Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2111366119, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939667

RESUMO

We present efficient algorithms for computing the N-point correlation functions (NPCFs) of random fields in arbitrary D-dimensional homogeneous and isotropic spaces. Such statistics appear throughout the physical sciences and provide a natural tool to describe stochastic processes. Typically, algorithms for computing the NPCF components have [Formula: see text] complexity (for a dataset containing n particles); their application is thus computationally infeasible unless N is small. By projecting the statistic onto a suitably defined angular basis, we show that the estimators can be written in a separable form, with complexity [Formula: see text] or [Formula: see text] if evaluated using a Fast Fourier Transform on a grid of size [Formula: see text]. Our decomposition is built upon the D-dimensional hyperspherical harmonics; these form a complete basis on the [Formula: see text] sphere and are intrinsically related to angular momentum operators. Concatenation of [Formula: see text] such harmonics gives states of definite combined angular momentum, forming a natural separable basis for the NPCF. As N and D grow, the number of basis components quickly becomes large, providing a practical limitation to this (and all other) approaches: However, the dimensionality is greatly reduced in the presence of symmetries; for example, isotropic correlation functions require only states of zero combined angular momentum. We provide a Julia package implementing our estimators and show how they can be applied to a variety of scenarios within cosmology and fluid dynamics. The efficiency of such estimators will allow higher-order correlators to become a standard tool in the analysis of random fields.

2.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544009

RESUMO

The need to monitor the power network is leading to a significant increase in the number of measurement points. These points consist of intelligent electronic devices and instrument transformers (or more in general sensors). However, as the number of devices increases, so does the demand for their characterization and testing. To this end, the authors formulated a new characterization procedure that offers numerous benefits for manufacturers and system operators. These benefits include: (i) reducing testing time (thus lowering costs), (ii) simplifying the existing procedures, and (iii) increasing the number of tested devices. In this study, to complete the validation of the proposed characterization procedure, the authors performed a comprehensive uncertainty evaluation. This included the identification and analysis of the uncertainty sources, the implementation of the Monte Carlo method to obtain the statistical parameters of the quantities of interest, and the final method assessment according to the obtained results. Each step is described in detail, and the results allow one to (i) replicate the uncertainty analysis on other types of instrument transformers and (ii) implement the proposed harmonic characterization procedure with the confidence that the method is accurate, flexible, and scalable.

3.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610571

RESUMO

An innovative method for synthesizing optimum difference patterns of the spherical sensor array is introduced, along with a sidelobe tapering technique. Firstly, we suggest employing the spherical harmonics of degree ±1 to synthesize the spherical array difference pattern; secondly, we study the mapping relationship between the difference pattern of the spherical sensor array and the difference pattern of the uniformly spaced linear array (ULA) with odd-numbered elements; finally, we enhance the Zolotarev difference pattern, which is a counterpart to the Dolph-Chebyshev sum pattern that traditionally allows synthesis only for ULA with even-numbered elements. Our modification extends its applicability to synthesize difference patterns for ULA with odd-numbered elements. Leveraging the optimal difference pattern, a generalized Bayliss difference pattern synthesis method designed for the ULA with odd-numbered elements is further proposed. To illustrate the effectiveness of our approach, we present several design examples through experimental simulation.

4.
Sensors (Basel) ; 24(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39000864

RESUMO

Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) is a technique in which the sound wave is detected by a quartz tuning fork (QTF). It enables particularly high specificity with respect to the excitation frequency and is well known for an extraordinarily sensitive analysis of gaseous samples. We have developed the first photoacoustic (PA) cell for QEPAS on solid samples. Periodic heating of the sample is excited by modulated light from an interband cascade laser (ICL) in the infrared region. The cell represents a half-open cylinder that exhibits an acoustical resonance frequency equal to that of the QTF and, therefore, additionally amplifies the PA signal. The antinode of the sound pressure of the first longitudinal overtone can be accessed by the sound detector. A 3D finite element (FE) simulation confirms the optimal dimensions of the new cylindrical cell with the given QTF resonance frequency. An experimental verification is performed with an ultrasound micro-electromechanical system (MEMS) microphone. The presented frequency-dependent QEPAS measurement exhibits a low noise signal with a high-quality factor. The QEPAS-based investigation of three different solid synthetics resulted in a linearly dependent signal with respect to the absorption.

5.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000927

RESUMO

The phenomenon of high-frequency distortion (HFD) in the electric grids, at both low-voltage (LV) and medium-voltage (MV) levels, is gaining increasing interest within the scientific and technical community due to its growing occurrence and the associated impact. These disturbances are mainly injected into the grid by new installed devices, essential for achieving decentralized generation based on renewable sources. In fact, these generation systems are connected to the grid through power converters, whose switching frequencies are significantly increasing, leading to a corresponding rise in the frequency of the injected disturbances. HFD represents a quite recent issue, but numerous scientific papers have been published in recent years on this topic. Furthermore, various international standards have also covered it, to provide guidance on instrumentation and related algorithms and indices for the measurement of these phenomena. When measuring HFD in MV grids, it is necessary to use instrument transformers (ITs) to scale voltages and currents to levels fitting with the input stages of power quality (PQ) instruments. In this respect, the recently released Edition 2 of the IEC 61869-1 standard extends the concept of the IT accuracy class up to 500 kHz; however, the IEC 61869 standard family provides guidelines on how to test ITs only at power frequency. This paper provides an extensive review of literature, standards, and the main outputs of European research projects focusing on HFD and ITs. This preliminary study of the state-of-the-art represents an essential starting point for defining significant waveforms to test ITs and, more generally, to achieve a comprehensive understanding of HFD. In this framework, this paper provides a summary of the most common ranges of amplitude and frequency variations of actual HFD found in real grids, the currently adopted measurement methods, and the normative open challenges to be addressed.

6.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894483

RESUMO

The aim of this paper is to determine the conversion accuracy of the Danisense DC200IF (Danisense A/S, Taastrup, Denmark) wideband current transducer for its possible application to test electromagnetic compatibility requirements of the standards IEC 61000-3-2 and IEC 61000-3-12 with the digital power meter Yokogawa WT5000 (Yokogawa Electric Corporation, Tokyo, Japan). To obtain this goal for distorted current of main frequency equal to 50 Hz and in the frequencies range of higher harmonics from 100 Hz to 2500 Hz its amplitude error and phase shift are evaluated. Moreover, the measurable level of higher harmonics with the rated accuracy of the used precision power analyzer is also investigated. Finally, the measuring system is applied to determine the RMS values of current harmonics produced by the audio power amplifier in order to assess its compliance with the standard IEC 61000-3-12.

7.
Sensors (Basel) ; 24(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339535

RESUMO

In the realm of sensorless control for a permanent magnet synchronous motor (PMSM), the flux observer algorithm is widely recognized. However, the estimation accuracy of rotor position is adversely impacted by the interference from DC bias and high-order harmonics. To address these issues, an advanced flux observation method, second-order generalized integrator flux observer extend (SOGIFO-X), is introduced in this paper. The study begins with a theoretical analysis to establish the relationship between flux observation error and rotor position error. The SOGIFO-X method, developed in this study, is compared with traditional methods such as the Low Pass Filter (LPF) and second-order generalized integrator flux observer (SOGIFO), employing mathematical rigor and Bode plot analysis. The emphasis is on the methodology and the general performance improvements SOGIFO-X offers over conventional methods. Simulations and experiments were conducted to assess the impact of SOGIFO-X on the steady-state and dynamic performances of sensorless control. Findings indicate that SOGIFO-X demonstrates significant enhancements in terms of reducing the reduced flux observation error, contributing to the advancement of position estimation accuracy and sensorless motor control technology.

8.
Neuroimage ; 271: 120020, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914104

RESUMO

For decades, visual entrainment paradigms have been widely used to investigate basic visual processing in healthy individuals and those with neurological disorders. While healthy aging is known to be associated with alterations in visual processing, whether this extends to visual entrainment responses and the precise cortical regions involved is not fully understood. Such knowledge is imperative given the recent surge in interest surrounding the use of flicker stimulation and entrainment in the context of identifying and treating Alzheimer's disease (AD). In the current study, we examined visual entrainment in eighty healthy aging adults using magnetoencephalography (MEG) and a 15 Hz entrainment paradigm, while controlling for age-related cortical thinning. MEG data were imaged using a time-frequency resolved beamformer and peak voxel time series were extracted to quantify the oscillatory dynamics underlying the processing of the visual flicker stimuli. We found that, as age increased, the mean amplitude of entrainment responses decreased and the latency of these responses increased. However, there was no effect of age on the trial-to-trial consistency in phase (i.e., inter-trial phase locking) nor amplitude (i.e., coefficient of variation) of these visual responses. Importantly, we discovered that the relationship between age and response amplitude was fully mediated by the latency of visual processing. These results indicate that aging is associated with robust changes in the latency and amplitude of visual entrainment responses within regions surrounding the calcarine fissure, which should be considered in studies examining neurological disorders such as AD and other conditions associated with increased age.


Assuntos
Envelhecimento Saudável , Adulto , Humanos , Percepção Visual/fisiologia , Magnetoencefalografia/métodos , Lobo Occipital/fisiologia , Estimulação Luminosa/métodos
9.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420730

RESUMO

This study identified time-varying harmonic characteristics in a high-density plasma (HDP) chemical vapor deposition (CVD) chamber by depositing low-k oxide (SiOF). The characteristics of harmonics are caused by the nonlinear Lorentz force and the nonlinear nature of the sheath. In this study, a noninvasive directional coupler was used to collect harmonic power in the forward and reverse directions, which were low frequency (LF) and high bias radio frequency (RF). The intensity of the 2nd and 3rd harmonics responded to the LF power, pressure, and gas flow rate introduced for plasma generation. Meanwhile, the intensity of the 6th harmonic responded to the oxygen fraction in the transition step. The intensity of the 7th (forward) and 10th (in reverse) harmonic of the bias RF power depended on the underlying layers (silicon rich oxide (SRO) and undoped silicate glass (USG)) and the deposition of the SiOF layer. In particular, the 10th (reverse) harmonic of the bias RF power was identified using electrodynamics in a double capacitor model of the plasma sheath and the deposited dielectric material. The plasma-induced electronic charging effect on the deposited film resulted in the time-varying characteristic of the 10th harmonic (in reverse) of the bias RF power. The wafer-to-wafer consistency and stability of the time-varying characteristic were investigated. The findings of this study can be applied to in situ diagnosis of SiOF thin film deposition and optimization of the deposition process.


Assuntos
Doenças Cardiovasculares , Óxidos , Humanos , Gases , Oxigênio , Dióxido de Silício
10.
Sensors (Basel) ; 23(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765889

RESUMO

Instrument transformers (ITs) play a key role in electrical power systems, facilitating the accurate monitoring and measurement of electrical quantities. They are essential for measurement, protection, and metering in transmission and distribution grids and accurately reducing the grid voltage and current for low-voltage input instrumentation. With the increase in renewable energy sources, electronic converters, and electric vehicles connected to power grids, ITs now face challenging distorted conditions that differ from the nominal ones. The study presented in this paper is a collaborative work between national metrology institutes and universities that analyzes IT performance in measuring distorted voltages and currents in medium-voltage grids under realistic conditions. Both current and voltage measuring transformers are examined, considering influence quantities like the temperature, mechanical vibration, burden, adjacent phases, and proximity effects. The study provides detailed insights into measurement setups and procedures, and it quantifies potential errors arising from IT behavior in measuring distorted signals in the presence of the various considered influence quantities and their combinations. The main findings reveal that the temperature has the most evident impact on the inductive voltage transformer performance, as well as the burden, causing significant changes in ratio error and phase displacement at the lower temperatures. As for low-power ITs, establishing a priori the effects of adjacent phases and proximity on the frequency responses of low-power ITs is a complex matter, because of their different characteristics and construction solutions.

11.
Sensors (Basel) ; 23(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139591

RESUMO

Evaluations of new dry, high-density EEG caps have only been performed so far with serial measurements and not with simultaneous (parallel) measurements. For a first comparison of gel-based and dry electrode performance in simultaneous high-density EEG measurements, we developed a new EEG cap comprising 64 gel-based and 64 dry electrodes and performed simultaneous measurements on ten volunteers. We analyzed electrode-skin impedances, resting state EEG, triggered eye blinks, and visual evoked potentials (VEPs). To overcome the issue of different electrode positions in the comparison of simultaneous measurements, we performed spatial frequency analysis of the simultaneously measured EEGs using spatial harmonic analysis (SPHARA). The impedances were 516 ± 429 kOhm (mean ± std) for the dry electrodes and 14 ± 8 kOhm for the gel-based electrodes. For the dry EEG electrodes, we obtained a channel reliability of 77%. We observed no differences between dry and gel-based recordings for the alpha peak frequency and the alpha power amplitude, as well as for the VEP peak amplitudes and latencies. For the VEP, the RMSD and the correlation coefficient between the gel-based and dry recordings were 1.7 ± 0.7 µV and 0.97 ± 0.03, respectively. We observed no differences in the cumulative power distributions of the spatial frequency components for the N75 and P100 VEP peaks. The differences for the N145 VEP peak were attributed to the different noise characteristics of gel-based and dry recordings. In conclusion, we provide evidence for the equivalence of simultaneous dry and gel-based high-density EEG measurements.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Reprodutibilidade dos Testes , Eletrodos , Impedância Elétrica
12.
Sensors (Basel) ; 23(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37177645

RESUMO

Optimizing the bias modulation of a fiber-optic gyroscope is crucial to improving its precision. In this study, we propose and demonstrate the use of multiple harmonics of sinusoidal modulation as an intermediate alternative to the widely used modulation methods: sinusoidal and square-wave modulation. We show that this alternative integrates the advantages of each modulation method by providing a smooth modulation that produces a clean, spike-free output and a satisfactory signal-to-noise ratio. By using three harmonics of modulation in combination with a high frequency to reduce thermal phase noise, we obtained an angular random walk of 5.2(2)µdeg/h and a bias instability of ∼10µdeg/h. This is the highest performance ever reported for fiber-optic gyroscopes.

13.
Sensors (Basel) ; 23(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837056

RESUMO

To address the challenges in real-time process diagnosis within the semiconductor manufacturing industry, this paper presents a novel machine learning approach for analyzing the time-varying 10th harmonics during the deposition of low-k oxide (SiOF) on a 600 Å undoped silicate glass thin liner using a high-density plasma chemical vapor deposition system. The 10th harmonics, which are high-frequency components 10 times the fundamental frequency, are generated in the plasma sheath because of their nonlinear nature. An artificial neural network with a three-hidden-layer architecture was applied and optimized using k-fold cross-validation to analyze the harmonics generated in the plasma sheath during the deposition process. The model exhibited a binary cross-entropy loss of 0.1277 and achieved an accuracy of 0.9461. This approach enables the accurate prediction of process performance, resulting in significant cost reduction and enhancement of semiconductor manufacturing processes. This model has the potential to improve defect control and yield, thereby benefiting the semiconductor industry. Despite the limitations imposed by the limited dataset, the model demonstrated promising results, and further performance improvements are anticipated with the inclusion of additional data in future studies.

14.
J Clin Monit Comput ; 37(1): 127-137, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35896756

RESUMO

The photoplethysmographic (PPG) waveform contains hemodynamic information in its oscillations. We provide a new method for quantitative study of the waveform morphology and its relationship to the hemodynamics. A data adaptive modeling of the waveform shape is used to describe the PPG waveforms recorded from ear and finger. Several indices, based on the phase and amplitude information of different harmonics, are proposed to describe the PPG morphology. The proposed approach is illustrated by analyzing PPG waveforms recorded during a lower body negative pressure (LBNP) experiment. Different phase and amplitude dynamics are observed during the LBNP experiment. Specifically, we observe that the phase difference between the high order harmonics and fundamental components change more significantly when the PPG signal is recorded from the ear than the finger at the beginning of the study. In contrast, the finger PPG amplitude changes more when compared to the ear PPG during the recovery period. A more complete harmonic analysis of the PPG appears to provide new hemodynamic information when used during a LBNP experiment. We encourage other investigators who possess modulated clinical waveform data (e.g. PPG, arterial pressure, respiratory, and autonomic) to re-examine their data, using phase information and higher harmonics as a potential source of new insights into underlying physiologic mechanisms.


Assuntos
Pressão Negativa da Região Corporal Inferior , Fotopletismografia , Humanos , Fotopletismografia/métodos , Pressão Arterial , Hemodinâmica , Dedos
15.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047513

RESUMO

The transition metal dichalcogenides have instigated a lot of interest as harmonic generators due to their exceptional nonlinear optical properties. Here, the molybdenum disulfide (MoS2) molecular structures with dopants being in a plasma state are used to demonstrate the generation of intense high-order harmonics. The MoS2 nanoflakes and nickel-doped MoS2 nanoflakes produced stronger harmonics with higher cut-offs compared with Mo bulk and MoS2 bulk. Conversely, the MoS2 with nickel nanoparticles and carbon nanotubes (MoS2-NiCNT) produced weaker coherent XUV emissions than other materials, which is attributed to the influence of phase mismatch. The influence of heating and driving pulse intensities on the harmonic yield and cut-off energies are investigated in MoS2 molecular structures. The enhanced coherent extreme ultraviolet emission at ~32 nm (38 eV) due to the 4p-4d resonant transitions is obtained from all aforementioned molecular structures, except for MoS2-NiCNT.


Assuntos
Nanotubos de Carbono , Elementos de Transição , Níquel , Molibdênio , Frequência Cardíaca
16.
Neuroimage ; 261: 119498, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917918

RESUMO

Increased static field inhomogeneities are a burden for human brain MRI at Ultra-High-Field. In particular they cause enhanced Echo-Planar image distortions and signal losses due to magnetic susceptibility gradients at air-tissue interfaces in the subject's head. In the past decade, Multi-Coil Arrays (MCA) have been proposed to shim the field in the brain better than the 2nd or 3rd order Spherical Harmonic (SH) coils usually offered by MRI manufacturers. Here we present a novel MCA, named SCOTCH, optimized for whole brain shimming. Based on a cylindrical structure, it features several layers of small coils whose shape, size and location are found from a principal component analysis of ideal stream functions computed from an internal 100-brain fieldmap database. From an Open-Access external database of 126 brains, our SCOTCH implementation is shown to be equivalent to a partial 7th-order SH system with unlimited power, outperforming all known existing MCA prototypes. This result is further confirmed by a low-cost  30-cm diameter SCOTCH prototype built with 48 coils on 3 layers, and tested on 7 volunteers at 7T with a parallel-transmit RF coil made to be inserted in SCOTCH. Echo-Planar images of the subject brains before and after SCOTCH shimming show large signal recoveries, especially in the prefrontal cortex.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetismo , Ondas de Rádio
17.
Magn Reson Med ; 87(4): 1799-1815, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825729

RESUMO

PURPOSE: To propose a new method for the recovery of combined in-plane- and multi-band (MB)-accelerated diffusion MRI data. METHODS: Combining MB acceleration with in-plane acceleration is crucial to improve the time efficiency of high (angular and spatial) resolution diffusion scans. However, as the MB factor and in-plane acceleration increase, the reconstruction becomes challenging due to the heavy aliasing. The new reconstruction utilizes an additional q-space prior to constrain the recovery, which is derived from the previously proposed qModeL framework. Specifically, the qModeL prior provides a pre-learned representation of the diffusion signal space to which the measured data belongs. We show that the pre-learned q-space prior along with a model-based iterative reconstruction that accommodate multi-band unaliasing, can efficiently reconstruct the in-plane- and MB-accelerated data. The power of joint reconstruction is maximally utilized by using an incoherent under-sampling pattern in the k-q domain. We tested the proposed method on single- and multi-shell data, with high/low angular resolution, high/low spatial resolution, healthy/abnormal tissues, and 3T/7T field strengths. Furthermore, the learning is extended to the spherical harmonic basis, to provide a rotational invariant learning framework. RESULTS: The qModeL joint reconstruction is shown to simultaneously unalias and jointly recover DWIs with reasonable accuracy in all the cases studied. The reconstruction error from 18-fold accelerated multi-shell datasets was <3%. The microstructural maps derived from the accelerated acquisitions also exhibit reasonable accuracy for both healthy and abnormal tissues. The deep learning (DL)-enabled reconstructions are comparable to those derived using traditional methods. CONCLUSION: qModeL enables the joint recovery of combined in-plane- and MB-accelerated dMRI utilizing DL.


Assuntos
Aprendizado Profundo , Aceleração , Algoritmos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
18.
J Anat ; 240(4): 678-687, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34747020

RESUMO

Quantifying morphological variation is critical for conducting anatomical research. Three-dimensional geometric morphometric (3D GM) landmark analyses quantify shape using homologous Cartesian coordinates (landmarks). Setting up a high-density landmark set and placing it on all specimens, however, can be a time-consuming task. Weighted spherical harmonics (SPHARM) provides an alternative method for analyzing the shape of such objects. Here we compare sliding semilandmark and SPHARM analyses of the calcaneus of Gorilla gorilla gorilla (n = 20), Pan troglodytes troglodytes (n = 20), and Homo sapiens (n = 20) to determine whether the SPHARM and sliding semilandmark analyses capture comparable levels of shape variation. We also compare both the sliding semilandmark and SPHARM analyses to a novel combination of the two methods, here termed SPHARM-sliding. In SPHARM-sliding, the vertices of the surface models produced from the SPHARM analysis (that are the same in number and relative location) are used as the starting landmark positions for a sliding semilandmark analysis. Calcaneal shape variation quantified by all three analyses was summarized using separate principal components analyses. Results were compared using the root mean square (RMS) and maximum distance between surface models of species averages scaled (up) to centroid size created from each analysis. The average RMS was 0.23 mm between sliding semilandmark and SPHARM average surface models, 0.19 mm between SPHARM and SPHARM sliding average surface models, and 0.22 mm between sliding semilandmark and SPHARM sliding average surface models. Although results indicate that all three analyses are comparable methods for 3D shape analysis, there are advantages and disadvantages to each. While the SPHARM analysis is less time-intensive, it is unable to capture the same level of detail around the sharp edges of articular facets on average surface models as the sliding semilandmark analysis. The SPHARM analysis also does not allow for individual articular facets to be analyzed in isolation. SPHARM-sliding, however, captures the same level of detail as the sliding semilandmark analysis, and (as in the sliding semilandmark analysis) allows for the evaluation of individual portions of bone. SPHARM is a comparable method to a 3D GM analysis for small, irregularly shaped bones, such as the calcaneus, and SPHARM-sliding allows for an expedited set up process for a sliding semilandmark analysis.


Assuntos
Calcâneo , Gorilla gorilla , Animais , Calcâneo/anatomia & histologia , Humanos , Análise de Componente Principal
19.
J Hum Evol ; 164: 103141, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158085

RESUMO

Early Eocene primate postcranial bones from the Vastan lignite mine of Gujarat, India, have proven useful for understanding the haplorhine and strepsirrhine divergence. Previous analyses of material assigned to Asiadapidae supported interpretations that these primates were generalized arboreal quadrupeds, while the omomyid Vastanomys was likely to have been more proficient leaper than asiadapids. More recent examinations of long bone cross-sectional properties and calcaneal elongation have complicated the behavioral interpretations of these fossils. This study examines whole talar and calcaneal morphology of the Vastan material to refine the locomotor reconstructions of these fossils. A comparative sample of extant primate species representing various locomotor behaviors was obtained by accessing surface models from MorphoSource.org. Surface models of fossil specimens attributed to Asiadapis cambayensis, Marcgodinotius indicus, and Vastanomys major were generated from micro-computed tomography scans. A morphological analysis was carried out using weighted spherical harmonics, a Fourier-based method that represents surfaces using coefficients associated with a common set of spherical harmonic functions. The coefficients describing each surface were then used as shape variables in a principal components analysis. Significant differences between locomotor groups were assessed using nonparametric tests. Results from extant comparative samples show that locomotor behavior can be predicted from both talar and calcaneal morphology when phylogenetic relationships are known. Consistent with previous analyses, our results indicate that Asiadapis cambayensis and Marcgodinotius indicus were likely arboreal quadrupeds with some leaping capabilities. Vastanomys major is reconstructed as an arboreal quadruped with greater leaping proficiency than its asiadapid counterparts based on its talar morphology.


Assuntos
Calcâneo , Fósseis , Animais , Calcâneo/anatomia & histologia , Filogenia , Primatas/anatomia & histologia , Microtomografia por Raio-X
20.
Chemphyschem ; 23(23): e202200295, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-35976176

RESUMO

We introduce HIGHLIGHT as a simple and general strategy to selectively image a reversibly photoactivatable fluorescent label associated with a given kinetics. The label is submitted to sine-wave illumination of large amplitude, which generates oscillations of its concentration and fluorescence at higher harmonic frequencies. For singularizing a label, HIGHLIGHT uses specific frequencies and mean light intensities associated with resonances of the amplitudes of concentration and fluorescence oscillations at harmonic frequencies. Several non-redundant resonant observables are simultaneously retrieved from a single experiment with phase-sensitive detection. HIGHLIGHT is used for selective imaging of four spectrally similar fluorescent proteins that had not been discriminated so far. Moreover, labels out of targeted locations can be discarded in an inhomogeneous spatial profile of illumination. HIGHLIGHT opens roads for simplified optical setups at reduced cost and easier maintenance.


Assuntos
Luz , Fluorescência , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA