Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(21-22): 1395-1397, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725126

RESUMO

Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion. Coordinated cellular interaction between different cell types within the tissue and a fine-tuned transcriptional program synergistically take place to promote beige remodeling. However, both cell-cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance are poorly understood. In this and the previous issue of Genes & Development, Shao and colleagues (pp. 1461-1474) and Shan and colleagues (pp. 1333-1338) advance our understanding of these issues and, in doing so, highlight potential therapeutic strategies to combat obesity-associated diseases.


Assuntos
Adipócitos Bege , Termogênese , Adipócitos Bege/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
2.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34620682

RESUMO

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Assuntos
PPAR gama , Termogênese , Adipócitos Marrons/metabolismo , Adipócitos Brancos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA , Camundongos , PPAR gama/genética , Termogênese/genética , Fatores de Transcrição
3.
Genes Dev ; 35(19-20): 1333-1338, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34531316

RESUMO

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRß+ adipocyte precursor cells, including a ß-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33 Doxycycline-inducible deletion of Il33 in PDGFRß+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.


Assuntos
Adipócitos Bege , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adrenérgicos/metabolismo , Temperatura Baixa , Imunidade Inata , Linfócitos , Termogênese/genética
4.
Genes Dev ; 34(5-6): 321-340, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029456

RESUMO

Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Poli(ADP-Ribose) Polimerases/metabolismo , Metabolismo dos Carboidratos , Humanos , Metabolismo dos Lipídeos/fisiologia
5.
Genes Dev ; 33(13-14): 747-762, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123067

RESUMO

Prolonged cold exposure stimulates the recruitment of beige adipocytes within white adipose tissue. Beige adipocytes depend on mitochondrial oxidative phosphorylation to drive thermogenesis. The transcriptional mechanisms that promote remodeling in adipose tissue during the cold are not well understood. Here we demonstrate that the transcriptional coregulator transducin-like enhancer of split 3 (TLE3) inhibits mitochondrial gene expression in beige adipocytes. Conditional deletion of TLE3 in adipocytes promotes mitochondrial oxidative metabolism and increases energy expenditure, thereby improving glucose control. Using chromatin immunoprecipitation and deep sequencing, we found that TLE3 occupies distal enhancers in proximity to nuclear-encoded mitochondrial genes and that many of these binding sites are also enriched for early B-cell factor (EBF) transcription factors. TLE3 interacts with EBF2 and blocks its ability to promote the thermogenic transcriptional program. Collectively, these studies demonstrate that TLE3 regulates thermogenic gene expression in beige adipocytes through inhibition of EBF2 transcriptional activity. Inhibition of TLE3 may provide a novel therapeutic approach for obesity and diabetes.


Assuntos
Adipócitos Bege/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Glucose/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Metabolismo Energético/genética , Deleção de Genes , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Termogênese/genética
6.
RNA ; 30(8): 1011-1024, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38692841

RESUMO

Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.


Assuntos
Adipócitos Bege , Diferenciação Celular , Temperatura Baixa , Camundongos Knockout , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Diferenciação Celular/genética , Adipócitos Bege/metabolismo , Adipócitos Bege/citologia , Termogênese/genética
7.
Bioessays ; 46(2): e2300084, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38013256

RESUMO

Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.


Assuntos
Cromatina , Estresse Fisiológico , Cromatina/genética , Temperatura , Epigênese Genética
8.
Genes Dev ; 31(2): 127-140, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202540

RESUMO

The ability to maintain and expand the pool of adipocytes in adults is integral to the regulation of energy balance, tissue/stem cell homeostasis, and disease pathogenesis. For decades, our knowledge of adipocyte precursors has relied on cellular models. The identity of native adipocyte precursors has remained unclear. Recent studies have identified distinct adipocyte precursor populations that are physiologically regulated and contribute to the development, maintenance, and expansion of adipocyte pools in mice. With new tools available, the properties of adipocyte precursors can now be defined, and the regulation and function of adipose plasticity in development and physiology can be explored.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adipogenia , Animais , Diferenciação Celular , Humanos , Pesquisa/tendências
9.
J Cell Physiol ; 239(6): e31265, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38577921

RESUMO

The renin-angiotensin system (RAS) is an endocrine system composed of two main axes: the classical and the counterregulatory, very often displaying opposing effects. The classical axis, primarily mediated by angiotensin receptors type 1 (AT1R), is linked to obesity-associated metabolic effects. On the other hand, the counterregulatory axis appears to exert antiobesity effects through the activation of two receptors, the G protein-coupled receptor (MasR) and Mas-related receptor type D (MrgD). The local RAS in adipose organ has prompted extensive research into white adipose tissue and brown adipose tissue (BAT), with a key role in regulating the cellular and metabolic plasticity of these tissues. The MasR activation favors the brown plasticity signature in the adipose organ by improve the thermogenesis, adipogenesis, and lipolysis, decrease the inflammatory state, and overall energy homeostasis. The MrgD metabolic effects are related to the maintenance of BAT functionality, but the signaling remains unexplored. This review provides a summary of RAS counterregulatory actions triggered by Mas and MrgD receptors on adipose tissue plasticity. Focus on the effects related to the morphology and function of adipose tissue, especially from animal studies, will be given targeting new avenues for treatment of obesity-associated metabolic effects.


Assuntos
Tecido Adiposo , Proto-Oncogene Mas , Receptores Acoplados a Proteínas G , Sistema Renina-Angiotensina , Animais , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/metabolismo , Obesidade/patologia , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais
10.
Biosci Biotechnol Biochem ; 88(6): 679-688, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499443

RESUMO

Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.


Assuntos
Adipócitos , Anti-Inflamatórios , Inflamação , Macrófagos , RNA Mensageiro , Proteína Desacopladora 1 , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Meios de Cultivo Condicionados/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/genética , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos
11.
Endocr J ; 71(2): 89-100, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37940555

RESUMO

Since the 1960s, researchers have recognized an association between elevated plasma branched chain amino acids (BCAA) and metabolic disease, including type 2 diabetes mellitus and obesity, but the cause for it remained poorly understood. Recent advances in metabolomics, advanced imaging techniques, and genetic analyses over the past decade have enabled newfound insights into the mechanism of BCAA metabolic dysregulation across a variety of peripheral tissues and its impact on metabolic disease, suggesting a key role for brown adipose tissue (BAT) in determining BCAA metabolic homeostasis. Previous investigations into BAT have emphasized fatty acids and glucose as substrates for BAT thermogenesis. Here, we address the importance of BAT in systemic BCAA metabolism, driven via the newly identified mitochondrial BCAA carrier (MBC), as well as the impact of BAT-driven BCAA clearance on glucose homeostasis and metabolic disease. The newly identified MBC offers new therapeutic avenues by which BAT activity may be enhanced to improve metabolic and cardiovascular health, as well as other diseases in which increases of circulating BCAA may play a role in pathogenicity.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Tecido Adiposo Marrom , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Doenças Metabólicas/metabolismo , Glucose/metabolismo , Termogênese
12.
Artigo em Inglês | MEDLINE | ID: mdl-38810913

RESUMO

BACKGROUND: Fatty infiltration (FI) and muscle atrophy (MA) in the rotator cuff muscles following rotator cuff tears (RCT) persist post repair, increasing the risk of re-tears. Brown adipocyte-like "beige adipocytes" are expected to have a therapeutic effect on intramuscular FI and MA due to their lipolytic activity and the muscle regenerative effects of their secreted factors. However, whether parathyroid hormone (PTH) ameliorates the already advanced FI and MA remains unknown. Therefore, this study aimed to clarify whether PTH promotes the expression of beige adipocytes and ameliorates advanced FI and MA following chronic RCT in rats. METHODS: Supraspinatus muscles were harvested from rats with chronic RCT after 4 or 8 weeks of PTH treatment and compared to those in the control group or to those at the start of treatment. FI was assessed by Oil Red O staining, and the staining area was evaluated as a percentage of the muscle cross-sectional area. MA was evaluated by measuring muscle wet weight and cross-sectional area of muscle fiber. Beige adipocyte expression was evaluated by immunostaining for uncoupling protein 1 (UCP1). Fibro-adipogenic progenitors (FAPs) were separated from muscle-injured mice. We assessed whether PTH could diminish fat droplet accumulation by promoting the differentiation of FAPs into beige adipocytes. RESULTS: After four weeks, PTH reduced the area fraction of FI in the rat supraspinatus muscle following chronic RCT compared with that at the beginning of treatment (P = .028). In addition, PTH increased wet muscle mass (P < .001) and muscle fiber cross-sectional area (P < .018) compared with measurements at the start of treatment. PTH administration promoted the expression of UCP1, a beige adipocyte marker, in the supraspinatus muscle (P = .019). PTH increased gene expression of beige adipocyte-related markers and suppressed fat droplet accumulation even after adipogenic differentiation of FAPs (P = .004) but did not reduce fat droplets that had already accumulated in in vitro experiments. CONCLUSIONS: PTH facilitated beige adipocyte expression and reversibly ameliorated muscle quality and atrophy following chronic RCT by hindering fat droplet accumulation and facilitating muscle regeneration. Therefore, PTH may be a medicament for FI and MA following RCT, leading to expanded rotator cuff repair indications.

13.
Aesthetic Plast Surg ; 48(3): 519-529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148357

RESUMO

BACKGROUND: The fat retention rate is associated with postoperative inflammation. However, fat survival is still unpredictable even when supplemented with adipose-derived stem cells (ADSCs). Beige adipocytes play a role in regulating pathological inflammation. Thus, we assumed that exosomes may promote macrophage polarization to regulate inflammation when we simulated postgrafted inflammation by lipopolysaccharide (LPS) induction. METHODS: 3T3-L1 preadipocytes were used to differentiate into beige adipocytes, which were stimulated by special culture media, and then, exosomes were isolated from the supernatant. We identified them by morphology, protein and gene expression, or size distribution. Next, we utilized exosomes to stimulate LPS-induced macrophages and evaluated the changes in inflammatory cytokines and macrophage polarization. RESULTS: The induced cells contained multilocular lipid droplets and expressed uncoupling protein 1 (UCP1) and beige adipocyte-specific gene. The exosomes, which were approximately 111.5 nm and cup-like, were positive for surface markers. Additionally, the levels of proinflammatory-related indicators in the LPS+exosomes (LPS+Exos) group were increased after inflammation was activated for 6 h. When inflammation lasted 16 h, exosomes decreased the expression of proinflammatory-related indicators and increased the expression of anti-inflammatory-related indicators compared with the group without exosomes. CONCLUSION: The method described in this article can successfully obtain beige adipocytes and exosomes. The results suggest that beige adipocyte exosomes can promote inflammatory infiltration and polarize more macrophages to the M1 type in the early period of inflammation, accelerating the occurrence of the inflammation endpoint and the progression of macrophage switching from M1 to M2, while inflammation develops continuously. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Adipócitos Bege , Exossomos , Animais , Lipopolissacarídeos/farmacologia , Macrófagos , Inflamação
14.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473960

RESUMO

White adipose tissue (WAT) regulates energy balance through energy storage, adipokines secretion and the thermogenesis process. Beige adipocytes are responsible for WAT thermogenesis. They are generated by adipogenesis or transdifferentiation during cold or ß3-adrenergic agonist stimulus through a process called browning. Browning has gained significant interest for to its preventive effect on obesity. Glucocorticoids (GCs) have several functions in WAT biology; however, their role in beige adipocyte generation and WAT browning is not fully understood. The aim of our study was to determine the effect of dexamethasone (DXM) on WAT thermogenesis. For this purpose, rats were treated with DXM at room temperature (RT) or cold conditions to determine different thermogenic markers. Furthermore, the effects of DXM on the adipogenic potential of beige precursors and on mature beige adipocytes were evaluated in vitro. Our results showed that DXM decreased UCP-1 mRNA and protein levels, mainly after cold exposure. In vitro studies showed that DXM decreased the expression of a beige precursor marker (Ebf2), affecting their ability to differentiate into beige adipocytes, and inhibited the thermogenic response of mature beige adipocytes (Ucp-1, Dio2 and Pgc1α gene expressions and mitochondrial respiration). Overall, our data strongly suggest that DXM can inhibit the thermogenic program of both retroperitoneal and inguinal WAT depots, an effect that could be exerted, at least partially, by inhibiting de novo cell generation and the thermogenic response in beige adipocytes.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Ratos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Adipogenia , Dexametasona/farmacologia , Termogênese
15.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612723

RESUMO

Bone morphogenetic protein 2 (BMP2) has been reported to regulate adipogenesis, but its role in porcine beige adipocyte formation remains unclear. Our data reveal that BMP2 is significantly induced at the early stages of porcine beige adipocyte differentiation. Additionally, supplementing rhBMP2 during the early stages, but not the late stages of differentiation, significantly enhances porcine SVF adipogenesis, thermogenesis, and proliferation. Furthermore, compared to the empty plasmid-transfected-SVFs, BMP2-overexpressed SVFs had the enhanced lipid accumulation and thermogenesis, while knockdown of BMP2 in SVFs exhibited the opposite effect. The RNA-seq of the above three types of cells revealed the enrichment of the annotation of thermogenesis, brown cell differentiation, etc. In addition, the analysis also highlights the significant enrichment of cell adhesion, the MAPK cascade, and PPARγ signaling. Mechanistically, BMP2 positively regulates the adipogenic and thermogenic capacities of porcine beige adipocytes by activating PPARγ expression through AKT/mTOR and MAPK signaling pathways.


Assuntos
Adipogenia , Proteínas Proto-Oncogênicas c-akt , Suínos , Animais , Adipogenia/genética , Proteína Morfogenética Óssea 2/genética , PPAR gama , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
16.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339044

RESUMO

Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Hormônios Peptídicos , Termogênese , Animais , Humanos , Masculino , Camundongos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Hormônios Peptídicos/farmacologia , Hormônios Peptídicos/fisiologia
17.
Biochem Biophys Res Commun ; 678: 200-206, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37657239

RESUMO

Obesity increases the risk of various diseases, and many studies have examined prevention and treatment strategies. Browning of white adipocytes promotes triglyceride (TG) metabolism and is the new focus for treating obesity. This study investigated the role of malonate-a modulator of mitochondrial function-in adipocyte browning, and its potential as a therapeutic agent in obesity. Our findings revealed that malonate increased oxygen consumption without inhibiting ATP synthesis. Malonate induced expression of PRDM16-an important transcription factor for browning-and uncoupling protein 1 (beige adipocyte marker), suggesting that malonate induces browning in white adipocytes. In an obesity mouse model induced by a high-fat diet, malonate significantly reduced body weight and white adipose tissue weight, as well as improved insulin resistance. Importantly, malonate stimulated browning in white adipose tissue and maintained the mass of brown adipose tissue in the high-fat diet-induced obesity mouse model. We propose that manipulation of mitochondrial function by malonate is a promising therapeutic approach for obesity.


Assuntos
Tecido Adiposo Branco , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Adipócitos Brancos , Modelos Animais de Doenças , Malonatos/farmacologia , Obesidade/etiologia , Fatores de Transcrição
18.
Genes Dev ; 29(3): 308-21, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25644605

RESUMO

PR domain-containing 16 (PRDM16) induces expression of brown fat-specific genes in brown and beige adipocytes, although the underlying transcription-related mechanisms remain largely unknown. Here, in vitro studies show that PRDM16, through its zinc finger domains, directly interacts with the MED1 subunit of the Mediator complex, is recruited to the enhancer of the brown fat-specific uncoupling protein 1 (Ucp1) gene through this interaction, and enhances thyroid hormone receptor (TR)-driven transcription in a biochemically defined system in a Mediator-dependent manner, thus providing a direct link to the general transcription machinery. Complementary cell-based studies show that upon forskolin treatment, PRDM16 induces Ucp1 expression in undifferentiated murine embryonic fibroblasts, that this induction depends on MED1 and TR, and, consistent with a direct effect, that PRDM16 is recruited to the Ucp1 enhancer. Related studies have defined MED1 and PRDM16 interaction domains important for Ucp1 versus Ppargc1a induction by PRDM16. These results reveal novel mechanisms for PRDM16 function through the Mediator complex.


Assuntos
Adipócitos Marrons/citologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Canais Iônicos/genética , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Mitocondriais/genética , Fatores de Transcrição/metabolismo , Adipócitos Marrons/metabolismo , Animais , Linhagem Celular , Colforsina/farmacologia , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína/genética , Proteína Desacopladora 1
19.
Int J Mol Sci ; 24(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37240054

RESUMO

Uncoupling protein 1 (UCP1) plays a central role in thermogenic tissues by uncoupling cellular respiration to dissipate energy. Beige adipocytes, an inducible form of thermogenic cells in subcutaneous adipose tissue (SAT), have become a major focus in obesity research. We have previously shown that eicosapentaenoic acid (EPA) ameliorated high-fat diet (HFD)-induced obesity by activating brown fat in C57BL/6J (B6) mice at thermoneutrality (30 °C), independently of UCP1. Here, we investigated whether ambient temperature (22 °C) impacts EPA effects on SAT browning in wild-type (WT) and UCP1 knockout (KO) male mice and dissected underlying mechanisms using a cell model. We observed resistance to diet-induced obesity in UCP1 KO mice fed HFD at ambient temperature, with significantly higher expression of UCP1-independent thermogenic markers, compared to WT mice. These markers included the fibroblast growth factor 21 (FGF21) and sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b), suggesting the indispensable role of temperature in beige fat reprogramming. Surprisingly, although EPA induced thermogenic effects in SAT-derived adipocytes harvested from both KO and WT mice, EPA only increased thermogenic gene and protein expression in the SAT of UCP1 KO mice housed at ambient temperature. Collectively, our findings indicate that the thermogenic effects of EPA, which are independent of UCP1, occur in a temperature-dependent manner.


Assuntos
Tecido Adiposo Marrom , Ácido Eicosapentaenoico , Masculino , Animais , Camundongos , Temperatura , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Termogênese/genética , Tecido Adiposo Branco/metabolismo
20.
J Biol Chem ; 296: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268383

RESUMO

Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical ß3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.


Assuntos
Adipócitos Bege/metabolismo , Regulação da Expressão Gênica , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipócitos Bege/citologia , Animais , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais , Simportadores/genética , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA