Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.228
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452761

RESUMO

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucarióticas/metabolismo , Redes Neurais de Computação , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell ; 187(1): 110-129.e31, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181737

RESUMO

X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.


Assuntos
Genes Ligados ao Cromossomo X , RNA Longo não Codificante , Cromossomo X , Animais , Feminino , Humanos , Masculino , Camundongos , Inativação Gênica , RNA Longo não Codificante/genética , Cromossomo X/genética , Células-Tronco Pluripotentes/metabolismo
3.
Cell ; 186(16): 3499-3518.e14, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37437571

RESUMO

Chloroplasts are eukaryotic photosynthetic organelles that drive the global carbon cycle. Despite their importance, our understanding of their protein composition, function, and spatial organization remains limited. Here, we determined the localizations of 1,034 candidate chloroplast proteins using fluorescent protein tagging in the model alga Chlamydomonas reinhardtii. The localizations provide insights into the functions of poorly characterized proteins; identify novel components of nucleoids, plastoglobules, and the pyrenoid; and reveal widespread protein targeting to multiple compartments. We discovered and further characterized cellular organizational features, including eleven chloroplast punctate structures, cytosolic crescent structures, and unexpected spatial distributions of enzymes within the chloroplast. We also used machine learning to predict the localizations of other nuclear-encoded Chlamydomonas proteins. The strains and localization atlas developed here will serve as a resource to accelerate studies of chloroplast architecture and functions.


Assuntos
Vias Biossintéticas , Chlamydomonas reinhardtii , Proteínas de Cloroplastos , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Fotossíntese
4.
Cell ; 186(25): 5638-5655.e25, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065083

RESUMO

Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.


Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Regulação da Expressão Gênica , Proteínas/genética , Proteínas/metabolismo , Mutação , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética
5.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35325593

RESUMO

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Animais , Grânulos de Ribonucleoproteínas Citoplasmáticas , Drosophila/embriologia , Proteínas de Drosophila/genética , Desenvolvimento Embrionário , Oócitos/metabolismo , RNA/metabolismo
6.
Annu Rev Cell Dev Biol ; 39: 253-275, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843928

RESUMO

Recent advances in single-molecule imaging of mRNAs in fixed and living cells have enabled the lives of mRNAs to be studied with unprecedented spatial and temporal detail. These approaches have moved beyond simply being able to observe specific events and have begun to allow an understanding of how regulation is coupled between steps in the mRNA life cycle. Additionally, these methodologies are now being applied in multicellular systems and animals to provide more nuanced insights into the physiological regulation of RNA metabolism.


Assuntos
RNA Mensageiro , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell ; 184(14): 3626-3642.e14, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34186018

RESUMO

All cells fold their genomes, including bacterial cells, where the chromosome is compacted into a domain-organized meshwork called the nucleoid. How compaction and domain organization arise is not fully understood. Here, we describe a method to estimate the average mesh size of the nucleoid in Escherichia coli. Using nucleoid mesh size and DNA concentration estimates, we find that the cytoplasm behaves as a poor solvent for the chromosome when the cell is considered as a simple semidilute polymer solution. Monte Carlo simulations suggest that a poor solvent leads to chromosome compaction and DNA density heterogeneity (i.e., domain formation) at physiological DNA concentration. Fluorescence microscopy reveals that the heterogeneous DNA density negatively correlates with ribosome density within the nucleoid, consistent with cryoelectron tomography data. Drug experiments, together with past observations, suggest the hypothesis that RNAs contribute to the poor solvent effects, connecting chromosome compaction and domain formation to transcription and intracellular organization.


Assuntos
Cromossomos Bacterianos/química , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Solventes/química , Transcrição Gênica , Aminoglicosídeos/farmacologia , Simulação por Computador , DNA Bacteriano/química , Difusão , Escherichia coli/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Tamanho da Partícula , RNA Bacteriano/metabolismo , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Transcrição Gênica/efeitos dos fármacos
8.
Annu Rev Biochem ; 89: 283-308, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32569523

RESUMO

We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.


Assuntos
Genoma , Biossíntese de Proteínas , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA/genética , Telomerase/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Telomerase/metabolismo , Homeostase do Telômero , Transcrição Gênica
9.
Cell ; 181(3): 621-636.e22, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259487

RESUMO

Long noncoding RNAs (lncRNAs) evolve more rapidly than mRNAs. Whether conserved lncRNAs undergo conserved processing, localization, and function remains unexplored. We report differing subcellular localization of lncRNAs in human and mouse embryonic stem cells (ESCs). A significantly higher fraction of lncRNAs is localized in the cytoplasm of hESCs than in mESCs. This turns out to be important for hESC pluripotency. FAST is a positionally conserved lncRNA but is not conserved in its processing and localization. In hESCs, cytoplasm-localized hFAST binds to the WD40 domain of the E3 ubiquitin ligase ß-TrCP and blocks its interaction with phosphorylated ß-catenin to prevent degradation, leading to activated WNT signaling, required for pluripotency. In contrast, mFast is nuclear retained in mESCs, and its processing is suppressed by the splicing factor PPIE, which is highly expressed in mESCs but not hESCs. These findings reveal that lncRNA processing and localization are previously under-appreciated contributors to the rapid evolution of function.


Assuntos
Espaço Intracelular/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Células-Tronco/patologia
10.
Annu Rev Biochem ; 88: 635-659, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30359080

RESUMO

In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.


Assuntos
Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Animais , Humanos , Cinética , Imagem Óptica/métodos
11.
Cell ; 176(6): 1432-1446.e11, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827685

RESUMO

The presence of DNA in the cytosol of mammalian cells is an unusual event that is often associated with genotoxic stress or viral infection. The enzyme cGAS is a sensor of cytosolic DNA that induces interferon and inflammatory responses that can be protective or pathologic, depending on the context. Along with other cytosolic innate immune receptors, cGAS is thought to diffuse throughout the cytosol in search of its DNA ligand. Herein, we report that cGAS is not a cytosolic protein but rather localizes to the plasma membrane via the actions of an N-terminal phosphoinositide-binding domain. This domain interacts selectively with PI(4,5)P2, and cGAS mutants defective for lipid binding are mislocalized to the cytosolic and nuclear compartments. Mislocalized cGAS induces potent interferon responses to genotoxic stress, but weaker responses to viral infection. These data establish the subcellular positioning of a cytosolic innate immune receptor as a mechanism that governs self-nonself discrimination.


Assuntos
Membrana Celular/fisiologia , Nucleotidiltransferases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Citosol/fisiologia , DNA Viral/genética , Feminino , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata/fisiologia , Interferons/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Fosfatidilinositóis , Ligação Proteica , Transdução de Sinais/imunologia
12.
Cell ; 179(3): 671-686.e17, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626769

RESUMO

The molecular events that direct nuclear pore complex (NPC) assembly toward nuclear envelopes have been conceptualized in two pathways that occur during mitosis or interphase, respectively. In gametes and embryonic cells, NPCs also occur within stacked cytoplasmic membrane sheets, termed annulate lamellae (AL), which serve as NPC storage for early development. The mechanism of NPC biogenesis at cytoplasmic membranes remains unknown. Here, we show that during Drosophila oogenesis, Nucleoporins condense into different precursor granules that interact and progress into NPCs. Nup358 is a key player that condenses into NPC assembly platforms while its mRNA localizes to their surface in a translation-dependent manner. In concert, Microtubule-dependent transport, the small GTPase Ran and nuclear transport receptors regulate NPC biogenesis in oocytes. We delineate a non-canonical NPC assembly mechanism that relies on Nucleoporin condensates and occurs away from the nucleus under conditions of cell cycle arrest.


Assuntos
Proteínas de Drosophila/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Oogênese , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
13.
Annu Rev Biochem ; 87: 965-989, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29272143

RESUMO

Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.


Assuntos
Imagem Individual de Molécula/métodos , Algoritmos , Animais , Análise por Conglomerados , Análise de Fourier , Humanos , Imageamento Tridimensional , Modelos Biológicos , Estrutura Molecular , Nanotecnologia , Imagem Individual de Molécula/estatística & dados numéricos , Processos Estocásticos
14.
Cell ; 174(4): 884-896.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057119

RESUMO

Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Membrana Celular/metabolismo , Microscopia de Fluorescência , Modelos Teóricos , Conformação Proteica , Família de Proteínas da Síndrome de Wiskott-Aldrich/química
15.
Cell ; 171(6): 1316-1325.e12, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29129375

RESUMO

Alternative promoter usage is a proteome-expanding mechanism that allows multiple pre-mRNAs to be transcribed from a single gene. The impact of this mechanism on the proteome and whether it is positively exploited in normal organismal responses remain unclear. We found that the plant photoreceptor phytochrome induces genome-wide changes in alternative promoter selection in Arabidopsis thaliana. Through this mechanism, protein isoforms with different N termini are produced that display light-dependent differences in localization. For instance, shade-grown plants accumulate a cytoplasmic isoform of glycerate kinase (GLYK), an essential photorespiration enzyme that was previously thought to localize exclusively to the chloroplast. Cytoplasmic GLYK constitutes a photorespiratory bypass that alleviates fluctuating light-induced photoinhibition. Therefore, phytochrome controls alternative promoter selection to modulate protein localization in response to changing light conditions. This study suggests that alternative promoter usage represents another ubiquitous layer of gene expression regulation in eukaryotes that contributes to diversification of the proteome.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fitocromo/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Regiões Promotoras Genéticas
16.
Cell ; 168(3): 400-412.e18, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28129539

RESUMO

The structural characterization of protein complexes in their native environment is challenging but crucial for understanding the mechanisms that mediate cellular processes. We developed an integrative approach to reconstruct the 3D architecture of protein complexes in vivo. We applied this approach to the exocyst, a hetero-octameric complex of unknown structure that is thought to tether secretory vesicles during exocytosis with a poorly understood mechanism. We engineered yeast cells to anchor the exocyst on defined landmarks and determined the position of its subunit termini at nanometer precision using fluorescence microscopy. We then integrated these positions with the structural properties of the subunits to reconstruct the exocyst together with a vesicle bound to it. The exocyst has an open hand conformation made of rod-shaped subunits that are interlaced in the core. The exocyst architecture explains how the complex can tether secretory vesicles, placing them in direct contact with the plasma membrane.


Assuntos
Exocitose , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Complexo de Golgi/metabolismo , Modelos Moleculares , Vesículas Secretórias/metabolismo
17.
Mol Cell ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39368464

RESUMO

Understanding the dynamics of RNA targeting to membraneless organelles is essential to disentangle their functions. Here, we investigate how P-bodies (PBs) evolve during cell-cycle progression in HEK293 cells. PB purification across the cell cycle uncovers widespread changes in their RNA content, partly uncoupled from cell-cycle-dependent changes in RNA expression. Single-molecule fluorescence in situ hybridization (FISH) shows various mRNA localization patterns in PBs peaking in G1, S, or G2, with examples illustrating the timely capture of mRNAs in PBs when their encoded protein becomes dispensable. Rather than directly reflecting absence of translation, cyclic mRNA localization in PBs can be controlled by RBPs, such as HuR in G2, and by RNA features. Indeed, while PB mRNAs are AU rich at all cell-cycle phases, they are specifically longer in G1, possibly related to post-mitotic PB reassembly. Altogether, our study supports a model where PBs are more than a default location for excess untranslated mRNAs.

18.
Mol Cell ; 84(19): 3737-3757, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39270643

RESUMO

Spatial regulation of RNA plays a critical role in gene expression regulation and cellular function. Understanding spatially resolved RNA dynamics and translation is vital for bringing new insights into biological processes such as embryonic development, neurobiology, and disease pathology. This review explores past studies in subcellular, cellular, and tissue-level spatial RNA biology driven by diverse methodologies, ranging from cell fractionation, in situ and proximity labeling, imaging, spatially indexed next-generation sequencing (NGS) approaches, and spatially informed computational modeling. Particularly, recent advances have been made for near-genome-scale profiling of RNA and multimodal biomolecules at high spatial resolution. These methods enabled new discoveries into RNA's spatiotemporal kinetics, RNA processing, translation status, and RNA-protein interactions in cells and tissues. The evolving landscape of experimental and computational strategies reveals the complexity and heterogeneity of spatial RNA biology with subcellular resolution, heralding new avenues for RNA biology research.


Assuntos
RNA , Humanos , Animais , RNA/genética , RNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Regulação da Expressão Gênica , Biologia Computacional/métodos
19.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38309276

RESUMO

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Assuntos
Poliadenilação , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Íntrons
20.
Genes Dev ; 38(7-8): 291-293, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688680

RESUMO

The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.


Assuntos
Núcleo Celular , Neurônios , Biossíntese de Proteínas , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neurônios/metabolismo , Camundongos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA