually employed to the same original images. For each deblurring, contrast enhancement, and denoising, a total variation deconvolution, contrast-limited adaptive histogram equalization (CLAHE), and median filter were adopted, respectively. To study the effect of image enhancement on tumor auto-detection, a tumor tracking algorithm was adopted in which the tumor position was determined as the minimum point of the mean of the sum of squared pixel differences (MSSD) between two images. The detectability and accuracy were compared. RESULTS: Deblurring of a quality phantom image yielded sharper edges, while the contrast-enhanced image was more readable with improved structural differentiation. Meanwhile, the denoising operation resulted in noise reduction, however, at the cost of sharpness. Based on comparison of pixel value profiles, contrast enhancement outperformed others in image perception. During the tracking experiment, only contrast enhancement resulted in tumor detection in all images using our tracking algorithm. Deblurring failed to determine the target position in two frames out of a total of 75 images. For original and denoised set, target location was not determined for the same five images. Meanwhile, deblurred image showed increased detection accuracy compared with the original set. The denoised image resulted in decreased accuracy. In the case of contrast-improved set, the tracking accuracy was nearly maintained as that of the original image. CONCLUSIONS: Considering the effect of each processing on tumor tracking and the visual perception in a limited time, contrast enhancement would be the first consideration to visually verify the tracking accuracy of tumors on MV EPID without sacrificing tumor detectability and detection accuracy.


Assuntos
Neoplasias/diagnóstico por imagem , Algoritmos , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Radiografia
18.
Rep Pract Oncol Radiother ; 23(4): 233-241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29991927

RESUMO

AIM: To identify the most reproducible technique of patient positioning and immobilization during pelvic radiotherapy. BACKGROUND: Radiotherapy plays an important role in the treatment of pelvic malignancies. Errors in positioning of patient are an integral component of treatment. The present study compares two methods of immobilization with no immobilization with an aim of identifying the most reproducible method. MATERIALS AND METHODS: 65 consecutive patients receiving pelvic external beam radiotherapy were retrospectively analyzed. 30, 21 and 14 patients were treated with no-immobilization with a leg separator, whole body vacuum bag cushion (VBC) and six point aquaplast immobilization system, respectively. The systematic error, random error and the planning target volume (PTV) margins were calculated for all the three techniques and statistically analyzed. RESULTS: The systematic errors were the highest in the VBC and random errors were the highest in the aquaplast group. Both systematic and random errors were the lowest in patients treated with no-immobilization. 3D Systematic error (mm, mean ± 1SD) was 4.31 ± 3.84, 3.39 ± 1.71 and 2.42 ± 0.97 for VBC, aquaplast and no-immobilization, respectively. 3D random error (mm, 1SD) was 2.96, 3.59 and 1.39 for VBC, aquaplast and no-immobilization, respectively. The differences were statistically significant between all the three groups. The calculated PTV margins were the smallest for the no-immobilization technique with 4.56, 4.69 and 4.59 mm, respectively, in x, y and z axes, respectively. CONCLUSIONS: Among the three techniques, no-immobilization technique with leg separator was the most reproducible technique with the smallest PTV margins. For obvious reasons, this technique is the least time consuming and most economically viable in developing countries.

19.
J Appl Clin Med Phys ; 18(1): 265-268, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28291919

RESUMO

PURPOSE: TrueBeams equipped with the 40 × 30 cm2 Electronic Portal Imaging Devices (EPIDs) are prone to image saturation at the image center when used with flattening filter free (FFF) photon energies. While cine imaging during treatment may not saturate because the beam is attenuated by the patient, the flood field calibration is affected when the standard calibration procedure is followed. Here, we describe the hardware and protocol to achieve improved image quality for this model of TrueBeam EPID. MATERIALS & METHODS: A stainless steel filter of uniform thickness was designed to have sufficient attenuation to avoid panel saturation. The cine imaging flood field calibration was acquired with the filter in place for the FFF energies under the standard calibration geometry (SID = 150 cm). Image quality during MV cine was assessed with & without the modified flood field calibration using a low contrast resolution phantom and an anthropomorphic phantom. RESULTS: When the flood field is acquired without the filter in place, a pixel gain artifact is clearly present in the image center which may be mis-attributed to panel saturation in the subject image. At the image center, the artifact obscured all low contrast inserts and was also visible on the anthropomorphic phantom. Using the filter for flood field calibration eliminates the artifact. CONCLUSION: TrueBeams equipped with the 40 × 30 cm2 IDU can utilize a modified flood field calibration procedure for FFF photon energies that improves image quality for cine MV imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Radiometria/instrumentação , Calibragem , Humanos , Fótons
20.
J Appl Clin Med Phys ; 18(4): 97-105, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28594085

RESUMO

The three-dimensional dose (3D) distribution of intensity-modulated radiation therapy (IMRT) was verified based on electronic portal imaging devices (EPIDs), and the results were analyzed. Thirty IMRT plans of different lesions were selected for 3D EPID-based dose verification. The gamma passing rates of the 3D dose verification-based EPID system (Edose, Version 3.01, Raydose, Guangdong, China) and Delta4 measurements were then compared with treatment planning system (TPS) calculations using global gamma criteria of 5%/3 mm, 3%/3 mm, and 2%/2 mm. Furthermore, the dose-volume histograms (DVHs) for planning target volumes (PTVs) as well as organs at risk (OARs) were analyzed using Edose. For dose verification of the 30 treatment plans, the average gamma passing rates of Edose reconstructions under the gamma criteria of 5%/3 mm, 3%/3 mm, and 2%/2 mm were (98.58 ± 0.93)%, (95.67 ± 1.97)%, and (83.13 ± 4.53)%, respectively, whereas the Delta4 measurement results were (99.14% ± 1.16)%, (95.81% ± 2.88)%, and (84.74% ± 7.00)%, respectively. The dose differences between Edose reconstructions and TPS calculations were within 3% for D95% , D98% , and Dmean in each PTV, with the exception that the D98% of the PTV-clinical target volume (CTV) in esophageal carcinoma cases was (3.21 ± 2.33)%. However, the larger dose deviations in OARs (such as lens, parotid gland, optic nerve, and spinal cord) can be determined based on DVHs. The difference was particularly obvious for OARs with small volumes; for example, the maximum dose deviation for the lens reached (-6.12 ± 5.28)%. A comparison of the results obtained with Edose and Delta4 indicated that the Edose system could be applied for 3D pretreatment dose verification of IMRT. This system could also be utilized to evaluate the gamma passing rate of each treatment plan. Furthermore, the detailed dose distributions of PTVs and OARs could be indicated based on DVHs, providing additional reliable data for quality assurance in a clinic setting.


Assuntos
Neoplasias Esofágicas/radioterapia , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Raios gama , Humanos , Cristalino/efeitos da radiação , Nervo Óptico/efeitos da radiação , Glândula Parótida/efeitos da radiação , Dosagem Radioterapêutica , Medula Espinal/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA