Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339452

RESUMO

Advancements in sensing technology have expanded the capabilities of both wearable devices and smartphones, which are now commonly equipped with inertial sensors such as accelerometers and gyroscopes. Initially, these sensors were used for device feature advancement, but now, they can be used for a variety of applications. Human activity recognition (HAR) is an interesting research area that can be used for many applications like health monitoring, sports, fitness, medical purposes, etc. In this research, we designed an advanced system that recognizes different human locomotion and localization activities. The data were collected from raw sensors that contain noise. In the first step, we detail our noise removal process, which employs a Chebyshev type 1 filter to clean the raw sensor data, and then the signal is segmented by utilizing Hamming windows. After that, features were extracted for different sensors. To select the best feature for the system, the recursive feature elimination method was used. We then used SMOTE data augmentation techniques to solve the imbalanced nature of the Extrasensory dataset. Finally, the augmented and balanced data were sent to a long short-term memory (LSTM) deep learning classifier for classification. The datasets used in this research were Real-World Har, Real-Life Har, and Extrasensory. The presented system achieved 89% for Real-Life Har, 85% for Real-World Har, and 95% for the Extrasensory dataset. The proposed system outperforms the available state-of-the-art methods.


Assuntos
Exercício Físico , Dispositivos Eletrônicos Vestíveis , Humanos , Locomoção , Atividades Humanas , Reconhecimento Psicológico
2.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894404

RESUMO

The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.


Assuntos
Algoritmos , Inteligência Artificial , Ataxia Cerebelar , Marcha , Doenças Raras , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Marcha/fisiologia , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/diagnóstico , Adulto , Análise da Marcha/métodos , Idoso
3.
Int J Environ Sci Technol (Tehran) ; 20(5): 5333-5348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35603096

RESUMO

The survival of mankind cannot be imagined without air. Consistent developments in almost all realms of modern human society affected the health of the air adversely. Daily industrial, transport, and domestic activities are stirring hazardous pollutants in our environment. Monitoring and predicting air quality have become essentially important in this era, especially in developing countries like India. In contrast to the traditional methods, the prediction technologies based on machine learning techniques are proved to be the most efficient tools to study such modern hazards. The present work investigates six years of air pollution data from 23 Indian cities for air quality analysis and prediction. The dataset is well preprocessed and key features are selected through the correlation analysis. An exploratory data analysis is exercised to develop insights into various hidden patterns in the dataset and pollutants directly affecting the air quality index are identified. A significant fall in almost all pollutants is observed in the pandemic year, 2020. The data imbalance problem is solved with a resampling technique and five machine learning models are employed to predict air quality. The results of these models are compared with the standard metrics. The Gaussian Naive Bayes model achieves the highest accuracy while the Support Vector Machine model exhibits the lowest accuracy. The performances of these models are evaluated and compared through established performance parameters. The XGBoost model performed the best among the other models and gets the highest linearity between the predicted and actual data.

4.
Chemphyschem ; 23(10): e202200066, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35289466

RESUMO

An important challenge in electrochemical CO2 reduction (ECR) is relating experimental conditions to their consequences, particularly in terms of product selectivity. The problem lies in the lack of descriptors which adequately describe the experimental protocols and their associated results. In this study, a machine learning approach is applied to correlate the molar composition of 21 single metals and 23 bimetallic particles, as well as operating parameters, from a large collection of synthetic records compiled from the literature with product selectivity. The decision tree obtained shows the conditions that lead to high desired product selectivity and provides a heuristic insight into its electrochemistry. As such, the data does not provide details. However, machine learning algorithms are capable of identifying hidden patterns in the data, providing a deeper insight into the chemistry involved in product formation in the ECR.


Assuntos
Dióxido de Carbono , Heurística , Algoritmos , Dióxido de Carbono/química , Eletroquímica , Aprendizado de Máquina
5.
Sensors (Basel) ; 22(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433352

RESUMO

Deep learning-based fault diagnosis usually requires a rich supply of data, but fault samples are scarce in practice, posing a considerable challenge for existing diagnosis approaches to achieve highly accurate fault detection in real applications. This paper proposes an imbalanced fault diagnosis of rotatory machinery that combines time-frequency feature oversampling (TFFO) with a convolutional neural network (CNN). First, the sliding segmentation sampling method is employed to primarily increase the number of fault samples in the form of one-dimensional signals. Immediately after, the signals are converted into two-dimensional time-frequency feature maps by continuous wavelet transform (CWT). Subsequently, the minority samples are expanded again using the synthetic minority oversampling technique (SMOTE) to realize TFFO. After such two-fold data expansion, a balanced data set is obtained and imported to an improved 2dCNN based on the LeNet-5 to implement fault diagnosis. In order to verify the proposed method, two experiments involving single and compound faults are conducted on locomotive wheel-set bearings and a gearbox, resulting in several datasets with different imbalanced degrees and various signal-to-noise ratios. The results demonstrate the advantages of the proposed method in terms of classification accuracy and stability as well as noise robustness in imbalanced fault diagnosis, and the fault classification accuracy is over 97%.

6.
Comput Electr Eng ; 100: 107971, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35399912

RESUMO

The coronavirus pandemic has affected people all over the world and posed a great challenge to international health systems. To aid early detection of coronavirus disease-2019 (COVID-19), this study proposes a real-time detection system based on the Internet of Things framework. The system collects real-time data from users to determine potential coronavirus cases, analyses treatment responses for people who have been treated, and accurately collects and analyses the datasets. Artificial intelligence-based algorithms are an alternative decision-making solution to extract valuable information from clinical data. This study develops a deep learning optimisation system that can work with imbalanced datasets to improve the classification of patients. A synthetic minority oversampling technique is applied to solve the problem of imbalance, and a recursive feature elimination algorithm is used to determine the most effective features. After data balance and extraction of features, the data are split into training and testing sets for validating all models. The experimental predictive results indicate good stability and compatibility of the models with the data, providing maximum accuracy of 98% and precision of 97%. Finally, the developed models are demonstrated to handle data bias and achieve high classification accuracy for patients with COVID-19. The findings of this study may be useful for healthcare organisations to properly prioritise assets.

7.
BMC Pediatr ; 21(1): 280, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134641

RESUMO

BACKGROUND: Using random forest to predict arrhythmia after intervention in children with atrial septal defect. METHODS: We constructed a prediction model of complications after interventional closure for children with atrial septal defect. The model was based on random forest, and it solved the need for postoperative arrhythmia risk prediction and assisted clinicians and patients' families to make preoperative decisions. RESULTS: Available risk prediction models provided patients with specific risk factor assessments, we used Synthetic Minority Oversampling Technique algorithm and random forest machine learning to propose a prediction model, and got a prediction accuracy of 94.65 % and an Area Under Curve value of 0.8956. CONCLUSIONS: Our study was based on the model constructed by random forest, which can effectively predict the complications of arrhythmia after interventional closure in children with atrial septal defect.


Assuntos
Comunicação Interatrial , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Criança , Comunicação Interatrial/cirurgia , Humanos , Período Pós-Operatório
8.
Medicina (Kaunas) ; 57(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34833410

RESUMO

Background and Objectives: Determining the presence or absence of cochlear dead regions (DRs) is essential in clinical practice. This study proposes a machine learning (ML)-based model that applies oversampling techniques for predicting DRs in patients. Materials and Methods: We used recursive partitioning and regression for classification tree (CT) and logistic regression (LR) as prediction models. To overcome the imbalanced nature of the dataset, oversampling techniques to duplicate examples in the minority class or to synthesize new examples from existing examples in the minority class were adopted, namely the synthetic minority oversampling technique (SMOTE). Results: The accuracy results of the 10-fold cross-validation of the LR and CT with the original data were 0.82 (±0.02) and 0.93 (±0.01), respectively. The accuracy results of the 10-fold cross-validation of the LR and CT with the oversampled data were 0.66 (±0.02) and 0.86 (±0.01), respectively. Conclusions: This study is the first to adopt the SMOTE method to assess the role of oversampling methods on audiological datasets and to develop an ML-based model. Considering that the SMOTE method did not improve the model's performance, a more flexible model or more clinical features may be needed.


Assuntos
Aprendizado de Máquina , Humanos , Modelos Logísticos
9.
J Magn Reson Imaging ; 49(5): 1489-1498, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30252978

RESUMO

BACKGROUND: Preoperative discrimination between nonmuscle-invasive bladder carcinomas (NMIBC) and the muscle-invasive ones (MIBC) is very crucial in the management of patients with bladder cancer (BC). PURPOSE: To evaluate the discriminative performance of multiparametric MRI radiomics features for precise differentiation of NMIBC from MIBC, preoperatively. STUDY TYPE: Retrospective, radiomics. POPULATION: Fifty-four patients with postoperative pathologically proven BC lesions (24 in NMIBC and 30 in MIBC groups) were included. FIELD STRENGTH/SEQUENCE: 3.0T MRI/T2 -weighted (T2 W) and multi-b-value diffusion-weighted (DW) sequences. ASSESSMENT: A total of 1104 radiomics features were extracted from carcinomatous regions of interest on T2 W and DW images, and the apparent diffusion coefficient maps. Support vector machine with recursive feature elimination (SVM-RFE) and synthetic minority oversampling technique (SMOTE) were used to construct an optimal discriminative model, and its performance was evaluated and compared with that of using visual diagnoses by experts. STATISTICAL TESTS: Chi-square test and Student's t-test were applied on clinical characteristics to analyze the significant differences between patient groups. RESULTS: Of the 1104 features, an optimal subset involving 19 features was selected from T2 W and DW sequences, which outperformed the other two subsets selected from T2 W or DW sequence in muscle invasion discrimination. The best performance for the differentiation task was achieved by the SVM-RFE+SMOTE classifier, with averaged sensitivity, specificity, accuracy, and area under the curve of receiver operating characteristic of 92.60%, 100%, 96.30%, and 0.9857, respectively, which outperformed the diagnostic accuracy by experts. DATA CONCLUSION: The proposed radiomics approach has potential for the accurate differentiation of muscle invasion in BC, preoperatively. The optimal feature subset selected from multiparametric MR images demonstrated better performance in identifying muscle invasiveness when compared with that from T2 W sequence or DW sequence only. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1489-1498.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Estudos Retrospectivos , Sensibilidade e Especificidade , Máquina de Vetores de Suporte , Neoplasias da Bexiga Urinária/patologia
10.
BMC Med Inform Decis Mak ; 17(1): 121, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806936

RESUMO

BACKGROUND: Data mining techniques such as support vector machines (SVMs) have been successfully used to predict outcomes for complex problems, including for human health. Much health data is imbalanced, with many more controls than positive cases. METHODS: The impact of three balancing methods and one feature selection method is explored, to assess the ability of SVMs to classify imbalanced diagnostic pathology data associated with the laboratory diagnosis of hepatitis B (HBV) and hepatitis C (HCV) infections. Random forests (RFs) for predictor variable selection, and data reshaping to overcome a large imbalance of negative to positive test results in relation to HBV and HCV immunoassay results, are examined. The methodology is illustrated using data from ACT Pathology (Canberra, Australia), consisting of laboratory test records from 18,625 individuals who underwent hepatitis virus testing over the decade from 1997 to 2007. RESULTS: Overall, the prediction of HCV test results by immunoassay was more accurate than for HBV immunoassay results associated with identical routine pathology predictor variable data. HBV and HCV negative results were vastly in excess of positive results, so three approaches to handling the negative/positive data imbalance were compared. Generating datasets by the Synthetic Minority Oversampling Technique (SMOTE) resulted in significantly more accurate prediction than single downsizing or multiple downsizing (MDS) of the dataset. For downsized data sets, applying a RF for predictor variable selection had a small effect on the performance, which varied depending on the virus. For SMOTE, a RF had a negative effect on performance. An analysis of variance of the performance across settings supports these findings. Finally, age and assay results for alanine aminotransferase (ALT), sodium for HBV and urea for HCV were found to have a significant impact upon laboratory diagnosis of HBV or HCV infection using an optimised SVM model. CONCLUSIONS: Laboratories looking to include machine learning via SVM as part of their decision support need to be aware that the balancing method, predictor variable selection and the virus type interact to affect the laboratory diagnosis of hepatitis virus infection with routine pathology laboratory variables in different ways depending on which combination is being studied. This awareness should lead to careful use of existing machine learning methods, thus improving the quality of laboratory diagnosis.


Assuntos
Mineração de Dados , Hepatite B/diagnóstico , Hepatite C/diagnóstico , Imunoensaio/normas , Valor Preditivo dos Testes , Máquina de Vetores de Suporte , Humanos
11.
J Med Syst ; 40(7): 159, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27185255

RESUMO

An imbalanced classification means that a dataset has an unequal class distribution among its population. For any given dataset, regardless of any balancing issue, the predictions made by most classification methods are highly accurate for the majority class but significantly less accurate for the minority class. To overcome this problem, this study took several imbalanced datasets from the famed UCI datasets and designed and implemented an efficient algorithm which couples Top-N Reverse k-Nearest Neighbor (TRkNN) with the Synthetic Minority Oversampling TEchnique (SMOTE). The proposed algorithm was investigated by applying it to classification methods such as logistic regression (LR), C4.5, Support Vector Machine (SVM), and Back Propagation Neural Network (BPNN). This research also adopted different distance metrics to classify the same UCI datasets. The empirical results illustrate that the Euclidean and Manhattan distances are not only more accurate, but also show greater computational efficiency when compared to the Chebyshev and Cosine distances. Therefore, the proposed algorithm based on TRkNN and SMOTE can be widely used to handle imbalanced datasets. Our recommendations on choosing suitable distance metrics can also serve as a reference for future studies.


Assuntos
Algoritmos , Biologia Computacional/métodos , Confiabilidade dos Dados , Análise por Conglomerados , Humanos , Modelos Logísticos , Redes Neurais de Computação
12.
Anal Biochem ; 474: 69-77, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25596338

RESUMO

Predominantly occurring on cytosine, DNA methylation is a process by which cells can modify their DNAs to change the expression of gene products. It plays very important roles in life development but also in forming nearly all types of cancer. Therefore, knowledge of DNA methylation sites is significant for both basic research and drug development. Given an uncharacterized DNA sequence containing many cytosine residues, which one can be methylated and which one cannot? With the avalanche of DNA sequences generated during the postgenomic age, it is highly desired to develop computational methods for accurately identifying the methylation sites in DNA. Using the trinucleotide composition, pseudo amino acid components, and a dataset-optimizing technique, we have developed a new predictor called "iDNA-Methyl" that has achieved remarkably higher success rates in identifying the DNA methylation sites than the existing predictors. A user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iDNA-Methyl, where users can easily get their desired results. We anticipate that the web-server predictor will become a very useful high-throughput tool for basic research and drug development and that the novel approach and technique can also be used to investigate many other DNA-related problems and genome analysis.


Assuntos
Biologia Computacional/métodos , Metilação de DNA/genética , Nucleotídeos/metabolismo , Software , Aminoácidos/metabolismo , Sequência de Bases , Códon/genética , Bases de Dados Genéticas , Humanos , Internet , Curva ROC , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte
13.
Biomed Tech (Berl) ; 69(1): 79-109, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-37823386

RESUMO

OBJECTIVES: Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs. METHODS: In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs. RESULTS: Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs. CONCLUSIONS: The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Inteligência Artificial , Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Aprendizado de Máquina , Algoritmos
14.
Accid Anal Prev ; 197: 107457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219599

RESUMO

This research leverages a novel deep learning model, Inception-v3, to predict pedestrian crash severity using data collected over five years (2016-2021) from Louisiana. The final dataset incorporates forty different variables related to pedestrian attributes, environmental conditions, and vehicular specifics. Crash severity was classified into three categories: fatal, injury, and no injury. The Boruta algorithm was applied to determine the importance of variables and investigate contributing factors to pedestrian crash severity, revealing several associated aspects, including pedestrian gender, pedestrian and driver impairment, posted speed limits, alcohol involvement, pedestrian age, visibility obstruction, roadway lighting conditions, and both pedestrian and driver conditions, including distraction and inattentiveness. To address data imbalance, the study employed Random Under Sampling (RUS) and the Synthetic Minority Oversampling Technique (SMOTE). The DeepInsight technique transformed numeric data into images. Subsequently, five crash severity prediction models were developed with Inception-v3, considering various scenarios, including original, under-sampled, over-sampled, a combination of under and over-sampled data, and the top twenty-five important variables. Results indicated that the model applying both over and under sampling outperforms models based on other data balancing techniques in terms of several performance metrics, including accuracy, sensitivity, precision, specificity, false negative ratio (FNR), false positive ratio (FPR), and F1-score. This model achieved prediction accuracies of 93.5%, 77.5%, and 85.9% for fatal, injury, and no injury categories, respectively. Additionally, comparative analysis based on several performance metrics and McNemar's tests demonstrated that the predictive performance of the Inception-v3 deep learning model is statistically superior compared to traditional machine learning and statistical models. The insights from this research can be effectively harnessed by safety professionals, emergency service providers, traffic management centers, and vehicle manufacturers to enhance their safety measures and applications.


Assuntos
Aprendizado Profundo , Pedestres , Ferimentos e Lesões , Humanos , Acidentes de Trânsito , Modelos Estatísticos , Algoritmos , Ferimentos e Lesões/epidemiologia
15.
Sci Rep ; 14(1): 7833, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570560

RESUMO

Heart disease is a major global cause of mortality and a major public health problem for a large number of individuals. A major issue raised by regular clinical data analysis is the recognition of cardiovascular illnesses, including heart attacks and coronary artery disease, even though early identification of heart disease can save many lives. Accurate forecasting and decision assistance may be achieved in an effective manner with machine learning (ML). Big Data, or the vast amounts of data generated by the health sector, may assist models used to make diagnostic choices by revealing hidden information or intricate patterns. This paper uses a hybrid deep learning algorithm to describe a large data analysis and visualization approach for heart disease detection. The proposed approach is intended for use with big data systems, such as Apache Hadoop. An extensive medical data collection is first subjected to an improved k-means clustering (IKC) method to remove outliers, and the remaining class distribution is then balanced using the synthetic minority over-sampling technique (SMOTE). The next step is to forecast the disease using a bio-inspired hybrid mutation-based swarm intelligence (HMSI) with an attention-based gated recurrent unit network (AttGRU) model after recursive feature elimination (RFE) has determined which features are most important. In our implementation, we compare four machine learning algorithms: SAE + ANN (sparse autoencoder + artificial neural network), LR (logistic regression), KNN (K-nearest neighbour), and naïve Bayes. The experiment results indicate that a 95.42% accuracy rate for the hybrid model's suggested heart disease prediction is attained, which effectively outperforms and overcomes the prescribed research gap in mentioned related work.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Cardiopatias , Humanos , Teorema de Bayes , Cardiopatias/diagnóstico , Cardiopatias/genética , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/genética , Algoritmos , Inteligência
16.
World J Gastrointest Oncol ; 16(4): 1227-1235, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660665

RESUMO

BACKGROUND: Postoperative delirium, particularly prevalent in elderly patients after abdominal cancer surgery, presents significant challenges in clinical management. AIM: To develop a synthetic minority oversampling technique (SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients. METHODS: In this retrospective cohort study, we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022. The incidence of postoperative delirium was recorded for 7 d post-surgery. Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not. A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium. The SMOTE technique was applied to enhance the model by oversampling the delirium cases. The model's predictive accuracy was then validated. RESULTS: In our study involving 611 elderly patients with abdominal malignant tumors, multivariate logistic regression analysis identified significant risk factors for postoperative delirium. These included the Charlson comorbidity index, American Society of Anesthesiologists classification, history of cerebrovascular disease, surgical duration, perioperative blood transfusion, and postoperative pain score. The incidence rate of postoperative delirium in our study was 22.91%. The original predictive model (P1) exhibited an area under the receiver operating characteristic curve of 0.862. In comparison, the SMOTE-based logistic early warning model (P2), which utilized the SMOTE oversampling algorithm, showed a slightly lower but comparable area under the curve of 0.856, suggesting no significant difference in performance between the two predictive approaches. CONCLUSION: This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods, effectively addressing data imbalance.

17.
Sci Rep ; 14(1): 17709, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085324

RESUMO

Generally, a person's life span depends on their food consumption because it may cause deadly diseases like colorectal cancer (CRC). In 2020, colorectal cancer accounted for one million fatalities globally, representing 10% of all cancer casualties. 76,679 males and 78,213 females over the age of 59 from ten states in the United States participated in this analysis. During follow-up, 1378 men and 981 women were diagnosed with colon cancer. This prospective cohort study used 231 food items and their variants as input features to identify CRC patients. Before labelling any foods as colorectal cancer-causing foods, it is ethical to analyse facts like how many grams of food should be consumed daily and how many times a week. This research examines five classification algorithms on real-time datasets: K-Nearest Neighbour (KNN), Decision Tree (DT), Random Forest (RF), Logistic Regression with Classifier Chain (LRCC), and Logistic Regression with Label Powerset (LRLC). Then, the SMOTE algorithm is applied to deal with and identify imbalances in the data. Our study shows that eating more than 10 g/d of low-fat butter in bread (RR 1.99, CI 0.91-4.39) and more than twice a week (RR 1.49, CI 0.93-2.38) increases CRC risk. Concerning beef, eating in excess of 74 g of beef steak daily (RR 0.88, CI 0.50-1.55) and having it more than once a week (RR 0.88, CI 0.62-1.23) decreases the risk of CRC, respectively. While eating beef and dairy products in a daily diet should be cautious about quantity. Consuming those items in moderation on a regular basis will protect us against CRC risk. Meanwhile, a high intake of poultry (RR 0.2, CI 0.05-0.81), fish (RR 0.82, CI 0.31-2.16), and pork (RR 0.67, CI 0.17-2.65) consumption negatively correlates to CRC hazards.


Assuntos
Neoplasias Colorretais , Dieta , Humanos , Neoplasias Colorretais/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Estudos Prospectivos , Algoritmos , Comportamento Alimentar , Padrões Dietéticos
18.
Proc Inst Mech Eng H ; 237(8): 958-974, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37427675

RESUMO

This work provides an innovative endodontic instrument fault detection methodology during root canal treatment (RCT). Sometimes, an endodontic instrument is prone to fracture from the tip, for causes uncertain the dentist's control. A comprehensive assessment and decision support system for an endodontist may avoid several breakages. This research proposes a machine learning and artificial intelligence-based approach that can help to diagnose instrument health. During the RCT, force signals are recorded using a dynamometer. From the acquired signals, statistical features are extracted. Because there are fewer instances of the minority class (i.e. faulty/moderate class), oversampling of datasets is required to avoid bias and overfitting. Therefore, the synthetic minority oversampling technique (SMOTE) is employed to increase the minority class. Further, evaluating the performance using the machine learning techniques, namely Gaussian Naïve Bayes (GNB), quadratic support vector machine (QSVM), fine k-nearest neighbor (FKNN), and ensemble bagged tree (EBT). The EBT model provides excellent performance relative to the GNB, QSVM, and FKNN. Machine learning (ML) algorithms can accurately detect endodontic instruments' faults by monitoring the force signals. The EBT and FKNN classifier is trained exceptionally well with an area under curve values of 1.0 and 0.99 and prediction accuracy of 98.95 and 97.56%, respectively. ML can potentially enhance clinical outcomes, boost learning, decrease process malfunctions, increase treatment efficacy, and enhance instrument performance, contributing to superior RCT processes. This work uses ML methodologies for fault detection of endodontic instruments, providing practitioners with an adequate decision support system.


Assuntos
Tratamento do Canal Radicular , Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Resultado do Tratamento , Tratamento do Canal Radicular/instrumentação , Análise de Falha de Equipamento/métodos
19.
Comput Biol Med ; 165: 107405, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678137

RESUMO

OBJECTIVE: Time-consuming data labeling in brain-computer interfaces (BCIs) raises many problems such as mental fatigue and is one key factor that hinders the real-world adoption of motor imagery (MI)-based BCIs. An alternative approach is to integrate readily available, as well as informative, unlabeled data online, whereas this approach is less investigated. APPROACH: We proposed an online semi-supervised learning scheme to improve the classification performance of MI-based BCI. This scheme uses regularized weighted online sequential extreme learning machine (RWOS-ELM) as the base classifier and updates its model parameters with incoming balanced data chunk-by-chunk. In the initial stage, we designed a technique that combines the synthetic minority oversampling with the edited nearest neighbor rule for data augmentation to construct more discriminative initial classifiers. When used online, the incoming chunk of data is first pseudo-labeled by RWOS-ELM as well as an auxiliary classifier, and then balanced again by the above-mentioned technique. Initial classifiers are further updated based on these class-balanced data. MAIN RESULTS: Offline experimental results on two publicly available MI datasets demonstrate the superiority of the proposed scheme over its counterparts. Further online experiments on six subjects show that their BCI performance gradually improved by learning from incoming unlabeled data. SIGNIFICANCE: Our proposed online semi-supervised learning scheme has higher computation and memory usage efficiency, which is promising for online MI-based BCIs, especially in the case of insufficient labeled training data.


Assuntos
Algoritmos , Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Aprendizado de Máquina Supervisionado , Software , Imaginação
20.
J Transp Health ; 29: 101587, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909252

RESUMO

Background: Many people changed their travel behavior during the coronavirus pandemic with more telecommuting, fewer trip frequencies, and less use of transit and ride-hailing to avoid infection. The lack of outdoor activities may result in social isolation and then trigger anxiety or depressive symptoms. Research objective: This study examines the relationship between anxiety and depression, and correlates various sociodemographic, income, job status, health-related factors, and travel behavior changes in six large U.S. cities. Data: U.S. Census Household Pulse Survey Phases 3.0 and 3.1 are employed. Method: GAD-2 and PHQ-2 are used to screen the scores of anxiety and depression. The synthetic minority oversampling technique is applied to correct sample distribution. The multivariate mixed model is employed to examine relationships. Results: (1) Anxiety and depression are positively correlated, and the percentage of high anxiety is greater than the percentage of high depression. (2) The levels of anxiety and depression significantly vary across the six cities. (3) Women, young, singles, and white people have higher levels of anxiety and depression during the pandemic. (4) People who are willing to receive vaccination tend to have higher levels of anxiety and depression. (5) The prevalence of depressive disorders is significantly lower in the high-income group. (6) People who applied for unemployment insurance and experienced expense difficulties are more likely to suffer high levels of anxiety and depression. (7) Travel behavior changes, measured by increased telecommuting, reduced trip frequency, and reduced use of transit and ride-hailing, all suggest positive correlations with anxiety and depression. Conclusions: More assistance and attention should be given to women, singles, and low-income households to reduce the prevalence of mental stress in vulnerable groups. Telecommuting can be but need to work with other travel demand management strategies. Travel and outdoor activities should be promoted under the new normal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA