Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 301-316, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750315

RESUMO

As an important sensor in the innate immune system, NLRP3 detects exogenous pathogenic invasions and endogenous cellular damage and responds by forming the NLRP3 inflammasome, a supramolecular complex that activates caspase-1. The three major components of the NLRP3 inflammasome are NLRP3, which captures the danger signals and recruits downstream molecules; caspase-1, which elicits maturation of the cytokines IL-1ß and IL-18 and processing of gasdermin D to mediate cytokine release and pyroptosis; and ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain), which functions as a bridge connecting NLRP3 and caspase-1. In this article, we review the structural information that has been obtained on the NLRP3 inflammasome and its components or subcomplexes, with special focus on the inactive NLRP3 cage, the active NLRP3-NEK7 (NIMA-related kinase 7)-ASC inflammasome disk, and the PYD-PYD and CARD-CARD homotypic filamentous scaffolds of the inflammasome. We further implicate structure-derived mechanisms for the assembly and activation of the NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Animais , Inflamassomos/química , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Apoptose , Citocinas/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo
2.
Annu Rev Immunol ; 33: 823-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706096

RESUMO

Patients with autoinflammatory diseases present with noninfectious fever flares and systemic and/or disease-specific organ inflammation. Their excessive proinflammatory cytokine and chemokine responses can be life threatening and lead to organ damage over time. Studying such patients has revealed genetic defects that have helped unravel key innate immune pathways, including excessive IL-1 signaling, constitutive NF-κB activation, and, more recently, chronic type I IFN signaling. Discoveries of monogenic defects that lead to activation of proinflammatory cytokines have inspired the use of anticytokine-directed treatment approaches that have been life changing for many patients and have led to the approval of IL-1-blocking agents for a number of autoinflammatory conditions. In this review, we describe the genetically characterized autoinflammatory diseases, we summarize our understanding of the molecular pathways that drive clinical phenotypes and that continue to inspire the search for novel treatment targets, and we provide a conceptual framework for classification.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Predisposição Genética para Doença , Inflamação/genética , Inflamação/imunologia , Animais , Doenças Autoimunes/metabolismo , Autoimunidade , Modelos Animais de Doenças , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interferons/metabolismo , Interleucina-1/metabolismo , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais
3.
Cell ; 184(17): 4495-4511.e19, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34289345

RESUMO

The process of pyroptosis is mediated by inflammasomes and a downstream effector known as gasdermin D (GSDMD). Upon cleavage by inflammasome-associated caspases, the N-terminal domain of GSDMD forms membrane pores that promote cytolysis. Numerous proteins promote GSDMD cleavage, but none are known to be required for pore formation after GSDMD cleavage. Herein, we report a forward genetic screen that identified the Ragulator-Rag complex as being necessary for GSDMD pore formation and pyroptosis in macrophages. Mechanistic analysis revealed that Ragulator-Rag is not required for GSDMD cleavage upon inflammasome activation but rather promotes GSDMD oligomerization in the plasma membrane. Defects in GSDMD oligomerization and pore formation can be rescued by mitochondrial poisons that stimulate reactive oxygen species (ROS) production, and ROS modulation impacts the ability of inflammasome pathways to promote pore formation downstream of GSDMD cleavage. These findings reveal an unexpected link between key regulators of immunity (inflammasome-GSDMD) and metabolism (Ragulator-Rag).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Multimerização Proteica , Piroptose , Transdução de Sinais , Aminoácidos/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Testes Genéticos , Humanos , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas de Ligação a Fosfato/química , Domínios Proteicos , RNA Guia de Cinetoplastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Immunity ; 56(10): 2206-2217, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37703879

RESUMO

The innate immune system is critical for inducing durable and protective T cell responses to infection and has been increasingly recognized as a target for cancer immunotherapy. In this review, we present a framework wherein distinct innate immune signaling pathways activate five key dendritic cell activities that are important for T cell-mediated immunity. We discuss molecular pathways that can agonize these activities and highlight that no single pathway can agonize all activities needed for durable immunity. The immunological distinctions between innate immunotherapy administration to the tumor microenvironment versus administration via vaccination are examined, with particular focus on the strategies that enhance dendritic cell migration, interferon expression, and interleukin-1 family cytokine production. In this context, we argue for the importance of appreciating necessity vs. sufficiency when considering the impact of innate immune signaling in inflammation and protective immunity and offer a conceptual guideline for the development of efficacious cancer immunotherapies.


Assuntos
Neoplasias , Humanos , Citocinas , Transdução de Sinais , Imunidade Inata , Imunoterapia , Microambiente Tumoral
5.
Semin Cell Dev Biol ; 156: 74-92, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598045

RESUMO

Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.


Assuntos
Apoptose , Biologia Sintética , Animais , Apoptose/fisiologia , Morte Celular , Piroptose/genética , Transdução de Sinais
6.
EMBO J ; 41(20): e111161, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36031853

RESUMO

Phagocytosis is the necessary first step to sense foreign microbes or particles and enables activation of innate immune pathways such as inflammasomes. However, the molecular mechanisms underlying how phagosomes modulate inflammasome activity are not fully understood. We show that in murine dendritic cells (DCs), the lysosomal histidine/peptide solute carrier transporter SLC15A4, associated with human inflammatory disorders, is recruited to phagosomes and is required for optimal inflammasome activity after infectious or sterile stimuli. Dextran sodium sulfate-treated SLC15A4-deficient mice exhibit decreased colon inflammation, reduced IL-1ß production by intestinal DCs, and increased autophagy. Similarly, SLC15A4-deficient DCs infected with Salmonella typhimurium show reduced caspase-1 cleavage and IL-1ß production. This correlates with peripheral NLRC4 inflammasome assembly and increased autophagy. Overexpression of constitutively active mTORC1 rescues decreased IL-1ß levels and caspase1 cleavage, and restores perinuclear inflammasome positioning. Our findings support that SLC15A4 couples phagocytosis with inflammasome perinuclear assembly and inhibition of autophagy through phagosomal content sensing. Our data also reveal the previously unappreciated importance of mTORC1 signaling pathways to promote and sustain inflammasome activity.


Assuntos
Células Dendríticas , Inflamassomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana Transportadoras , Animais , Autofagia , Caspase 1/metabolismo , Células Dendríticas/metabolismo , Dextranos/metabolismo , Histidina , Humanos , Interleucina-1beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fagossomos/metabolismo
7.
Immunity ; 47(2): 339-348.e4, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801232

RESUMO

The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Bactérias/genética , Colite/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Inflamassomos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Colite/induzido quimicamente , Colite/microbiologia , Disbiose/microbiologia , Feminino , Patrimônio Genético , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , RNA Ribossômico 16S/análise , Receptores de Superfície Celular/genética , Dodecilsulfato de Sódio
8.
EMBO Rep ; 25(1): 21-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177903

RESUMO

Mechano-immunity, the intersection between cellular or tissue mechanics and immune cell function, is emerging as an important factor in many inflammatory diseases. Mechano-sensing defines how cells detect mechanical changes in their environment. Mechano-response defines how cells adapt to such changes, e.g. form synapses, signal or migrate. Inflammasomes are intracellular immune sensors that detect changes in tissue and cell homoeostasis during infection or injury. We and others recently found that mechano-sensing of tissue topology (swollen tissue), topography (presence and distribution of foreign solid implant) or biomechanics (stiffness), alters inflammasome activity. Once activated, inflammasomes induce the secretion of inflammatory cytokines, but also change cellular mechanical properties, which influence how cells move, change their shape, and interact with other cells. When overactive, inflammasomes lead to chronic inflammation. This clearly places inflammasomes as important players in mechano-immunity. Here, we discuss a model whereby inflammasomes integrate pathogen- and tissue-injury signals, with changes in tissue mechanics, to shape the downstream inflammatory responses and allow cell and tissue mechano-adaptation. We will review the emerging evidence that supports this model.


Assuntos
Citocinas , Inflamassomos , Humanos , Inflamação
9.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38940767

RESUMO

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Assuntos
Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Células THP-1 , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido Linoleico/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Circ Res ; 132(11): 1505-1520, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228237

RESUMO

The CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) and colchicine trials suggest an important role of inflammasomes and their major product IL-1ß (interleukin 1ß) in human atherosclerotic cardiovascular disease. Moreover, studies in mouse models indicate a causal role of inflammasomes and IL-1ß in atherosclerosis. However, recent studies have led to a more granular view of the role of inflammasomes in atherosclerosis. Studies in hyperlipidemic mouse models suggest that prominent activation of the NLRP3 inflammasome requires a second hit such as defective cholesterol efflux, defective DNA repair, clonal hematopoiesis or diabetes. Similarly in humans some mutations promoting clonal hematopoiesis increase coronary artery disease risk in part by promoting inflammasome activation. Recent studies in mice and humans point to a wider role of the AIM2 (absent in melanoma 2) inflammasome in promoting cardiovascular disease including in some forms of clonal hematopoiesis and diabetes. These developments suggest a precision medicine approach in which treatments targeting inflammasomes or IL-1ß might be best employed in clinical settings involving increased inflammasome activation.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Trombose , Camundongos , Humanos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Aterosclerose/genética , Interleucina-1beta
11.
Exp Cell Res ; 437(1): 113999, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494067

RESUMO

The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.


Assuntos
Diabetes Mellitus , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ligamento Periodontal/metabolismo , Transdução de Sinais , Inflamação , Produtos Finais de Glicação Avançada/farmacologia
12.
Am J Physiol Cell Physiol ; 326(3): C784-C794, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189134

RESUMO

The field of cell death has witnessed significant advancements since the initial discovery of apoptosis in the 1970s. This review delves into the intricacies of pyroptosis, a more recently identified form of regulated, lytic cell death, and explores the roles of pyroptotic effector molecules, with a strong emphasis on their mechanisms and relevance in various diseases. Pyroptosis, characterized by its proinflammatory nature, is driven by the accumulation of large plasma membrane pores comprised of gasdermin family protein subunits. In different contexts of cellular homeostatic perturbations, infections, and tissue damage, proteases, such as caspase-1 and caspase-4/5, play pivotal roles in pyroptosis by cleaving gasdermins. Gasdermin-D (GSDMD), the most extensively studied member of the gasdermin protein family, is expressed in various immune cells and certain epithelial cells. Upon cleavage by caspases, GSDMD oligomerizes and forms transmembrane pores in the cell membrane, leading to the release of proinflammatory cytokines. GSDMD-N, the NH2-terminal fragment, displays an affinity for specific lipids, contributing to its role in pore formation in pyroptosis. While GSDMD is the primary focus, other gasdermin family members are also discussed in detail. These proteins exhibit distinct tissue-specific functions and contribute to different facets of cell death regulation. Additionally, genetic variations in some gasdermins have been linked to diseases, underscoring their clinical relevance. Furthermore, the interplay between GSDM pores and the activation of other effectors, such as ninjurin-1, is elucidated, providing insights into the complexity of pyroptosis regulation. The findings underscore the molecular mechanisms that govern pyroptosis and its implications for various physiological and pathological processes.


Assuntos
Gasderminas , Piroptose , Morte Celular , Apoptose , Caspases/genética
13.
J Cell Mol Med ; 28(9): e18286, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742843

RESUMO

Osteosarcoma, the primary bone cancer in adolescents and young adults, is notorious for its aggressive growth and metastatic potential. Our study delved into the prognostic impact of inflammasome-related gene signatures in osteosarcoma patients, employing comprehensive genetic profiling to uncover signatures linked with patient outcomes. We identified three patient subgroups through consensus clustering, with one showing worse survival rates correlated with high FGFR3 and RARB expressions. Immune profiling revealed significant immune cell infiltration differences among these subgroups, affecting survival. Utilising advanced machine learning, including StepCox and gradient boosting machine algorithms, we developed a prognostic model with a notable c-index of 0.706, highlighting CD36 and MYD88 as key genes. Higher inflammasome risk scores from our model were associated with poorer survival, corroborated across datasets. In vitro experiments validated CD36 and MYD88's roles in promoting osteosarcoma cell proliferation, invasion and migration, emphasising their therapeutic potential. This research offers new insights into inflammasomes' role in osteosarcoma, introducing novel biomarkers for risk assessment and potential therapeutic targets. Our findings suggest a pathway towards personalised treatment strategies, potentially improving patient outcomes in osteosarcoma.


Assuntos
Biomarcadores Tumorais , Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Inflamassomos , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/imunologia , Osteossarcoma/mortalidade , Inflamassomos/metabolismo , Inflamassomos/genética , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/diagnóstico , Perfilação da Expressão Gênica , Feminino , Masculino , Transcriptoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Adolescente , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo
14.
Infect Immun ; : e0025124, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225472

RESUMO

Salmonella enterica is comprised of over 2,500 serovars, in which non-typhoidal serovars (NTS), Enteritidis (SE), and Typhimurium (STM) are the most clinically associated with human infections. Although NTS have similar genetic elements to cause disease, phenotypic variation including differences in lipopolysaccharide (LPS) composition may control immune evasion. Here, we demonstrate that macrophage host defenses and LL-37 antimicrobial efficacy against SE and STM are substantially altered by LPS heterogeneity. We found that SE evades macrophage killing by inhibiting phagocytosis while STM survives better intracellularly post-phagocytosis. SE-infected macrophages failed to activate the inflammasomes and subsequently produced less interleukin-1ß (IL-1ß), IL-18, and interferon λ. Inactivation of LPS biosynthesis genes altered LPS composition, and the SE LPS-altered mutants could no longer inhibit phagocytosis, inflammasome activation, and type II interferon signaling. In addition, SE and STM showed differential susceptibility to the antimicrobials LL-37 and colistin, and alteration of LPS structure substantially increased susceptibility to these molecules. Collectively, our findings highlight that modification of LPS composition by Salmonella increases resistance to host defenses and antibiotics.

15.
Circulation ; 148(22): 1764-1777, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
16.
Circulation ; 148(22): 1827-1845, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37902008

RESUMO

Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.


Assuntos
American Heart Association , Doenças Cardiovasculares , Criança , Adolescente , Humanos , Fatores de Risco , Obesidade/complicações , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle
17.
Circulation ; 147(4): 338-355, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36440584

RESUMO

BACKGROUND: Mechanical stress on the heart, such as high blood pressure, initiates inflammation and causes hypertrophic heart disease. However, the regulatory mechanism of inflammation and its role in the stressed heart remain unclear. IL-1ß (interleukin-1ß) is a proinflammatory cytokine that causes cardiac hypertrophy and heart failure. Here, we show that neural signals activate the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing 3) inflammasome for IL-1ß production to induce adaptive hypertrophy in the stressed heart. METHODS: C57BL/6 mice, knockout mouse strains for NLRP3 and P2RX7 (P2X purinoceptor 7), and adrenergic neuron-specific knockout mice for SLC17A9, a secretory vesicle protein responsible for the storage and release of ATP, were used for analysis. Pressure overload was induced by transverse aortic constriction. Various animal models were used, including pharmacological treatment with apyrase, lipopolysaccharide, 2'(3')-O-(4-benzoylbenzoyl)-ATP, MCC950, anti-IL-1ß antibodies, clonidine, pseudoephedrine, isoproterenol, and bisoprolol, left stellate ganglionectomy, and ablation of cardiac afferent nerves with capsaicin. Cardiac function and morphology, gene expression, myocardial IL-1ß and caspase-1 activity, and extracellular ATP level were assessed. In vitro experiments were performed using primary cardiomyocytes and fibroblasts from rat neonates and human microvascular endothelial cell line. Cell surface area and proliferation were assessed. RESULTS: Genetic disruption of NLRP3 resulted in significant loss of IL-1ß production, cardiac hypertrophy, and contractile function during pressure overload. A bone marrow transplantation experiment revealed an essential role of NLRP3 in cardiac nonimmune cells in myocardial IL-1ß production and cardiac phenotype. Pharmacological depletion of extracellular ATP or genetic disruption of the P2X7 receptor suppressed myocardial NLRP3 inflammasome activity during pressure overload, indicating an important role of ATP/P2X7 axis in cardiac inflammation and hypertrophy. Extracellular ATP induced hypertrophic changes of cardiac cells in an NLRP3- and IL-1ß-dependent manner in vitro. Manipulation of the sympathetic nervous system suggested sympathetic efferent nerves as the main source of extracellular ATP. Depletion of ATP release from sympathetic efferent nerves, ablation of cardiac afferent nerves, or a lipophilic ß-blocker reduced cardiac extracellular ATP level, and inhibited NLRP3 inflammasome activation, IL-1ß production, and adaptive cardiac hypertrophy during pressure overload. CONCLUSIONS: Cardiac inflammation and hypertrophy are regulated by heart-brain interaction. Controlling neural signals might be important for the treatment of hypertensive heart disease.


Assuntos
Inflamassomos , Proteínas de Transporte de Nucleotídeos , Camundongos , Ratos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Inflamação , Arritmias Cardíacas , Encéfalo/metabolismo , Cardiomegalia , Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo
18.
J Clin Immunol ; 44(2): 49, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231350

RESUMO

Syndrome of undifferentiated recurrent fever (SURF) is characterized by recurrent fevers, a lack of confirmed molecular diagnosis, and a complete or partial response to colchicine. Despite the clinical similarities to familial Mediterranean fever (FMF), the underlying inflammatory mechanisms of SURF are not yet understood. We here analyzed the in vitro activation of the pyrin inflammasome in a cohort of SURF patients compared to FMF and PFAPA patients. Peripheral blood mononuclear cells (PBMC) were collected from SURF (both colchicine-treated and untreated), FMF, PFAPA patients, and healthy donors. PBMC were stimulated ex vivo with Clostridium difficile toxin A (TcdA) and a PKC inhibitor (UCN-01), in the presence or absence of colchicine. The assembly of the pyrin inflammasome was evaluated by measuring the presence of apoptosis-associated Speck-like protein containing caspase recruitment domain (ASC) specks in monocytes using flow cytometry. IL-1ß secretion was quantified using an ELISA assay. No differences in TcdA-induced activation of pyrin inflammasome were observed among FMF, PFAPA, and healthy donors. Untreated SURF patients showed a reduced response to TcdA, which was normalized after colchicine treatment. In contrast to FMF, SURF patients, similar to PFAPA patients and healthy donors, did not exhibit pyrin inflammasome activation in response to UCN-01-mediated pyrin dephosphorylation. These data demonstrate that in vitro functional analysis of pyrin inflammasome activation can differentiate SURF from FMF and PFAPA patients, suggesting the involvement of the pyrin inflammasome in the pathophysiology of SURF.


Assuntos
Colchicina , Febre Familiar do Mediterrâneo , Humanos , Colchicina/farmacologia , Colchicina/uso terapêutico , Febre Familiar do Mediterrâneo/diagnóstico , Febre Familiar do Mediterrâneo/tratamento farmacológico , Inflamassomos , Leucócitos Mononucleares , Pirina/genética
19.
Eur J Immunol ; 53(5): e2250224, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929362

RESUMO

Birth prior to 37 completed weeks of gestation is referred to as preterm (PT). Premature newborns are at increased risk of developing infections as neonatal immunity is a developing structure. Monocytes, which are key players after birth, activate inflammasomes. Investigations into the identification of innate immune profiles in premature compared to full-term infants are limited. Our research includes the investigation of monocytes and NK cells, gene expression, and plasma cytokine levels to investigate any potential differences among a cohort of 68 healthy PT and full-term infants. According to high-dimensional flow cytometry, PT infants have higher proportions of CD56+/- CD16+ NK cells and immature monocytes, and lower proportions of classical monocytes. Gene expression revealed lower proportions of inflammasome activation after in vitro monocyte stimulation and the quantification of plasma cytokine levels expressed higher concentrations of alarmin S100A8. Our findings suggest that PT newborns have altered innate immunity and monocyte functional impairment, and pro-inflammatory plasmatic profile. This may explain PT infants' increased susceptibility to infectious disease and should pave the way for novel therapeutic strategies and clinical interventions.


Assuntos
Monócitos , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Citocinas/metabolismo , Nascimento Prematuro/metabolismo , Inflamassomos/metabolismo , Imunidade Inata
20.
Hum Reprod ; 39(8): 1599-1607, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906835

RESUMO

Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.


Assuntos
Envelhecimento , Inflamação , Ovário , Humanos , Feminino , Envelhecimento/fisiologia , Ovário/fisiopatologia , Doença Crônica , Animais , Reserva Ovariana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA