Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Oncol ; 35(4): 392-401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244927

RESUMO

BACKGROUND: Sacituzumab govitecan (SG) is a Trop-2-directed antibody-drug conjugate containing cytotoxic SN-38, the active metabolite of irinotecan. SG received accelerated US Food and Drug Administration approval for locally advanced (LA) or metastatic urothelial carcinoma (mUC) previously treated with platinum-based chemotherapy and a checkpoint inhibitor, based on cohort 1 of the TROPHY-U-01 study. Mutations in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene are associated with increased adverse events (AEs) with irinotecan-based therapies. Whether UGT1A1 status could impact SG toxicity and efficacy remains unclear. PATIENTS AND METHODS: TROPHY-U-01 (NCT03547973) is a multicohort, open-label, phase II registrational study. Cohort 1 includes patients with LA or mUC who progressed after platinum- and checkpoint inhibitor-based therapies. SG was administered at 10 mg/kg intravenously on days 1 and 8 of 21-day cycles. The primary endpoint was objective response rate (ORR) per central review; secondary endpoints included progression-free survival, overall survival, and safety. Post hoc safety analyses were exploratory with descriptive statistics. Updated analyses include longer follow-up. RESULTS: Cohort 1 included 113 patients. At a median follow-up of 10.5 months, ORR was 28% (95% CI 20.2% to 37.6%). Median progression-free survival and overall survival were 5.4 months (95% CI 3.5-6.9 months) and 10.9 months (95% CI 8.9-13.8 months), respectively. Occurrence of grade ≥3 treatment-related AEs and treatment-related discontinuation were consistent with prior reports. UGT1A1 status was wildtype (∗1|∗1) in 40%, heterozygous (∗1|∗28) in 42%, homozygous (∗28|∗28) in 12%, and missing in 6% of patients. In patients with ∗1|∗1, ∗1|∗28, and ∗28|∗28 genotypes, any grade treatment-related AEs occurred in 93%, 94%, and 100% of patients, respectively, and were managed similarly regardless of UGT1A1 status. CONCLUSIONS: With longer follow-up, the ORR remains high in patients with heavily pretreated LA or mUC. Safety data were consistent with the known SG toxicity profile. AE incidence varied across UGT1A1 subgroups; however, discontinuation rates remained relatively low for all groups.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina/análogos & derivados , Carcinoma de Células de Transição , Imunoconjugados , Neoplasias da Bexiga Urinária , Humanos , Irinotecano , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/genética , Platina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Imunoconjugados/efeitos adversos
2.
Cancer Immunol Immunother ; 73(5): 92, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564022

RESUMO

Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.


Assuntos
Camptotecina/análogos & derivados , Neoplasias Colorretais , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Neoplasias Colorretais/terapia , Citosol , Microambiente Tumoral
3.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518997

RESUMO

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Assuntos
Antineoplásicos , Cumarínicos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Inibidores da Topoisomerase I , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Desenho de Fármacos , Cumarínicos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia
4.
J Transl Med ; 21(1): 897, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072965

RESUMO

BACKGROUND: The alkaloid camptothecin analog SN38 is a potent antineoplastic agent, but cannot be used directly for clinical application due to its poor water solubility. Currently, the prodrug approach on SN38 has resulted in 3 FDA-approved cancer therapeutics, irinotecan, ONIVYDE, and Trodelvy. However, only 2-8% of irinotecan can be transformed enzymatically in vivo into the active metabolite SN38, which severely limits the drug's efficacy. While numerous drug delivery systems have been attempted to achieve effective SN38 delivery, none have produced drug products with antitumor efficacy better than irinotecan in clinical trials. Therefore, novel approaches are urgently needed for effectively delivering SN38 to cancer cells with better efficacy and lower toxicity. METHODS: Based on the unique properties of human serum albumin (HSA), we have developed a novel single protein encapsulation (SPE) technology to formulate cancer therapeutics for improving their pharmacokinetics (PK) and antitumor efficacy and reducing their side effects. Previous application of SPE technology to doxorubicin (DOX) formulation has led to a promising drug candidate SPEDOX-6 (FDA IND #, 152154), which will undergo a human phase I clinical trial. Using the same SPE platform on SN38, we have now produced two SPESN38 complexes, SPESN38-5 and SPESN38-8. We conducted their pharmacological evaluations with respect to maximum tolerated dose, PK, and in vivo efficacy against colorectal cancer (CRC) and soft tissue sarcoma (STS) in mouse models. RESULTS: The lyophilized SPESN38 complexes can dissolve in aqueous media to form clear and stable solutions. Maximum tolerated dose (MTD) of SPESN38-5 is 250 mg/kg by oral route (PO) and 55 mg/kg by intravenous route (IV) in CD-1 mice. SPESN38-8 has the MTD of 45 mg/kg by IV in the same mouse model. PK of SPESN38-5 by PO at 250 mg/kg gave mouse plasma AUC0-∞ of 0.05 and 4.5 nmol × h/mL for SN38 and SN38 glucuronidate (SN38G), respectively, with a surprisingly high molar ratio of SN38G:SN38 = 90:1. However, PK of SPESN38-5 by IV at 55 mg/kg yielded much higher mouse plasma AUC0-∞ of 19 and 28 nmol × h/mL for SN38 and SN38G, producing a much lower molar ratio of SN38G:SN38 = 1.5:1. Antitumor efficacy of SPESN38-5 and irinotecan (control) was evaluated against HCT-116 CRC xenograft tumors. The data indicates that SPESN38-5 by IV at 55 mg/kg is more effective in suppressing HCT-116 tumor growth with lower systemic toxicity compared to irinotecan at 50 mg/kg. Additionally, SPESN38-8 and DOX (control) by IV were evaluated in the SK-LMS-1 STS mouse model. The results show that SPESN38-8 at 33 mg/kg is highly effective for inhibiting SK-LMS-1 tumor growth with low toxicity, in contrast to DOX's insensitivity to SK-LMS-1 with high toxicity. CONCLUSION: SPESN38 complexes provide a water soluble SN38 formulation. SPESN38-5 and SPESN38-8 demonstrate better PK values, lower toxicity, and superior antitumor efficacy in mouse models, compared with irinotecan and DOX.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias Colorretais , Humanos , Camundongos , Animais , Irinotecano/uso terapêutico , Irinotecano/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Modelos Animais de Doenças , Água , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacocinética
5.
FASEB J ; 36(3): e22213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192728

RESUMO

High-risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high-risk primary and recurrent disease are distinct: in newly diagnosed patients, non-response to therapy is often associated with a higher level of tumor "stemness" paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non-curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2-mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F-108 (PF108), these features translated into rapid tumor regression and long-term survival in models of both ABCG2-overexpressing and p53-mutant high-risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier-drug association integrated into the design of the hydrolytically activatable PF108-[SN22]2  have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo-naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier-based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high-risk neuroblastoma, PF108-[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug-resistant disease presently lacking effective treatment options.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Inibidores da Topoisomerase I/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Poloxâmero/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Inibidores da Topoisomerase I/química
6.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163672

RESUMO

Despite the use of intensive multimodality therapy, the majority of high-risk neuroblastoma (NB) patients do not survive. Without significant improvements in delivery strategies, anticancer agents used as a first-line treatment for high-risk tumors often fail to provide clinically meaningful results in the settings of disseminated, recurrent, or refractory disease. By enhancing pharmacological selectivity, favorably shifting biodistribution, strengthening tumor cell killing potency, and overcoming drug resistance, nanocarrier-mediated delivery of topoisomerase I inhibitors of the camptothecin family has the potential to dramatically improve treatment efficacy and minimize side effects. In this study, a structurally enhanced camptothecin analog, SN22, reversibly coupled with a redox-silent tocol derivative (tocopheryl oxamate) to allow its optimally stable encapsulation and controlled release from PEGylated sub-100 nm nanoparticles (NP), exhibited strong NB cell growth inhibitory activity, translating into rapid regression and durably suppressed regrowth of orthotopic, MYCN-amplified NB tumors. The robust antitumor effects and markedly extended survival achieved in preclinical models recapitulating different phases of high-risk disease (at diagnosis vs. at relapse with an acquired loss of p53 function after intensive multiagent chemotherapy) demonstrate remarkable potential of SN22 delivered in the form of a hydrolytically cleavable superhydrophobic prodrug encapsulated in biodegradable nanocarriers as an experimental strategy for treating refractory solid tumors in high-risk cancer patients.


Assuntos
Camptotecina/análogos & derivados , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neuroblastoma/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Tocoferóis/uso terapêutico , Camptotecina/química , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Fatores de Risco , Análise de Sobrevida , Tocoferóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296539

RESUMO

The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an 'interfacial inhibitor', thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the 'interfacial inhibitors' are primarily kinetic inhibitors that form molecular complexes with an "on-off" rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the "off rate". To test this hypothesis, we designed the compound using a C-9-(N-(2'-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the "off rate" of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM-1, which was compared with a Ka of 3.78 mM-1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the "on-off" timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.


Assuntos
Camptotecina , Prótons , Ligantes , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , DNA/metabolismo , Preparações Farmacêuticas
8.
Invest New Drugs ; 39(2): 362-376, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32981006

RESUMO

Camptothecin (CPT) and its derivatives, irinotecan and topotecan are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs. Mechanistically, they induce DNA double-strand breaks (DSBs). Although CPT is an effective chemotherapeutic agent used in the management of advanced colorectal cancer, there exist associated side effects. Herein, we aimed to establish novel drug combinations that can effectively aid in managing the CPT-related side effects. Besides, bromodomain and extra-terminal domain (BET) inhibitors have proved as promising drugs that target epigenetic mechanisms in various cancers, they alter DNA repair processes, hence are a potential candidate for CPT synthetic lethality. A novel BET inhibitor JQ1 synergized with CPT, exerted antiproliferative effects. Through cell cycle analyses and apoptosis assays, we revealed that a combination of CPT and JQ1 induces subG1-phase arrest and enhances cell apoptosis. This combination increased the intensity of γ-H2AX staining, a specific marker of DSBs. Moreover, colorectal cancer cells highly expressing Top1 showed greater sensitivity to JQ1, which was lowered through the lentiviral shRNA-mediated knockdown of Top1. JQ1, combined with CPT, impeded the recruitment of the Mre11-mediated MRN complex. Finally, JQ1 enhanced the in vivo sensitivity of tumors to CPT without inducing toxicity. These results demonstrate that a combination of BET inhibitor with Top1 inhibitor is safe and exerts positive chemotherapeutic effects in colorectal cancer.


Assuntos
Azepinas/farmacologia , Camptotecina/farmacologia , Reparo do DNA/efeitos dos fármacos , Proteína Homóloga a MRE11/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Triazóis/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Azepinas/administração & dosagem , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/patologia , Humanos , Triazóis/administração & dosagem
9.
Gastric Cancer ; 24(4): 780-789, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33997928

RESUMO

Approximately 12-15% of gastric cancers (GCs) are human epidermal growth factor receptor-2 (HER2)-positive (HER2 immunohistochemistry 3 + or 2 + /in situ hybridization + [ERBB2/CEP17 ≥ 2.0]). While the anti-HER2 monoclonal antibody trastuzumab, in combination with chemotherapy, is the standard treatment for HER2-positive GC, other HER2-targeted therapies have not demonstrated survival benefits in patients with GC, despite showing efficacy in patients with HER2-positive breast cancer. This indicates that there are unique challenges to the use of currently available HER2-targeted therapies for the treatment of HER2-positive GC. Trastuzumab deruxtecan (T-DXd) is an antibody-drug conjugate consisting of an anti-HER2 human monoclonal IgG1 antibody with the same amino acid sequence as trastuzumab, an enzymatically cleavable peptide-based linker, and DXd, a novel topoisomerase I inhibitor, as its released payload. T-DXd has a high drug-antibody ratio (approximately 8) and a demonstrated bystander antitumor effect. It has demonstrated significant efficacy when compared with standard therapies and is approved as third- or later-line treatment for HER2-positive GC in Japan and second- or later-line treatment in the US. T-DXd treatment is associated with gastrointestinal and hematological adverse events, and a risk of interstitial lung disease (ILD), with the ILD risk being higher in Japan than in countries other than Japan. However, most adverse events, including ILD, can be managed with proactive monitoring and T-DXd dose modification, and initiation of adequate treatment. In this review, we summarize the discovery and development of T-DXd and provide guidance for T-DXd safety management, including ILD monitoring, for patients with HER2-positive GC.


Assuntos
Camptotecina/análogos & derivados , Monitoramento de Medicamentos/métodos , Imunoconjugados/farmacologia , Receptor ErbB-2/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab/farmacologia , Camptotecina/farmacologia , Desenvolvimento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Humanos , Doenças Pulmonares Intersticiais/induzido quimicamente , Neoplasias Gástricas/genética
10.
Biosci Biotechnol Biochem ; 85(1): 181-191, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577663

RESUMO

Benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs) are potent anticancer compounds having unique BBPIs ring system designed on the basis of the marine natural product lamellarin D. In this study, we describe an alternative synthesis of a 2-demethoxy series of BBPIs, employing van Leusen pyrrole synthesis and an intramolecular Heck reaction as the key reactions. Cytotoxicity of the derivatives against several cancer and normal cell lines is reported.


Assuntos
Alcaloides/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzopiranos/síntese química , Benzopiranos/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/química , Benzopiranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Inibidores da Topoisomerase I/química
11.
Cancer Control ; 27(1): 1073274819897975, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32281394

RESUMO

TLC388, a camptothecin-derivative targeting topoisomerase I, is a potential anticancer drug. In this study, its effect on A549 and H838 human non-small cell lung cancer (NSCLC) cells was investigated. Cell viability and proliferation were determined by thiazolyl blue tetrazolium bromide and clonogenic assays, respectively, and cell cycle analysis and detection of phosphorylated histone H3 (Ser10) were performed by flow cytometry. γ-H2AX protein; G2/M phase-associated molecules ataxia-telangiectasia mutated (ATM), CHK1, CHK2, CDC25C, CDC2, and cyclin B1; and apoptosis were assessed with immunofluorescence staining, immunoblotting, and an annexin V assay, respectively. The effect of co-treatment with CHIR124 (a checkpoint kinase 1 [CHK1] inhibitor) was also studied. TLC388 decreased the viability and proliferation of cells of both NSCLC lines in a dose-dependent manner. TLC388 inhibited the viability of NSCLC cell lines with an estimated concentration of 50% inhibition (IC50), which was 4.4 and 4.1 µM for A549 and H838 cells, respectively, after 24 hours. Moreover, it resulted in the accumulation of cells at the G2/M phase and increased γ-H2AX levels in A549 cells. Levels of the G2 phase-related molecules phosphorylated ATM, CHK1, CHK2, CDC25C, and cyclin B1 were increased in TLC388-treated cells. CHIR124 enhanced the cytotoxicity of TLC388 toward A549 and H838 cells and induced apoptosis of the former. TLC388 inhibits NSCLC cell growth by inflicting DNA damage and activating G2/M checkpoint proteins that trigger G2 phase cell cycle arrest to enable DNA repair. CHIR124 enhanced the cytotoxic effect of TLC388 and induced apoptosis.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Camptotecina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Relação Dose-Resposta a Droga , Histonas/efeitos dos fármacos , Humanos
12.
Bioorg Chem ; 99: 103629, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32272367

RESUMO

We present here-in the molecular design and chemical synthesis of a novel series of diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition. The in vitro cytotoxicity of the synthesized compounds was evaluated against four human cancer cell lines including DU143, HEPG2, RKO and A549 in addition to non-cancerous immortalized human embryonic kidney cells (HEK-293). Compound 11 showed significant cytotoxicity against all the four human cancer cell lines with IC50 values ranging from 4.2 to 6.59 µM. 11 was also found to display 13-fold selective cytotoxicity towards A549 cancerous cells compared to the non-cancerous cell lines (HEK-293). The decatenation, DNA relaxation and intercalation assays revealed that the investigational compounds 10 and 11 act as highly selective inhibitors of Topo-I with DNA minor groove binding ability which was also supported by the results obtained from circular dichroism (CD), UV-visible spectroscopy and viscosity studies. Apoptosis induced by the lead 11 was observed using morphological observations, AO/EB and DAPI staining procedures. Further, dose-dependent increase in the depolarization of mitochondrial membrane was also observed through JC-1 staining. Annexin V-FITC/PI assay confirmed that 11 induced early apoptosis. Additionally, cell cycle analysis indicated that the cells were arrested at sub-G1 phase. Gratifyingly, in silico studies demonstrated promising interactions of 11 with the DNA and Topo I, thus supporting their potential DNA minor groove binding property with relatively selective Topo I inhibition compared to Topo II.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA de Neoplasias/efeitos dos fármacos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Azepinas/síntese química , Azepinas/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
13.
AAPS PharmSciTech ; 21(8): 324, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33200259

RESUMO

10-Hydroxycamptothecin (HCPT) is a DNA inhibitor of topoisomerase I and exerts antitumor activities against various types of cancer. However, reversible conversion from a pharmacologically active lactone form to an inactive carboxylate form of HCPT and poor water solubility hamper its clinical applications. To overcome these shortcomings, we designed a fine self-microemulsifying drug delivery system (SMEDDS) for HCPT to effectively protect HCPT in its active lactone form as well as improving dissolution rates. A formulation of HCPT-SMEDDS that contained ethyl oleate, D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and polyethylene glycol 400 (PEG400) was optimized by using the central composite design and response surface methodology. Following 1:100 aqueous dilution of the optimized HCPT-SMEDDS, the droplet size of resulting microemulsions was 25.6 ± 0.7 nm, and the zeta potential was - 15.2 ± 0.4 mV. The optimized HCPT-SMEDDS appeared to stabilize the lactone moiety of HCPT with 73.6% being present in the pharmacologically active lactone forms in simulated intestinal fluid, but only 45.7% for free HCPT. Furthermore, the physically stable formulation showed the active lactone form predominated in HCPT-SMEDDS (> 95%) for 6 months under the accelerated storage condition. Meanwhile, the optimized SMEDDS formulation also significantly improved dissolution rates and membrane permeability of the lactone form of HCPT. Therefore, HCPT-SMEDDS involved designing for the ease of manufacture, and provided a potent oral dosage form for preserving its active lactone form as well as enhancing the dissolution rate.


Assuntos
Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Emulsões/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Camptotecina/administração & dosagem , Camptotecina/química , Masculino , Tamanho da Partícula , Solubilidade
14.
Pharmacol Res ; 148: 104368, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31415918

RESUMO

In the effort to identify natural products that regulate immunity and inflammation, we found that nitidine chloride (NC), an alkaloid from herb Zanthoxylum nitidum, enhanced IL-10 production in lipopolysaccharide (LPS)-stimulated myeloid cells. While NC was shown to be capable of inhibiting topoisomerase I (TOP1), NC analogs that could not inhibit TOP1 failed to increase IL-10 production. Moreover, medicinal TOP1 inhibitors TPT and SN-38 also augmented IL-10 production significantly, whereas knockdown of TOP1 prevented NC, TPT, and SN-38 from enhancing IL-10 expression. Thus, NC promoted IL-10 production by inhibiting TOP1. In LPS-induced endotoxemic mice, NC and TOP1 inhibitors increased IL-10 production, suppressed inflammatory responses, and reduced mortality remarkably. The anti-inflammatory activities of TOP1 inhibition were markedly reduced by IL-10-neutralizing antibody and largely absent in IL-10-deficient mice. In LPS-stimulated RAW264.7 cells and in peritoneal macrophages from endotoxemic mice, NC and TOP1 inhibitors significantly enhanced the activation of Akt, a critical signal transducer for IL-10 production, and inhibition of Akt prevented these compounds from enhancing IL-10 production and ameliorating endotoxemia. These data indicated that NC and TOP1 inhibitors are able to exert anti-inflammatory action through enhancing Akt-mediated IL-10 production and may assist with the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofenantridinas/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Interleucina-10/metabolismo , Animais , Linhagem Celular , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Células THP-1
15.
Xenobiotica ; 49(9): 1086-1096, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30351177

RESUMO

Trastuzumab deruxtecan (DS-8201a) is an antibody-drug conjugate (ADC) composed of a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2) conjugated to a topoisomerase I inhibitor (DXd) at a drug-to-antibody ratio (DAR) of 7-8. Here, we examined the pharmacokinetic (PK) profiles of DS-8201a and DXd in cynomolgus monkeys, a cross-reactive species. Following intravenous (iv) administration of DS-8201a, the linker was stable in plasma, and systemic DXd exposure was low. DXd was rapidly cleared following iv dosing. Biodistribution studies revealed that intact DS-8201a was present mostly in the blood without tissue-specific retention. The major pathway of excretion for DXd was the faecal route following iv administration of radiolabelled DS-8201a. The only detectable metabolite in the urine and faeces was unmetabolized DXd. DXd is a substrate of organic anion transporting polypeptides, P-gp, and breast cancer resistance protein. In conclusion, the stable linker in circulation and the high clearance of DXd upon release resulted in the low systemic exposure to DXd. Furthermore, the minimal tissue-specific retention and rapid excretion of DXd into faeces as its unmetabolized form with potentially limited impact on drug - drug interaction as a victim were also critical elements of the PK profile of DS-8201a.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Camptotecina/análogos & derivados , Imunoconjugados/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Ductos Biliares/cirurgia , Células CACO-2 , Camptotecina/farmacocinética , Radioisótopos de Carbono/farmacocinética , Humanos , Inativação Metabólica , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Macaca fascicularis , Masculino , Proteínas de Neoplasias/metabolismo , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Distribuição Tecidual , Inibidores da Topoisomerase I/farmacocinética , Trastuzumab
16.
Molecules ; 23(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111719

RESUMO

As part of our initial efforts into developing a tumor-targeting therapy, C-10 substituted derivatives of a camptothecin analog (SN-38) have been synthesized (2-, 3- and 4-nitrobenzyl) for use as potential hypoxia-activated prodrugs and evaluated for their cytotoxicity, topoisomerase I inhibition and electrochemical (reductive) properties. All three derivatives were found to possess reduced toxicity towards human leukemia K562 cells compared to SN-38, validating a condition for prodrug action. Using an MTS assay, IC50's were found to be 3.0, 25.9, 12.2 and 58.0 nM for SN-38, 2-nitro-, 3-nitro- and 4-nitrobenzyl-C10-substituted-SN-38, respectively, representing an 8-, 4- and 19-fold decrease in cytotoxicity. Using a topoisomerase I assay, one of the analogs (4-nitrobenzyl) was shown to inhibit the ability of this enzyme to relax supercoiled pBR322 DNA, at a similar concentration to the clinically-approved active metabolite SN-38. Cyclic voltammetry detailed the reductive nature of the analogs, and was used to infer the potential of these compounds to serve as hypoxia-targeting prodrugs. The electrochemical results also validated the quasi-reversible nature of the first reduction step, and served as a proof-of-principle that hypoxia-targeting prodrugs of SN-38 can participate in a redox-futile cycle, the proposed mechanism of activation and targeting. Chemical reduction of the 4-nitrobenzyl analog led to the formation/release of SN-38 and validated the prodrug ability of the C-10 substituted derivative.


Assuntos
Antineoplásicos/química , Camptotecina/análogos & derivados , Camptotecina/química , Nitrobenzenos/química , Pró-Fármacos/química , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Camptotecina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Humanos , Células K562 , Nitrobenzenos/farmacologia , Oxirredução , Pró-Fármacos/farmacologia , Estudo de Prova de Conceito , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase I/farmacologia , Hipóxia Tumoral
17.
Biochem Biophys Res Commun ; 491(4): 1092-1097, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28797568

RESUMO

Radiotherapy is one of the modalities in the treatment of glioblastoma patients, but glioma tumors are resistant to radiation and also chemotherapy drugs. Thus, researchers are investigating drugs which have radiosensitization capabilities in order to improve radiotherapy. PARP enzymes and topoisomerase I enzymes have a critical role in repairing DNA damage in tumor cells. Thus, inhibiting activity of these enzymes helps stop DNA damage repair and increase DSB lethal damages. In the current study, we investigated the combination of TPT as a topoisomerase I inhibitor, and A-966492 as a novel PARP inhibitor for further radiosensitization. U87MG cells (a human glioblastoma cell line) were cultured in Poly-Hema coated flasks to reach 300 µm-diameter spheroids. Treatments were accomplished by using non-toxic concentrations of A-966492 and Topotecan. The surviving fraction of treated cells was determined by clonogenic assay after treatment with drugs and 6 MV X-ray. The γ-H2AX expression was measured by an immunofluorescence staining method to examine the influence of A-966492, TPT and radiation on the induction of double stranded DNA breaks. Treatments using the A-966492 drug were conducted in concentration of 1 µM. Combining A-966492 and TPT with radiation yielded enhanced cell killing, as demonstrated by a sensitizer enhancement ratio at 50% survival (SER50) 1.39 and 1.16 respectively. Radio- and chemo-sensitization was further enhanced when A-966492 was combined with both X-ray and TPT, with SER50 of 1.53. Also γ-H2AX expression was higher in the group treated with a combination of drugs and radiation. A-966492 is an effective PARP inhibitor and has significant radio-sensitivity on U87MG spheroids. By accumulating cells in the S phase and by inhibiting the DNA damage repair, TPT enhanced radio-sensitivity. A-966492 combined with TPT as a topoisomerase I inhibitor had additive radio-sensitizing effects. As a result, applying PARP and topoisomerase I inhibitors can be a suitable strategy for improving radiotherapy in clinics.


Assuntos
Benzimidazóis/farmacologia , Glioblastoma/tratamento farmacológico , Esferoides Celulares/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Benzimidazóis/administração & dosagem , Linhagem Celular Tumoral , DNA Topoisomerases Tipo I/metabolismo , Humanos , Tolerância a Radiação/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/administração & dosagem , Topotecan/administração & dosagem , Raios X
18.
Cancer Sci ; 107(7): 1039-46, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27166974

RESUMO

Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Efeito Espectador/efeitos dos fármacos , Camptotecina/análogos & derivados , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Neoplasias/genética , Neoplasias/patologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Ado-Trastuzumab Emtansina , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Camptotecina/imunologia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Maitansina/análogos & derivados , Maitansina/imunologia , Maitansina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/enzimologia , Neoplasias/imunologia , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Inibidores da Topoisomerase I/farmacologia , Trastuzumab
19.
BMC Cancer ; 16(1): 779, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27724887

RESUMO

BACKGROUND: TP300, a recently developed synthetic camptothecin analogue, is a highly selective topoisomerase I inhibitor. A phase I study showed good safety and tolerability. As camptothecins have proven active in oesophago-gastric adenocarcinomas, in this phase II study we assessed the efficacy and safety of TP300 in patients with gastric or gastro-oesophageal junction (GOJ) adenocarcinomas. METHODS: Eligible patients had metastatic or locally advanced gastric or Siewert Types II or III GOJ inoperable adenocarcinoma. Patients were chemotherapy naïve unless this had been administered in the perioperative setting. TP300 was administered as a 1-h intravenous infusion every 3 weeks (a cycle) for up to 6 cycles at a starting dose of 8 mg/m2 with intra-patient escalation to 10 mg/m2 from cycle 2 in the absence of dose-limiting toxicity. Tumour responses (RECIST 1.1) were assessed every 6 weeks. Toxicity was recorded by NCI-CTCAE version 3.0. Using a modified two-stage Simon design (Stage I and II), a total of 43 patients were to be included providing there were 3 of 18 patients with objective response in Stage I of the study. RESULTS: In Stage I of the study 20 patients (14 males, 6 females), median age 67 years (range 40 - 82), performance status ECOG 0/1, with GC [14] or GOJ carcinoma [6] were enrolled. Of the 16 evaluable patients, 11 received the planned dose increase to 10 mg/m2 at cycle 2, 2 decreased to 6 mg/m2, and 3 continued on 8 mg/m2. There were no objective responses after 2 cycles of treatment. Twelve patients had stable disease for 1 - 5 months and 4 had progressive disease. Median progression free survival (PFS) was 4.1 months (CI [1.6 - 4.9]), median time to progression (TTP) was 2.9 months (CI [1.4 - 4.2]). Grade 3/4 toxicities (worst grade all cycles) included 7 patients (35 %) with neutropenia, 4 patients (20 %) with anaemia, 2 patients (10 %) with thrombocytopenia, and 3 patients (15 %) with fatigue. This study was terminated at the end of Stage I due to a lack of the required (3/18) responders. CONCLUSIONS: This study of TP300 showed good drug tolerability but it failed to demonstrate sufficient efficacy as measured by radiological response. TRIAL REGISTRATION: EU-CTR 2009-012097-12 2009-09-03.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Dipeptídeos/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Junção Esofagogástrica/patologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Antineoplásicos/química , Antineoplásicos/farmacologia , Terapia Combinada , Dipeptídeos/química , Dipeptídeos/farmacologia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Resultado do Tratamento
20.
Bioorg Med Chem Lett ; 26(20): 5069-5072, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27599744

RESUMO

To establish a novel and widely applicable payload-linker technology for antibody-drug conjugates (ADCs), we have focused our research on applying exatecan mesylate (DX-8951f), a potent topoisomerase I inhibitor, which exhibits extensive antitumor activity as well as significant myelotoxicity, as the payload part. Through this study, we discovered a promising exatecan derivative (DX-8951 derivative, DXd), that has the characteristics of low membrane permeability and shows considerably less myelotoxicity than that shown by exatecan mesylate in an in vitro human colony forming unit-granulocyte macrophage assay. DXd was further used for drug conjugation by using commercially or clinically useful monoclonal antibodies to evaluate the potency of the ADC. The result revealed that the DXd-ADCs targeting CD30, CD33, and CD70 were effective against each of their respective target-expressing tumor cell lines. Moreover, a novel DXd-ADC targeting B7-H3, which is a new target for ADCs, also showed potent antitumor efficacy both in vitro and in vivo. In conclusion, this study showed that this novel topoisomerase I inhibitor-based ADC technology is widely applicable to a diverse number of antibodies and is expected to mitigate myelotoxicity, thereby possibly resulting in better safety profiles than that of existing ADC technologies.


Assuntos
Imunoconjugados/farmacologia , Inibidores da Topoisomerase I/farmacologia , Desenho de Fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA