Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(14): e110655, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35703167

RESUMO

Fate decisions in the embryo are controlled by a plethora of microenvironmental interactions in a three-dimensional niche. To investigate whether aspects of this microenvironmental complexity can be engineered to direct myogenic human-induced pluripotent stem cell (hiPSC) differentiation, we here screened murine cell types present in the developmental or adult stem cell niche in heterotypic suspension embryoids. We identified embryonic endothelial cells and fibroblasts as highly permissive for myogenic specification of hiPSCs. After two weeks of sequential Wnt and FGF pathway induction, these three-component embryoids are enriched in Pax7-positive embryonic-like myogenic progenitors that can be isolated by flow cytometry. Myogenic differentiation of hiPSCs in heterotypic embryoids relies on a specialized structural microenvironment and depends on MAPK, PI3K/AKT, and Notch signaling. After transplantation in a mouse model of Duchenne muscular dystrophy, embryonic-like myogenic progenitors repopulate the stem cell niche, reactivate after repeated injury, and, compared to adult human myoblasts, display enhanced fusion and lead to increased muscle function. Altogether, we provide a two-week protocol for efficient and scalable suspension-based 3D derivation of Pax7-positive myogenic progenitors from hiPSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Células Endoteliais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Desenvolvimento Muscular , Fosfatidilinositol 3-Quinases/metabolismo , Nicho de Células-Tronco
2.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38438257

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.


Assuntos
Distonia Muscular Deformante , Distonia , Distúrbios Distônicos , Proteína ran de Ligação ao GTP , Humanos , Transporte Ativo do Núcleo Celular , Chaperonas Moleculares/genética , Neurônios Motores/metabolismo
3.
J Neurovirol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600307

RESUMO

The human immunodeficiency virus (HIV) epidemic is an ongoing global health problem affecting 38 million people worldwide with nearly 1.6 million new infections every year. Despite the advent of combined antiretroviral therapy (cART), a large percentage of people with HIV (PWH) still develop neurological deficits, grouped into the term of HIV-associated neurocognitive disorders (HAND). Investigating the neuropathology of HIV is important for understanding mechanisms associated with cognitive impairment seen in PWH. The major obstacle for studying neuroHIV is the lack of suitable in vitro human culture models that could shed light into the HIV-CNS interactions. Recent advances in induced pluripotent stem cell (iPSC) culture and 3D brain organoid systems have allowed the generation of 2D and 3D culture methods that possess a potential to serve as a model of neurotropic viral diseases, including HIV. In this study, we first generated and characterized several hiPSC lines from healthy human donor skin fibroblast cells. hiPSCs were then used for the generation of microglia-containing human cerebral organoids (hCOs). Once fully characterized, hCOs were infected with HIV-1 in the presence and absence of cART regimens and viral infection was studied by cellular, molecular/biochemical, and virological assays. Our results revealed that hCOs were productively infected with HIV-1 as evident by viral p24-ELISA in culture media, RT-qPCR and RNAscope analysis of viral RNA, as well as ddPCR analysis of proviral HIV-1 in genomic DNA samples. More interestingly, replication and gene expression of HIV-1 were also greatly suppressed by cART in hCOs as early as 7 days post-infections. Our results suggest that hCOs derived from hiPSCs support HIV-1 replication and gene expression and may serve as a unique platform to better understand neuropathology of HIV infection in the brain.

4.
J Neurovirol ; 30(2): 131-145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478163

RESUMO

The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals. The results showed that NPCs upon HSV-1 infection undergo a significant dysregulation of genes playing a crucial role in aspects of neurogenesis, including genes affecting NPC proliferation, migration, and differentiation. Our analysis revealed that the CREB signaling, which plays a crucial role in the regulation of neurogenesis and memory consolidation, was the most consistantly downregulated pathway, even in the presence of antivirals. Additionally, cholesterol biosynthesis was significantly downregulated in HSV-1-infected NPCs. The findings from this study, for the first time, offer insights into the intricate molecular mechanisms that underlie the neurogenesis impairment associated with HSV-1 infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Células-Tronco Neurais , Neurogênese , RNA-Seq , Transcriptoma , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Células-Tronco Neurais/virologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Animais , Herpes Simples/genética , Herpes Simples/virologia , Herpes Simples/metabolismo , Antivirais/farmacologia , Diferenciação Celular , Camundongos , Transdução de Sinais , Colesterol/metabolismo , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Movimento Celular
5.
Stem Cells ; 41(2): 140-152, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512477

RESUMO

The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Diferenciação Celular/genética , Endotélio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Biotechnol Bioeng ; 121(2): 489-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013504

RESUMO

Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso , Infecção por Zika virus , Zika virus , Humanos , Encéfalo , Organoides
7.
Mol Cell Biochem ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381273

RESUMO

Diabetic cardiomyopathy (DbCM) is one of the most common vascular complications of diabetes, and can cause heart failure and threaten the life of patients. The pathogenesis is complex, and key genes have not fully identified. In this study, bioinformatics analysis was used to predict DbCM-related gene targets. Published datasets from the NCBI Gene Expression Omnibus with accession numbers GSE62203 and GSE197850 were selected for analysis. Differentially expressed genes (DEGs) were identified by the online tool GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID online database. Protein-protein interaction network construction and hub gene identification were performed using STRING and Cytoscape. We used 30 mM and 1 µM hydrocortisone-stimulated AC16 cells as an in vitro model of diabetic cardiomyopathy. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of hub genes. A total of 73 common DEGs were identified in both datasets, including 47 upregulated and 26 downregulated genes. GO and KEGG pathway enrichment analyses revealed that the DEGs were significantly enriched in metabolism, hypoxia response, apoptosis, cell proliferation regulation, and cytoplasmic and HIF signalling pathways. The top 10 hub genes were LDHA, PGK1, SLC2A1, ENO1, PFKFB3, EGLN1, MYC, PDK1, EGLN3 and BNIP3. In our in vitro study, we found that PGK1, SLC2A1, PFKFB3, EGLN1, MYC, EGLN3 and BNIP3 were upregulated, ENO1 was downregulated, and LDHA was unchanged. Except for PGK1 and ENO1, these hub genes have been previously reported to be involved in DbCM. In summary, we identified DEGs and hub genes and first reported PGK1 and ENO1 in DbCM, which may serve as potential candidate genes for DbCM targeted therapy.

8.
J Neurooncol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196480

RESUMO

PURPOSE: Glioblastoma (GBM) is the most prevalent, malignant, primary brain tumor in adults, characterized by limited treatment options, frequent relapse, and short survival after diagnosis. Until now, none of the existing therapy and treatment approaches have proven to be an effective cure. The availability of predictive human blood-tumor barrier (BTB) test systems that can mimic in-vivo pathophysiology of GBM would be of great interest in preclinical research. Here, we present the establishment of a new BTB in-vitro test system combining GBM spheroids and BBB models derived from human induced pluripotent stem cells (hiPSCs). METHODS: We co-cultured hiPSC-derived brain capillary endothelial-like cells (iBCECs) with GBM spheroids derived from U87-MG and U373-MG cell lines in a cell culture insert-based format. Spheroids were monitored over 168 hours (h) of culture, characterized for GBM-specific marker expression and treated with standard chemotherapeutics to distinguish inhibitory effects between 2D mono-culture and 3D spheroids. GBM-induced changes on iBCECs barrier integrity were verified via measurement of transendothelial electrical resistance (TEER), immunocytochemical staining of tight junction (TJ) proteins claudin-5 and occludin as well as the glucose transporter-1 (Glut-1). GBM-induced secretion of vascular endothelial growth factor (VEGF) was additionally quantified. RESULTS: Our hypothesis was validated by reduced expression of TJ proteins, occludin and claudin-5 together with significant barrier breakdown in iBCECs after only 24 h of co-culture, demonstrated by reduction in TEER from 1313 ± 265 Ω*cm2 to 712 ± 299 Ω*cm2 (iBCECs + U87-MG) and 762 ± 316 Ω*cm2 (iBCECs + U373-MG). Furthermore, 3D spheroids show more resistance to standard GBM chemotherapeutics in-vitro compared to 2D cultures. CONCLUSIONS: We demonstrate the establishment of a simplified, robust in-vitro BTB test system, with potential application in preclinical therapeutic screening and in studying GBM-induced pathological changes at the BBB.

9.
Mol Biol Rep ; 51(1): 260, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302762

RESUMO

Vascular diseases are the underlying pathology in many life-threatening illnesses. Human cellular and molecular mechanisms involved in angiogenesis are complex and difficult to study in current 2D in vitro and in vivo animal models. Engineered 3D in vitro models that incorporate human pluripotent stem cell (hPSC) derived endothelial cells (ECs) and supportive biomaterials within a dynamic microfluidic platform provide a less expensive, more controlled, and reproducible platform to better study angiogenic processes in response to external chemical or physical stimulus. Current studies to develop 3D in vitro angiogenesis models aim to establish single-source systems by incorporating hPSC-ECs into biomimetic extracellular matrices (ECM) and microfluidic devices to create a patient-specific, physiologically relevant platform that facilitates preclinical study of endothelial cell-ECM interactions, vascular disease pathology, and drug treatment pharmacokinetics. This review provides a detailed description of the current methods used for the directed differentiation of human stem cells to endothelial cells and their use in engineered 3D in vitro angiogenesis models that have been developed within the last 10 years.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes , Animais , Humanos , Avaliação Pré-Clínica de Medicamentos , Angiogênese , Neovascularização Fisiológica , Diferenciação Celular
10.
Cell Mol Life Sci ; 80(8): 239, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540379

RESUMO

Retinal ganglion cells (RGCs) are essential for vision perception. In glaucoma and other optic neuropathies, RGCs and their optic axons undergo degenerative change and cell death; this can result in irreversible vision loss. Here we developed a rapid protocol for directly inducing RGC differentiation from human induced pluripotent stem cells (hiPSCs) by the overexpression of ATOH7, BRN3B, and SOX4. The hiPSC-derived RGC-like cells (iRGCs) show robust expression of various RGC-specific markers by whole transcriptome profiling. A functional assessment was also carried out and this demonstrated that these iRGCs display stimulus-induced neuronal activity, as well as spontaneous neuronal activity. Ethambutol (EMB), an effective first-line anti-tuberculosis agent, is known to cause serious visual impairment and irreversible vision loss due to the RGC degeneration in a significant number of treated patients. Using our iRGCs, EMB was found to induce significant dose-dependent and time-dependent increases in cell death and neurite degeneration. Western blot analysis revealed that the expression levels of p62 and LC3-II were upregulated, and further investigations revealed that EMB caused a blockade of lysosome-autophagosome fusion; this indicates that impairment of autophagic flux is one of the adverse effects of that EMB has on iRGCs. In addition, EMB was found to elevate intracellular reactive oxygen species (ROS) levels increasing apoptotic cell death. This could be partially rescued by the co-treatment with the ROS scavenger NAC. Taken together, our findings suggest that this iRGC model, which achieves both high yield and high purity, is suitable for investigating optic neuropathies, as well as being useful when searching for potential drugs for therapeutic treatment and/or disease prevention.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Nervo Óptico , Humanos , Células Ganglionares da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças do Nervo Óptico/metabolismo , Apoptose , Etambutol/farmacologia , Etambutol/metabolismo , Fatores de Transcrição SOXC/metabolismo
11.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311648

RESUMO

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Assuntos
Fluorocarbonos , Fungicidas Industriais , Células-Tronco Pluripotentes Induzidas , Humanos , Testes de Toxicidade/métodos , Corpos Embrioides , Diferenciação Celular , Substâncias Perigosas
12.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255951

RESUMO

T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.


Assuntos
Condrócitos , Toxina T-2 , Tricotecenos , Humanos , Toxina T-2/toxicidade , Proteínas de Sinalização YAP , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal
13.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38203854

RESUMO

Mutations in the GBA1 gene increase the risk of developing Parkinson's disease (PD). However, most carriers of GBA1 mutations do not develop PD throughout their lives. The mechanisms of how GBA1 mutations contribute to PD pathogenesis remain unclear. Cerebrospinal fluid (CSF) is used for detecting pathological conditions of diseases, providing insights into the molecular mechanisms underlying neurodegenerative disorders. In this study, we utilized the proximity extension assay to examine the levels of metabolism-linked protein in the CSF from 17 PD patients carrying GBA1 mutations (GBA1-PD) and 17 idiopathic PD (iPD). The analysis of CSF secretome in GBA1-PD identified 11 significantly altered proteins, namely FKBP4, THOP1, GLRX, TXNDC5, GAL, SEMA3F, CRKL, APLP1, LRP11, CD164, and NPTXR. To investigate GBA1-associated CSF changes attributed to specific neuronal subtypes responsible for PD, we analyzed the cell culture supernatant from GBA1-PD-induced pluripotent stem cell (iPSC)-derived midbrain dopaminergic (mDA) neurons. The secretome analysis of GBA1-PD iPSC-derived mDA neurons revealed that five differently regulated proteins overlapped with those identified in the CSF analysis: FKBP4, THOP1, GLRX, GAL, and CRKL. Reduced intracellular level of the top hit, FKPB4, was confirmed via Western Blot. In conclusion, our findings identify significantly altered CSF GBA1-PD-associated proteins with FKPB4 being firmly attributed to mDA neurons.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Proteínas de Ligação a Tacrolimo , Humanos , Proteínas do Líquido Cefalorraquidiano , Proteínas de Membrana , Mutação , Proteínas do Tecido Nervoso , Doença de Parkinson/genética , Isomerases de Dissulfetos de Proteínas , Secretoma , Proteínas de Ligação a Tacrolimo/genética
14.
J Infect Dis ; 228(6): 777-782, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37159513

RESUMO

Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the ß-glucocerebrosidase (GCase) GBA gene, which result in macrophage dysfunction. CRISPR (clustered regularly interspaced short palindromic repeats) editing of the homozygous L444P (1448T→C) GBA mutation in type 2 GD (GBA-/-) human-induced pluripotent stem cells (hiPSCs) yielded both heterozygous (GBA+/-) and homozygous (GBA+/+) isogenic lines. Macrophages derived from GBA-/-, GBA+/- and GBA+/+ hiPSCs showed that GBA mutation correction restores normal macrophage functions: GCase activity, motility, and phagocytosis. Furthermore, infection of GBA-/-, GBA+/- and GBA+/+ macrophages with the Mycobacterium tuberculosis H37Rv strain showed that impaired mobility and phagocytic activity were correlated with reduced levels of bacterial engulfment and replication suggesting that GD may be protective against tuberculosis.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Mycobacterium tuberculosis , Humanos , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doença de Gaucher/genética , Mutação , Macrófagos/metabolismo
15.
Glycobiology ; 33(2): 150-164, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36373215

RESUMO

This report describes the isolation and characterization of two new antibodies, R-6C (IgM) and R-13E (IgM), which were generated in C57BL/6 mice (Mus musculus) using the Tic (JCRB1331) human induced pluripotent cell (hiPSC) line as an antigen, and their comparisons with two existing antibodies, R-10G (IgG1) and R-17F (IgG1). Their epitopes were studied by western blotting after various glycosidase digestions, binding analyses using enzyme-linked immunosorbent assays (ELISAs) and microarrays with various synthetic oligosaccharides. The minimum epitope structures identified were: Siaα2-3Galß1-3GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-6C), Fucα1-2Galß1-3GlcNAcß1-3Galß1 (R-13E), Galß1-4GlcNAc(6S)ß1-3Galß1-4GlcNAc(6S)ß1 (R-10G), and Fucα1-2Galß1-3GlcNAß1-3Galß1-4Glc (lacto-N-fucopentaose I) (R-17F). Most glycoprotein epitopes are expressed as O-glycans. The common feature of these epitopes is the presence of an N-acetyllactosamine type 1 structure (Galß1-3GlcNAc) at their nonreducing termini, followed by a type 2 structure (Galß1-4GlcNAc); this arrangement comprises a type 1-type 2 motif. This motif is also shared by TRA-1-60, a traditional onco-fetal antigen. In contrast, the R-10G epitope has a type 2-type 2 motif. Among these antibodies, R-17F and R-13E exhibit cytotoxic activity toward hiPSCs. R-17F and R-13E exhibit extremely high similarity in the amino acid sequences in their complementarity-determining regions (CDRs), which is consistent with their highly similar glycan recognition. These antibodies are excellent tools for investigating the biological functions of glycoconjugates in hiPSCs/hESCs; they could be useful for the selection, isolation and selective killing of such undifferentiated pluripotent stem cells.


Assuntos
Sulfato de Queratano , Oligossacarídeos , Camundongos , Animais , Humanos , Sulfato de Queratano/química , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Polissacarídeos/química , Epitopos/química , Imunoglobulina G , Imunoglobulina M
16.
Neurobiol Dis ; 178: 105980, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572121

RESUMO

Alzheimer's disease (AD) is a progressive and irreversible brain disorder, which can occur either sporadically, due to a complex combination of environmental, genetic, and epigenetic factors, or because of rare genetic variants in specific genes (familial AD, or fAD). A key hallmark of AD is the accumulation of amyloid beta (Aß) and Tau hyperphosphorylated tangles in the brain, but the underlying pathomechanisms and interdependencies remain poorly understood. Here, we identify and characterise gene expression changes related to two fAD mutations (A79V and L150P) in the Presenilin-1 (PSEN1) gene. We do this by comparing the transcriptomes of glutamatergic forebrain neurons derived from fAD-mutant human induced pluripotent stem cells (hiPSCs) and their individual isogenic controls generated via precision CRISPR/Cas9 genome editing. Our analysis of Poly(A) RNA-seq data detects 1111 differentially expressed coding and non-coding genes significantly altered in fAD. Functional characterisation and pathway analysis of these genes reveal profound expression changes in constituents of the extracellular matrix, important to maintain the morphology, structural integrity, and plasticity of neurons, and in genes involved in calcium homeostasis and mitochondrial oxidative stress. Furthermore, by analysing total RNA-seq data we reveal that 30 out of 31 differentially expressed circular RNA genes are significantly upregulated in the fAD lines, and that these may contribute to the observed protein-coding gene expression changes. The results presented in this study contribute to a better understanding of the cellular mechanisms impacted in AD neurons, ultimately leading to neuronal damage and death.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Peptídeos beta-Amiloides/metabolismo , Transcriptoma , Presenilina-1/genética , Presenilina-1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Mutação/genética , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/genética
17.
Hum Genet ; 142(4): 577-593, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36964785

RESUMO

CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs). A patient carrying the homozygous c.2257C > T (p.R753X) nonsense CLCN2 mutation was followed up for > 6 years. Ocular features were comprehensively characterized with multimodality imaging and functional examination. The patient presented with severe bilateral retinal degeneration with loss of photoreceptor and RPE. In vitro, mutant CLC-2 maintained the correct subcellular localization, but with reduced channel function compared to wild-type CLC-2 in HEK293T cells. Additionally, patient iPSC-derived RPE cells carrying the CLCN2 mutation exhibited dysfunctional ClC-2 chloride channels and outer segment phagocytosis. Notably, these functions were rescued following the repair of the CLCN2 mutation using the CRISPR-Cas9 system. However, this variant did not cause significant photoreceptor degeneration in patient-derived ROs, indicating that dysfunctional RPE is likely the primary cause of biallelic CLCN2 variant-mediated retinopathy. This study is the first to establish the confirmatory ocular features of human CLCN2-related retinal degeneration, and reveal a pathogenic mechanism associated with biallelic CLCN2 variants, providing new insights into the cause of inherited retinal dystrophies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofias Retinianas , Animais , Humanos , Camundongos , Canais de Cloreto/genética , Códon sem Sentido , Células HEK293 , Mutação , Fagocitose/genética , Espécies Reativas de Oxigênio/metabolismo , Distrofias Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
18.
Biochem Biophys Res Commun ; 674: 190-198, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37532637

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are a promising cell source for regenerative medicine and drug discovery. However, the use of animal models for studying human cardiomyocytes derived from hiPSCs in vivo is limited and challenging. Given the shared properties between humans and zebrafish, their ethical advantages over mammalian models, and their immature immune system that is rejection-free against xenografted human cells, zebrafish provide a suitable alternative model for xenograft studies. We microinjected fluorescence-labeled cardiac lineage cells derived from hiPSCs, specifically mesoderm or cardiac mesoderm cells, into the yolk and the area proximal to the outflow tract of the linear heart at 24 hours post-fertilization (hpf). The cells injected into the yolk survived and did not migrate to other tissues. In contrast, the cells injected contiguous with the outflow tract of the linear heart migrated into the pericardial cavity and heart. After 1 day post injection (1 dpi, 22-24 hpi), the injected cells migrated into the pericardial cavity and heart. Importantly, we observed heartbeat-like movements of some injected cells in the zebrafish heart after 1 dpi. These results suggested successful xenografting of hiPSC-derived cardiac lineage cells into the zebrafish embryo heart. Thus, we developed a valuable tool using zebrafish embryos as a model organism for investigating the molecular and cellular mechanisms involved in the grafting process. This is essential in developing cell transplantation-based cardiac therapeutics as well as for drug testing, notably contributing to advancements in the field of cardio-medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Peixe-Zebra , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Diferenciação Celular , Transplante Heterólogo , Xenoenxertos , Miócitos Cardíacos , Mamíferos
19.
Biochem Biophys Res Commun ; 681: 200-211, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783118

RESUMO

Human heart tissues grown as three-dimensional spheroids and consisting of different cardiac cell types derived from pluripotent stem cells (hiPSCs) recapitulate aspects of human physiology better than standard two-dimensional models in vitro. They typically consist of less than 5000 cells and are used to measure contraction kinetics although not contraction force. By contrast, engineered heart tissues (EHTs) formed around two flexible pillars, can measure contraction force but conventional EHTs often require between 0.5 and 2 million cells. This makes large-scale screening of many EHTs costly. Our goals here were (i) to create a physiologically relevant model that required fewer cells than standard EHTs making them less expensive, and (ii) to ensure that this miniaturized model retained correct functionality. We demonstrated that fully functional EHTs could be generated from physiologically relevant combinations of hiPSC-derived cardiomyocytes (70%), cardiac fibroblasts (15%) and cardiac endothelial cells (15%), using as few as 1.6 × 104 cells. Our results showed that these EHTs were viable and functional up to 14 days after formation. The EHTs could be electrically paced in the frequency range between 0.6 and 3 Hz, with the optimum between 0.6 and 2 Hz. This was consistent across three downscaled EHT sizes tested. These findings suggest that miniaturized EHTs could represent a cost-effective microphysiological system for disease modelling and examining drug responses particularly in secondary screens for drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Células Endoteliais , Técnicas de Cocultura , Miócitos Cardíacos/metabolismo , Contração Miocárdica , Engenharia Tecidual/métodos
20.
Biochem Biophys Res Commun ; 666: 52-60, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37178505

RESUMO

The generation of induced pluripotent stem cells (iPSCs) via somatic cell reprogramming allowed to have an unlimited in vitro source of patient-specific cells. This achievement has introduced a new revolutionary way to create human in vitro models and to study human diseases starting from patient's own cells, especially important for inaccessible tissues like the brain. Recently, lab-on-a-chip technology has opened new reliable alternatives to conventional in vitro models able to replicate key aspects of human physiology, thanks to the intrinsic high surface-area-to-volume ratio, which allows fine control of the cellular microenvironment. The development of automated microfluidic platforms allowed the implementation of this technology to perform high-throughput, standardized and parallelized assays, suitable for drug screenings and developing new therapeutic approaches in a cost-effective way. However, the major challenges in the broad application of automated lab-on-a-chip in biological research are the lack of production robustness and ease of use of the devices. Here, we present an automated microfluidic platform able to host the rapid conversion of human iPSCs (hiPSCs) into neurons via viral-mediated overexpression of Neurogenin 2 (NGN2) in a user-friendly manner. The design of the platform, built with multilayer soft-lithography techniques, shows easiness in the fabrication and assembly thanks to the simple geometry and experimental reproducibility at the same time. All operations are managed automatically, from the cell seeding, medium change, doxycycline-mediated neuronal induction, selection of the genetically engineered cells, and analysis of the output of differentiation, including immunofluorescence assay. Our results show a high-throughput, efficient and homogenous conversion of hiPSCs into neurons in 10 days, characterized by the expression of the mature neuronal marker MAP2 and calcium signaling. The neurons-on-chip model here described represents a fully automated loop system able to address the challenges in the field of neurological diseases modelling in vitro and improve current preclinical models.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microfluídica/métodos , Reprodutibilidade dos Testes , Neurônios , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA