RESUMO
Autologous chimeric antigen receptor T-cell therapy presents promising treatment outcomes for various cancers. However, its potential is restrained by unique supply chain challenges, including dynamic patient health conditions and extended turnaround time. These challenges often lead to missed optimal treatment windows, impeding the effective delivery of life-saving treatments. This article presents SimPAC (simulation-based decision support for Patient-centric manufacturing of autologous cell therapies). SimPAC is designed to model and incorporate real-time patient health conditions into the supply chain decisions of autologous chimeric antigen receptor T-cell therapy. SimPAC integrates system dynamics and agent-based simulation techniques, facilitating the adaptation of manufacturing processes and production schedules based on real-time patient health conditions. SimPAC can model various patient disease progressions using parametric functions, nonparametric functions, or tabular data. Additionally, SimPAC offers easy configuration options to model various cell therapy supply chains. We provide two case studies to demonstrate the capabilities of SimPAC and highlight the benefits of patient-centric manufacturing, including improved survival rates and potential economic advantages. However, while the benefits are significant, our study also emphasizes the importance of balancing improved patient outcomes, economic viability and ethical considerations in the context of personalized medicine. SimPAC can be used to explore applications of this approach to diverse therapeutic contexts and supply chain configurations.
Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/economia , Receptores de Antígenos Quiméricos/uso terapêutico , Simulação por Computador , Transplante Autólogo/métodos , Neoplasias/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodosRESUMO
BACKGROUND AIMS: The production of commercial autologous cell therapies such as chimeric antigen receptor T cells requires complex manual manufacturing processes. Skilled labor costs and challenges in manufacturing scale-out have contributed to high prices for these products. METHODS: We present a robotic system that uses industry-standard cell therapy manufacturing equipment to automate the steps involved in cell therapy manufacturing. The robotic cluster consists of a robotic arm and customized modules, allowing the robot to manipulate a variety of standard cell therapy instruments and materials such as incubators, bioreactors, and reagent bags. This system enables existing manual manufacturing processes to be rapidly adapted to robotic manufacturing, without having to adopt a completely new technology platform. Proof-of-concept for the robotic cluster's expansion module was demonstrated by expanding human CD8+ T cells. RESULTS: The robotic cultures showed comparable cell yields, viability, and identity to those manually performed. In addition, the robotic system was able to maintain culture sterility. CONCLUSIONS: Such modular robotic solutions may support scale-up and scale-out of cell therapies that are developed using classical manual methods in academic laboratories and biotechnology companies. This approach offers a pathway for overcoming manufacturing challenges associated with manual processes, ultimately contributing to the broader accessibility and affordability for personalized immunotherapies.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Robótica , Humanos , Robótica/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Linfócitos T CD8-Positivos/imunologia , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos , AutomaçãoRESUMO
BACKGROUND AIMS: The selection between centralized and point-of-care (POC) manufacturing supply-chain network design is a crucial consideration in the autologous cell therapy (AuCT) industry, as each approach offers its advantages and disadvantages. METHODS: This study uses a simulation-based approach to compare and examine the two strategies using the supply chain for chimeric antigen receptor T-cell therapy manufacturing as an exemplar. When does it make sense to use one manufacturing strategy over another? Currently, major manufacturers in the AuCT industry use centralized supply-chain strategies predominantly in practice. The simulation results explain the reasons for this choice. To enhance the competitiveness of the POC strategy, two operation rules are proposed and tested with the simulation. The study uses key performance indicators such as cost, fulfillment time, service level, and resource utilization to provide generic guidelines based on the findings. RESULTS: The results have revealed that (i) the centralized supply-chain strategy has a significant advantage at current demand levels of a few thousand products per year; (ii) "optimal capacity" exists for the POC strategy that minimizes the cost of goods and (iii) allowing part-time labor and order transshipment can significantly increase the competitiveness of the POC strategy. CONCLUSIONS: This study may be useful in helping commercial manufacturers make informed decisions about their manufacturing approach to enhance their competitiveness in the market and to ensure a high level of patient benefit.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Comércio , Simulação por Computador , Imunoterapia AdotivaRESUMO
BACKGROUND AIMS: Umbilical cord blood (UCB)-derived cells show strong promise as a treatment for neonatal brain injury in pre-clinical models and early-phase clinical trials. Feasibility of UCB collection and autologous administration is reported for term infants, but data are limited for preterm infants. Here the authors assessed the feasibility of UCB-derived cell collection for autologous use in extremely preterm infants born at less than 28 weeks, a population with a high incidence of brain injury and subsequent neurodisability. METHODS: In a prospective study at a tertiary hospital in Melbourne, Australia, UCB was collected from infants born at less than 28 weeks and processed to obtain total nucleated cells (TNCs), CD34+ cells, mononuclear cells and cell viability via fluorescence-activated cell sorting prior to cryopreservation. Feasibility was pre-defined as volume adequate for cryopreservation (>9 mL UCB collected) and >25 × 106 TNCs/kg retrieved. RESULTS: Thirty-eight infants (21 male, 17 female) were included in the study. Twenty-four (63.1%) were delivered via cesarean section, 30 (78.9%) received delayed cord clamping before collection and 11 (28.9%) were a multiple birth. Median (interquartile range [IQR]) gestational age was 26.0 weeks (24.5-27.5) and mean (standard deviation) birth weight was 761.5 g (221.5). Median (IQR) UCB volume collected was 19.1 mL/kg (10.5-23.5), median (IQR) TNC count was 105.2 × 106/kg (57.4-174.4), median (IQR) CD34+ cell count was 1.5 × 106/kg (0.6-2.1) and median (IQR) cell viability pre-cryopreservation was 95% (92.1-96.0). Feasibility of collection volume and cell count suitable for cell cryopreservation was achieved in 27 (71%) and 28 (73.6%) infants, respectively. CONCLUSIONS: UCB-derived cell collection adequate for cryopreservation and subsequent autologous reinfusion was achieved in 70% of extremely preterm infants. Extremely preterm UCB demonstrated a higher CD34+:TNC ratio compared with published full-term values. Recruitment to demonstrate safety of UCB cell administration in extremely premature infants is ongoing in the CORD-SAFE study (trial registration no. ACTRN12619001637134).
Assuntos
Sangue Fetal , Lactente Extremamente Prematuro , Humanos , Recém-Nascido , Masculino , Gravidez , Feminino , Lactente , Cesárea , Estudos Prospectivos , Estudos de ViabilidadeRESUMO
BACKGROUND: Cell therapy with autologous peripheral blood mononuclear cells (PB-MNCs) may help restore limb perfusion in patients with diabetes mellitus and critical limb-threatening ischemia (CLTI) deemed not eligible for revascularization procedures and consequently at risk for major amputation (no-option). Fundamental is to establish its clinical value and to identify candidates with a greater benefit over time. Assessing the frequency of PB circulating angiogenic cells and extracellular vesicles (EVs) may help in guiding candidate selection. METHODS: We conducted a prospective, non-controlled, observational study on no-option CLTI diabetic patients that underwent intramuscular PB-MNCs therapy, which consisted of more cell treatments repeated a maximum of three times. The primary endpoint was amputation rate at 1 year following the first treatment with PB-MNCs. We evaluated ulcer healing, walking capability, and mortality during the follow-up period. We assessed angiogenic cells and EVs at baseline and after each cell treatment, according to primary outcome and tissue perfusion at the last treatment [measured as transcutaneous oxygen pressure (TcPO2)]. RESULTS: 50 patients were consecutively enrolled and the primary endpoint was 16%. TcPO2 increased after PB-MNCs therapy (17.2 ± 11.6 vs 39.1 ± 21.8 mmHg, p < .0001), and ulcers healed with back-to-walk were observed in 60% of the study population (88% of survivors) during follow-up (median 1.5 years). Patients with a high level of TcPO2 (≥ 40 mmHg) after the last treatment showed a high frequency of small EVs at enrollment. CONCLUSIONS: In no-option CLTI diabetic patients, PB-MNCs therapy led to an improvement in tissue perfusion, a high rate of healing, and back-to-walk. Coupling circulating cellular markers of angiogenesis could help in the identification of patients with a better clinical benefit over time.
Assuntos
Diabetes Mellitus , Pé Diabético , Amputação Cirúrgica , Pé Diabético/cirurgia , Pé Diabético/terapia , Humanos , Isquemia/diagnóstico , Isquemia/cirurgia , Leucócitos Mononucleares , Salvamento de Membro/métodos , Oxigênio , Estudos Prospectivos , Resultado do TratamentoRESUMO
BACKGROUND: Cell therapies explore unmet clinical needs of patients with chronic kidney disease with the potential to alter the pathway toward end-stage kidney disease. We describe the design and baseline patient characteristics of a phase II multicenter clinical trial utilizing the novel renal autologous cell therapy (REACT), by direct kidney parenchymal injection via the percutaneous approach in adults with type 2 diabetic kidney disease (T2DKD), to delay or potentially avoid renal replacement therapy. DESIGN: The study conducted a prospective, multicenter, randomized control, open-label, phase II clinical trial between an active treatment group (ATG) receiving REACT from the beginning of the trial and a contemporaneous deferred treatment group (DTG) receiving standard of care for 12 months before crossing over to receive REACT. OBJECTIVES: The objective of this study was to establish the safety and efficacy of 2 REACT injections with computed tomography guidance, into the renal cortex of patients with T2DKD administered 6 months apart, and to compare the longitudinal change in renal function between the ATG and the DTG. SETTING: This was a multicenter study conducted in major US hospitals. PATIENTS: We enrolled eighty-three adult patients with T2DKD, who have estimated glomerular filtration rates (eGFRs) between 20 and 50 mL/min/1.73 m2. METHODS: All patients undergo an image-guided percutaneous kidney biopsy to obtain epithelial phenotype selective renal cells isolated from the kidney tissue that is then expanded ex vivo over 4-6 weeks, resulting in the REACT biologic product. Patients are randomized 1:1 into the ATG or the DTG. Primary efficacy endpoints for both study groups include eGFR measurements at baseline and at 3-month intervals, through 24 months after the last REACT injection. Safety analyses include biopsy-related complications, REACT injection, and cellular-related adverse events. The study utilizes Good Clinical and Manufacturing Practices and a Data and Safety Monitoring Board. The sample size confers a statistical power of 80% to detect an eGFR change in the ATG compared to the DTG at 24 months with an α = 0.05. LIMITATIONS: Blinding cannot occur due to the intent to treat procedure, biopsy in both groups, and open trial design. CONCLUSION: This multicenter phase II randomized clinical trial is designed to determine the efficacy and safety of REACT in improving or stabilizing renal function among patients with T2DKD stages 3a-4.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Renal Crônica , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Nefropatias Diabéticas/diagnóstico , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiologia , Masculino , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Resultado do TratamentoRESUMO
BACKGROUND: Heregulin is a ligand for the protooncogene product ErbB/HER that acts as a key mitogenic factor for human Schwann cells (hSCs). Heregulin is required for sustained hSC growth in vitro but must be thoroughly removed before cell collection for transplantation due to potential safety concerns. The goal of this study was to develop simple cell-based assays to assess the effectiveness of heregulin addition to and removal from aliquots of hSC culture medium. These bioassays were based on the capacity of a ß1-heregulin peptide to elicit ErbB/HER receptor signaling in adherent ErbB2+/ErbB3+ cells. RESULTS: Western blotting was used to measure the activity of three different ß1-heregulin/ErbB-activated kinases (ErbB3/HER3, ERK/MAPK and Akt/PKB) using phospho-specific antibodies against key activating residues. The duration, dose-dependency and specificity of ß1-heregulin-initiated kinase phosphorylation were investigated, and controls were implemented for assay optimization and reproducibility to detect ß1-heregulin activity in the nanomolar range. Results from these assays showed that the culture medium from transplantable hSCs elicited no detectable activation of the aforementioned kinases in independent rounds of testing, indicating that the implemented measures can ensure that the final hSC product is devoid of bioactive ß1-heregulin molecules prior to transplantation. CONCLUSIONS: These assays may be valuable to detect impurities such as undefined soluble factors or factors for which other biochemical or biological assays are not yet available. Our workflow can be modified as necessary to determine the presence of ErbB/HER, ERK, and Akt activators other than ß1-heregulin using native samples, such as fresh isolates from cell- or tissue extracts in addition to culture medium.
RESUMO
BACKGROUND: Advanced cell therapies with autologous, homologous cells show promise to affect reparative and restorative changes in the chronic kidney disease (CKD) nephron. We present our protocol and preliminary analysis of an IRB-approved, phase I single-group, open-label trial that tests the safety and efficacy of Renal Autologous Cell Therapy (REACT; NCT04115345) in adults with congenital anomalies of the kidney and urinary tract (CAKUT). METHODS: Adults with surgically corrected CAKUT and CKD stages 3 and 4 signed an informed consent and served as their "own" baseline control. REACT is an active biological ingredient acquired from a percutaneous tissue acquisition from the patient's kidney cortex. The specimen undergoes a GMP-compliant manufacturing process that harvests the selected renal cells composed of progenitors for renal repair, followed by image-guided locoregional reinjection into the patient's renal cortex. Participants receive 2 doses at 6-month intervals. Primary outcomes are stable renal function and stable/improved quality of life. Additional exploratory endpoints include the impact of REACT on blood pressure, vitamin D levels, hemoglobin, hematocrit and kidney volume by MRI analysis. RESULTS: Four men and 1 woman were enrolled and underwent 5 cell injections. Their characteristics were as follows: mean 52.8 years (SD 17.7 years), 1 Hispanic, 4 non-Hispanic, and 5 white. There were no renal tissue acquisition, cell injection, or cell product-related complications at baseline. CONCLUSION: REACT is demonstrating feasibility and patient safety in preliminary analysis. Autologous cell therapy treatment has the potential to stabilize or improve renal function in CAKUT-associated CKD to delay or avert dialysis. Patient enrollment and follow-up are underway.
Assuntos
Córtex Renal/citologia , Insuficiência Renal Crônica/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Transplante Autólogo , Adulto , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Insuficiência Renal Crônica/complicações , Transplante de Células-Tronco/métodos , Transplante Autólogo/métodos , Sistema Urinário/anormalidades , Adulto JovemRESUMO
Limb girdle muscular dystrophy type 2A (LGMD2A), caused by mutations in the Calpain 3 (CAPN3) gene, is an incurable autosomal recessive disorder that results in muscle wasting and loss of ambulation. To test the feasibility of an autologous induced pluripotent stem cell (iPSC)-based therapy for LGMD2A, here we applied CRISPR-Cas9-mediated genome editing to iPSCs from three LGMD2A patients to enable correction of mutations in the CAPN3 gene. Using a gene knockin approach, we genome edited iPSCs carrying three different CAPN3 mutations, and we demonstrated the rescue of CAPN3 protein in myotube derivatives in vitro. Transplantation of gene-corrected LGMD2A myogenic progenitors in a novel mouse model combining immunodeficiency and a lack of CAPN3 resulted in muscle engraftment and rescue of the CAPN3 mRNA. Thus, we provide here proof of concept for the integration of genome editing and iPSC technologies to develop a novel autologous cell therapy for LGMD2A.
Assuntos
Calpaína/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Mutação , Animais , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Transplante AutólogoRESUMO
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Assuntos
Monócitos/patologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Humanos , Imunoterapia , Macrófagos/patologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologiaRESUMO
INTRODUCTION: Skin ageing involves senescent fibroblast accumulation, disturbance in extracellular matrix (ECM) homeostasis, and decreased collagen synthesis. OBJECTIVE: to assess a cell therapy product for aged skin (RCS-01; verum) consisting of ~25 × 106 cultured, autologous cells derived from anagen hair follicle non-bulbar dermal sheath (NBDS). METHODS: For each subject in the verum group, 4 areas of buttock skin were injected intradermally 1 or 3 times at monthly intervals with RCS-01, cryomedium, or needle penetration without injection; in the placebo group RCS-01 was replaced by cryomedium. The primary endpoint was assessment of local adverse event profiles. As secondary endpoints, expression of genes related to ECM homeostasis was assessed in biopsies from randomly selected volunteers in the RCS-01 group taken 4 weeks after the last injection. -Results: Injections were well tolerated with no severe adverse events reported 1 year after the first injection. When compared with placebo-treated skin, a single treatment with RCS-01 resulted in a significant upregulation of TGFß1, CTGF, COL1A1, COL1A2, COL3A1, and lumican mRNA expression. LIMITATIONS: The cohort size was insufficient for dose -ranging evaluation and subgroup analyses of efficacy. CONCLUSIONS: RCS-01 therapy is well tolerated and associated with a gene expression response consistent with an improvement of ECM homeostasis.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Folículo Piloso/citologia , Envelhecimento da Pele , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento da Pele/genética , Transcriptoma , Fator de Crescimento Transformador beta1/genética , Transplante AutólogoRESUMO
BACKGROUND AIMS: Autologous cell therapy (AuCT) is an emerging therapeutic treatment that is undergoing transformation from laboratory- to industry-scale manufacturing with recent regulatory approvals. Various challenges facing the complex AuCT manufacturing and supply chain process hinder the scale out and broader application of this highly potent treatment. METHODS: We present a multiscale logistics simulation framework, AuCT-Sim, that integrates novel supply chain system modeling algorithms, methods, and tools. AuCT-Sim includes a single facility model and a system-wide network model. Unique challenges of the AuCT industry are analyzed and addressed in AuCT-Sim. Decision-supporting tools can be developed based on this framework to explore "what-if" manufacturing and supply chain scenarios of importance to various cell therapy stakeholder groups. RESULTS: Two case studies demonstrate the decision-supporting capability of AuCT-Sim where one investigates the optimal reagent base stocking level, and the other one simulates a reagent supply disruption event. These case studies serve as guidelines for designing computational experiments with AuCT-Sim to solve specific problems in AuCT manufacturing and supply chain. DISCUSSION: This simulation framework will be useful in understanding the impact of possible manufacturing and supply chain strategies, policies, regulations, and standards informing strategies to increase patient access to AuCT.
Assuntos
Algoritmos , Terapia Baseada em Transplante de Células e Tecidos , Simulação por Computador , Indústria Farmacêutica , Manufaturas/provisão & distribuição , Instalações Industriais e de Manufatura , Terapia Baseada em Transplante de Células e Tecidos/economia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/normas , Terapia Baseada em Transplante de Células e Tecidos/estatística & dados numéricos , Comércio , Indústria Farmacêutica/economia , Indústria Farmacêutica/organização & administração , Indústria Farmacêutica/normas , Indústria Farmacêutica/estatística & dados numéricos , Utilização de Equipamentos e Suprimentos/estatística & dados numéricos , Humanos , Manufaturas/economia , Manufaturas/estatística & dados numéricos , Instalações Industriais e de Manufatura/economia , Instalações Industriais e de Manufatura/normas , Instalações Industriais e de Manufatura/estatística & dados numéricos , Instalações Industriais e de Manufatura/provisão & distribuição , Controle de Qualidade , Indicadores de Qualidade em Assistência à Saúde , Transplante Autólogo , Estados Unidos/epidemiologiaRESUMO
Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR-T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens.
Assuntos
Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Subpopulações de Linfócitos T/imunologia , Animais , Azidas , Linfócitos B/imunologia , Linfócitos B/patologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Citotoxicidade Imunológica , Relação Dose-Resposta Imunológica , Feminino , Genes Reporter , Vetores Genéticos , Humanos , Imunoterapia Adotiva/efeitos adversos , Ativação Linfocitária , Linfopenia/etiologia , Linfopenia/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fenilalanina/análogos & derivados , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas de Saccharomyces cerevisiae/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Relação Estrutura-Atividade , Subpopulações de Linfócitos T/transplante , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Novel concepts employing autologous, ex vivo expanded natural regulatory T cells (nTreg) for adoptive transfer has potential to prevent organ rejection after kidney transplantation. However, the impact of dialysis and maintenance immunosuppression on the nTreg phenotype and peripheral survival is not well understood, but essential when assessing patient eligibility. The current study investigates regulatory T-cells in dialysis and kidney transplanted patients and the feasibility of generating a clinically useful nTreg product from these patients. Heparinized blood from 200 individuals including healthy controls, dialysis patients with end stage renal disease and patients 1, 5, 10, 15, 20 years after kidney transplantation were analyzed. Differentiation and maturation of nTregs were studied by flow cytometry in order to compare dialysis patients and kidney transplanted patients under maintenance immunosuppression to healthy controls. CD127 expressing CD4+CD25highFoxP3+ nTregs were detectable at increased frequencies in dialysis patients with no negative impact on the nTreg end product quality and therapeutic usefulness of the ex vivo expanded nTregs. Further, despite that immunosuppression mildly altered nTreg maturation, neither dialysis nor pharmacological immunosuppression or previous acute rejection episodes impeded nTreg survival in vivo. Accordingly, the generation of autologous, highly pure nTreg products is feasible and qualifies patients awaiting or having received allogenic kidney transplantation for adoptive nTreg therapy. Thus, our novel treatment approach may enable us to reduce the incidence of organ rejection and reduce the need of long-term immunosuppression.
Assuntos
Transferência Adotiva/métodos , Proliferação de Células , Separação Celular/métodos , Falência Renal Crônica/terapia , Transplante de Rim , Diálise Renal , Linfócitos T Reguladores/transplante , Adolescente , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Estudos Transversais , Estudos de Viabilidade , Feminino , Humanos , Imunossupressores/uso terapêutico , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/imunologia , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Fenótipo , Diálise Renal/efeitos adversos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Transplantados , Transplante Autólogo , Resultado do Tratamento , Adulto JovemRESUMO
Autologous bone marrow mononuclear cell (BM-MNC) therapy for patients with ST-segment elevation myocardial infarction (STEMI) has produced inconsistent results, possibly due to BM-MNC product heterogeneity. Patient-specific cardiovascular risk factors (CRFs) may contribute to variations in BM-MNC composition. We sought to identify associations between BM-MNC subset frequencies and specific CRFs in STEMI patients. Bone marrow was collected from 191 STEMI patients enrolled in the CCTRN TIME and LateTIME trials. Relationships between BM-MNC subsets and CRFs were determined with multivariate analyses. An assessment of CRFs showed that hyperlipidemia and hypertension were associated with a higher frequency of CD11b+ cells (P = 0.045 and P = 0.016, respectively). In addition, we found that females had lower frequencies of CD11b+ (P = 0.018) and CD45+CD14+ (P = 0.028) cells than males, age was inversely associated with the frequency of CD45+CD31+ cells (P = 0.001), smoking was associated with a decreased frequency of CD45+CD31+ cells (P = 0.013), glucose level was positively associated with the frequency of CD45+CD3+ cells, and creatinine level (an indicator of renal function) was inversely associated with the frequency of CD45+CD3+ cells (P = 0.015). In conclusion, the frequencies of monocytic, lymphocytic, and angiogenic BM-MNCs varied in relation to patients' CRFs. These phenotypic variations may affect cell therapy outcomes and might be an important consideration when selecting patients for and reviewing results from autologous cell therapy trials.
Assuntos
Células da Medula Óssea/citologia , Doenças Cardiovasculares , Adulto , Idoso , Transplante de Medula Óssea , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Fenótipo , Estudos Retrospectivos , Fatores de RiscoRESUMO
In Canada, minimally manipulated autologous cell therapies for homologous use (MMAC-H) are either regulated under the practice of medicine, or as drugs or devices under the Food and Drugs Act, Food and Drug Regulations (F&DR) or Medical Device Regulations (MDR). Cells, Tissues and Organs (CTO) Regulations in Canada are restricted to minimally manipulated allogeneic products for homologous use. This leaves an important gap in the interpretation of existing regulations. The purposes of this workshop co-organized by the Stem Cell Network and the Centre for Commercialization of Regenerative Medicine (CCRM) were to discuss the current state of regulation of MMAC-H therapies in Canada and compare it with other regulatory jurisdictions, with the intent of providing specific policy recommendations to Health Canada. Participants came to a consensus on the need for well-defined common terminology between regulators and stakeholders, a common source of confusion and misinformation. A need for a harmonized national approach to oversight of facilities providing MMAC-H therapies based on existing standards, such as Canadian Standards Association (CSA), was also voiced. Facilities providing MMAC-H therapies should also participate in collection of long-term data to ensure patient safety and efficacy of therapies. Harmonization across provinces of the procedures and practices involving administration of MMAC-H would be preferred. Participants felt that devices used to process MMAC-H are adequately regulated under existing MDR. Overly prescriptive regulation will stifle innovation, whereas insufficient regulation might allow unsafe or ineffective therapies to be offered. Until a clear, balanced and explicit approach is articulated, regulatory uncertainty remains a barrier.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Medicina Regenerativa/legislação & jurisprudência , Aloenxertos , Canadá , Humanos , Segurança do Paciente , Medicina Regenerativa/métodos , Transplante AutólogoRESUMO
Degenerative disc disease (DDD) induces chronic back pain with limited nonsurgical options. In this open label pilot study, 26 patients (median age 40 years; range 18-61) received autologous bone marrow concentrate (BMC) disc injections (13 one level, 13 two levels). Pretreatment Oswestry disability index (ODI) and visual analog scale (VAS) were performed to establish baseline pain scores (average 56.5 and 79.3, respectively), while magnetic resonance imaging was independently scored according to the modified Pfirrmann scale. Approximately 1 ml of BMC was analyzed for total nucleated cell (TNC) content, colony-forming unit-fibroblast (CFU-F) frequency, differentiation potential, and phenotype characterization. The average ODI and VAS scores were reduced to 22.8 and 29.2 at 3 months, 24.4 and 26.3 at 6 months, and 25.0 and 33.2 at 12 months, respectively (p ≤ .0001). Eight of twenty patients improved by one modified Pfirrmann grade at 1 year. The average BMC contained 121 × 10(6) TNC/ml with 2,713 CFU-F/ml (synonymous with mesenchymal stem cells). Although all subjects presented a substantial reduction in pain, patients receiving greater than 2,000 CFU-F/ml experienced a significantly faster and greater reduction in ODI and VAS. Subjects older than 40 years who received fewer than 2,000 CFU-F/ml experienced an average pain reduction of 33.7% (ODI) and 29.1% (VAS) at 12 months, while all other patients' average reduction was 69.5% (ODI, p = .03) and 70.6% (VAS, p = .01). This study provides evidence of safety and feasibility in the nonsurgical treatment of DDD with autologous BMC and indicates an effect of mesenchymal cell concentration on discogenic pain reduction.
Assuntos
Células da Medula Óssea/citologia , Transplante de Medula Óssea/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Degeneração do Disco Intervertebral/terapia , Células-Tronco Mesenquimais/citologia , Administração Cutânea , Adolescente , Adulto , Feminino , Humanos , Injeções , Masculino , Pessoa de Meia-Idade , Transplante Autólogo , Adulto JovemRESUMO
OBJECTIVE: Leucopatch is a leukocyte and platelet-rich fibrin patch that provides concentrated blood cells and signal substances to the surface of an ulcer. It is produced by centrifugation of the patient's own venous blood. The aim of this pilot multicentre cohort study was to evaluate effects of the leucocyte patch in patients with hard-to-heal diabetic foot ulcers (DFUs). METHOD: Non-ischaemic Wagner grade 1 or 2 DFUs with a duration of more than 6 weeks and a maximal area of 10cm² were included. Patients with >40% ulcer area change during a two-week run-in period were excluded. The treatment was applied once a week for up to 19 treatments or until the foot ulcer was completely epithelialised. The primary endpoint was healing within 20 weeks. RESULTS: Of the 60 patients who gave consent 16 were excluded during run-in period, 44 patients initiated study treatment and 39 were included in the per-protocol analysis. Complete epithelisation was achieved in 34% (per-protocol analysis 36%) at 12 weeks and 52% (59%) at 20 weeks. In patients with ulcer duration less than 6 months, 73% of ulcers healed within 20 weeks. Patients with healed ulcers had larger ulcer area reduction during the first two treatment weeks compared to non-healers. Adverse events were mild and rare. CONCLUSION: The leucocyte patch is well-tolerated, easy to use and has potential in the armamentarium of the DFU treatment, provided this outcome is confirmed in an appropriately powered randomised clinical trial.
Assuntos
Plaquetas , Pé Diabético/terapia , Fibrina/uso terapêutico , Leucócitos , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , CicatrizaçãoRESUMO
Manufacturing of more-than-minimally manipulated autologous cell therapies presents a number of unique challenges driven by complex supply logistics and the need to scale out production to multiple manufacturing sites or near the patient within hospital settings. The existing regulatory structure in Europe and the United States imposes a requirement to establish and maintain comparability between sites. Under a single market authorization, this is likely to become an unsurmountable burden beyond two or three sites. Unless alternative manufacturing approaches can be found to bridge the regulatory challenge of comparability, realizing a sustainable and investable business model for affordable autologous cell therapy supply is likely to be extremely demanding. Without a proactive approach by the regulators to close this "translational gap," these products may not progress down the development pipeline, threatening patient accessibility to an increasing number of clinician-led autologous cellular therapies that are already demonstrating patient benefits. We propose three prospective manufacturing models for the scale out/roll out of more-than-minimally manipulated clinically led autologous cell therapy products and test their prospects for addressing the challenge of product comparability with a selected expert reference panel of US and UK thought leaders. This paper presents the perspectives and insights of the panel and identifies where operational, technological and scientific improvements should be prioritized. The main purpose of this report is to solicit feedback and seek input from key stakeholders active in the field of autologous cell therapy in establishing a consensus-based manufacturing approach that may permit the roll out of clinically led autologous cell therapies.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/economia , Terapia Baseada em Transplante de Células e Tecidos/tendências , Terapia Baseada em Transplante de Células e Tecidos/normas , Europa (Continente) , Humanos , Estados UnidosRESUMO
Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.