Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(2): 354-357, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270133

RESUMO

To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.


Assuntos
COVID-19 , Cervos , Animais , COVID-19/veterinária , SARS-CoV-2 , Equidae
2.
J Anim Ecol ; 93(4): 447-459, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38348546

RESUMO

Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.


Assuntos
Coiotes , Cervos , Animais , Coelhos , Cervos/fisiologia , Coiotes/fisiologia , Ecossistema , Comportamento Predatório/fisiologia , Equidae
3.
J Anim Ecol ; 92(3): 677-689, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598334

RESUMO

Fences have recently been recognized as one of the most prominent linear infrastructures on earth. As animals traverse fenced landscapes, they adjust movement behaviours to optimize resource access while minimizing energetic costs of coping with fences. Examining individual responses is key for connecting localized fence effects with population dynamics. We investigated the multi-scale effects of fencing on animal movements, space use and survival of 61 pronghorn and 96 mule deer on a gradient of fence density in Wyoming, USA. Taking advantage of the recently developed Barrier Behaviour Analysis, we classified individual movement responses upon encountering fences (i.e. barrier behaviours). We adopted the reaction norm framework to jointly quantify individual plasticity and behavioural types of barrier behaviours, as well as behaviour syndromes between barrier behaviours and animal space use. We also assessed whether barrier behaviours affect individual survival. Our results highlighted a high-level individual plasticity encompassing differences in the degree and direction of barrier behaviours for both pronghorn and mule deer. Additionally, these individual differences were greater at higher fence densities. For mule deer, fence density determined the correlation between barrier behaviours and space use and was negatively associated with individual survival. However, these relationships were not statistically significant for pronghorn. By integrating approaches from movement ecology and behavioural ecology with the emerging field of fence ecology, this study provides new evidence that an extraordinarily widespread linear infrastructure uniquely impacts animals at the individual level. Managing landscape for lower fence densities may help prevent irreversible behavioural shifts for wide-ranging animals in fenced landscapes.


Assuntos
Cervos , Individualidade , Animais , Ecologia , Dinâmica Populacional , Equidae , Movimento
4.
Mol Biol Evol ; 38(12): 5423-5436, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480565

RESUMO

All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.


Assuntos
Cervos , Retrovirus Endógenos , Animais , Evolução Biológica , Cervos/genética , Retrovirus Endógenos/genética , Evolução Molecular , Filogenia , Recombinação Genética
5.
Ecol Appl ; 32(7): e2648, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535971

RESUMO

Understanding factors that influence animal behavior is central to ecology. Basic principles of animal ecology imply that individuals should seek to maximize survival and reproduction, which means carefully weighing risk against reward. Decisions become increasingly complex and constrained, however, when risk is spatiotemporally variable. We advance a growing body of work in predator-prey behavior by evaluating novel questions where a prey species is confronted with multiple predators and a potential competitor. We tested how fine-scale behavior of female mule deer (Odocoileus hemionus) during the reproductive season shifted depending upon spatial and temporal variation in risk from predators and a potential competitor. We expected female deer to avoid areas of high risk when movement activity of predators and a competitor were high. We used GPS data collected from 76 adult female mule deer, 35 adult female elk, 33 adult coyotes, and six adult mountain lions. Counter to our expectations, female deer exhibited selection for multiple risk factors, however, selection for risk was dampened by the exposure to risk within home ranges of female deer, producing a functional response in habitat selection. Furthermore, temporal variation in movement activity of predators and elk across the diel cycle did not result in a shift in movement activity by female deer. Instead, the average level of risk within their home range was the predominant factor modulating the response to risk by female deer. Our results counter prevailing hypotheses of how large herbivores navigate risky landscapes and emphasize the importance of accounting for the local environment when identifying effects of risk on animal behavior. Moreover, our findings highlight additional behavioral mechanisms used by large herbivores to mitigate multiple sources of predation and potential competitive interactions.


Assuntos
Coiotes , Cervos , Animais , Cervos/fisiologia , Ecossistema , Equidae , Feminino , Herbivoria , Comportamento Predatório
6.
Ecol Appl ; 32(7): e2652, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35543078

RESUMO

While migrating, animals make directionally persistent movements and may only respond to human-induced rapid environmental change (HIREC), such as climate and land-use change, once a threshold of HIREC is surpassed. In contrast, animals on other seasonal ranges (e.g., winter range) make more localized and tortuous movements while foraging and may have the flexibility to adjust the location of their range and the intensity of use within it to minimize interactions with HIREC. Because of these seasonal differences in movement, animals on seasonal ranges should avoid areas that contain any level of HIREC, however, during migration, animals should use areas that contain low levels of HIREC, avoiding it only once a threshold of HIREC has been surpassed. We tested this hypothesis using a decade of GPS collar data collected from migratory mule deer (Odocoileus hemionus; n = 56 migration, 143 winter) and pronghorn (Antilocapra americana; n = 70 migration, 89 winter) that winter on and migrate through a natural gas field in western Wyoming. Using surface disturbance caused by well pads and roads as an index of HIREC, we evaluated behavioral responses across three spatial scales during winter and migration seasons. During migration, both species tolerated low levels of disturbance. Once a disturbance threshold was surpassed, however, they avoided HIREC. For mule deer, thresholds were consistently ~3%, whereas thresholds for pronghorn ranged from 1% to 9.25% surface disturbance. In contrast to migration, both species generally avoided all levels of HIREC while on winter range. Our study suggests that animal responses to HIREC are mediated by season-specific movement patterns. Our results provide further evidence of ungulates avoiding human disturbance on winter range and reveal disturbance thresholds that trigger mule deer and pronghorn responses during migration: information that managers can use to maintain the ecological function of migration routes and winter ranges.


Assuntos
Cervos , Animais , Cervos/fisiologia , Ecossistema , Equidae , Humanos , Gás Natural , Ruminantes , Estações do Ano
7.
J Anim Ecol ; 90(4): 875-885, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368272

RESUMO

Anthropogenic noise is a complex disturbance known to elicit a variety of responses in wild animals. Most studies examining the effects of noise on wildlife focus on vocal species, although theory suggests that the acoustic environment influences non-vocal species as well. Common mammalian prey species, like mule deer and hares and rabbits (members of the family Leporidae), rely on acoustic cues for information regarding predation, but the impacts of noise on their behaviour has received little attention. We paired acoustic recorders with camera traps to explore how average daily levels of anthropogenic noise from natural gas activity impacted occupancy and detection of mammalian herbivores in an energy field in the production phase of development. We consider the effects of noise in the context of several physical landscape variables associated with natural gas infrastructure that are known to influence habitat use patterns in mule deer. Our results suggest that mule deer detection probability was influenced by the interaction between physical landscape features and anthropogenic noise, with noise strongly reducing habitat use. In contrast, leporid habitat use was not related to noise but was influenced by landscape features. Notably, mule deer showed a stronger predicted negative response to roads with high noise exposure. This study highlights the complex interactions of anthropogenic disturbance and wildlife distribution and presents important evidence that the effects of anthropogenic noise should be considered in research focused on non-vocal specialist species and management plans for mule deer and other large ungulates.


El ruido de origen antropogénico es una perturbación compleja que provoca una variedad de respuestas en la fauna silvestre. La mayoría de los estudios que examina los efectos del ruido en fauna silvestre se enfoca en especies que se comunican con vocalizaciones, sin embargo, la teoría sugiere que el ambiente acústico es también un recurso clave para especies no-vocales. Especies de mamíferos comunes como el venado bura, liebres y conejos (miembros de la familia Leporidae), dependen de señales acústicas para detectar depredadores, pero los impactos del ruido en el comportamiento de estas especies han recibido poca atención de los investigadores. Usando grabadoras y cámaras trampa en conjunto, exploramos como los niveles diarios de ruido antropogénico generados por la extracción de gas natural impactaron la ocupación y detección de mamíferos herbívoros en un campo de extracción de energía en la fase de producción de desarrollo. Consideramos los efectos del ruido en el contexto de varias variables físicas del paisaje asociadas con la infraestructura del gas natural, que sabemos, influencian los patrones de uso de hábitat del venado bura. Nuestros resultados sugieren que la probabilidad de detección del venado bura fue influenciada por la interacción de las características físicas del paisaje y el ruido antropogénico, este último reduciendo de manera importante el uso de hábitat. En contraste, el uso de hábitat de lepóridos no se relacionó con ruido, pero fue influenciado por variables del paisaje. Notablemente, el venado bura mostro una predicción de respuesta fuerte a los caminos con niveles altos de ruido. Este estudio señala las complejas interacciones entre perturbaciones antropogénicas y la distribución de fauna silvestre. También presentamos evidencia importante que señala que los efectos del ruido antropogénico deben ser considerados en investigaciones enfocadas en especies especialistas no-vocales y planes de manejo para el venado bura y otros ungulados grandes.


Assuntos
Cervos , Herbivoria , Animais , Ecossistema , Gás Natural , Comportamento Predatório , Coelhos
8.
Genomics ; 112(1): 886-896, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175981

RESUMO

Endogenous retroviruses (ERVs) constitute a significant part of vertebrate genomes. They originated from past retroviral infections and some of them retain transcriptional activity. The key mechanism avoiding uncontrolled ERV transcription is DNA methylation-mediated epigenetic silencing. Despite numerous studies describing the involvement of ERV activity in cellular processes, epigenetic regulation of ERVs is still poorly understood. We previously described a cervid endogenous retrovirus (CrERV) in the mule deer genome. This virus exhibits massive insertional polymorphism, suggesting recent activity. Here we employed NGS-based strategy to determine the methylation pattern of CrERV integrations in four mule deer. Besides the vast majority of methylated integrations, we identified a tiny fraction of demethylated proviral copies. These copies represent evolutionary older integrations located near gene promoters. In general, our work is a first attempt to characterize the epigenetic landscape of insertionally polymorphic ERV on a whole-genome scale and offers insight into its interactions with a host.


Assuntos
Cervos/genética , Retrovirus Endógenos , Epigênese Genética , Gammaretrovirus/genética , Animais , Metilação de DNA , Sequências Repetidas Terminais , Integração Viral
9.
Emerg Infect Dis ; 26(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568050

RESUMO

We used molecular analyses to confirm Mycobacterium avium spp. hominissuis infection in lung granulomas and pyogranulomas in the tracheobronchial lymph node in a wild mule deer in Banff, Canada. These lesions are similar to those found in M. bovis-infected animals, emphasizing the critical need for disease surveillance in wildlife populations.


Assuntos
Cervos , Mycobacterium bovis , Tuberculose , Animais , Animais Selvagens , Canadá/epidemiologia , Equidae , Linfonodos , Mycobacterium avium/genética , Mycobacterium bovis/genética
10.
Glob Chang Biol ; 26(8): 4215-4225, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524724

RESUMO

To increase resource gain, many herbivores pace their migration with the flush of nutritious plant green-up that progresses across the landscape (termed "green-wave surfing"). Despite concerns about the effects of climate change on migratory species and the critical role of plant phenology in mediating the ability of ungulates to surf, little is known about how drought shapes the green wave and influences the foraging benefits of migration. With a 19 year dataset on drought and plant phenology across 99 unique migratory routes of mule deer (Odocoileus hemionus) in western Wyoming, United States, we show that drought shortened the duration of spring green-up by approximately twofold (2.5 weeks) and resulted in less sequential green-up along migratory routes. We investigated the possibility that some routes were buffered from the effects of drought (i.e., routes that maintained long green-up duration irrespective of drought intensity). We found no evidence of drought-buffered routes. Instead, routes with the longest green-up in non-drought years also were the most affected by drought. Despite phenological changes along the migratory route, mule deer closely followed drought-altered green waves during migration. Migrating deer did not experience a trophic mismatch with the green wave during drought. Instead, the shorter window of green-up caused by drought reduced the opportunity to accumulate forage resources during rapid spring migrations. Our work highlights the synchronization of phenological events as an important mechanism by which climate change can negatively affect migratory species by reducing the temporal availability of key food resources. For migratory herbivores, climate change poses a new and growing threat by altering resource phenology and diminishing the foraging benefit of migration.


Assuntos
Migração Animal , Cervos , Ecossistema , Animais , Secas , Estações do Ano , Wyoming
11.
Ecol Lett ; 22(11): 1797-1805, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31412429

RESUMO

From fine-scale foraging to broad-scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long-distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2-28 times more strongly than tracking spring green-up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Memória Espacial
12.
Ecol Appl ; 29(7): e01972, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301178

RESUMO

The availability and quality of forage on the landscape constitute the foodscape within which animals make behavioral decisions to acquire food. Novel changes to the foodscape, such as human disturbance, can alter behavioral decisions that favor avoidance of perceived risk over food acquisition. Although behavioral changes and population declines often coincide with the introduction of human disturbance, the link(s) between behavior and population trajectory are difficult to elucidate. To identify a pathway by which human disturbance may affect ungulate populations, we tested the Behaviorally Mediated Forage-Loss Hypothesis, wherein behavioral avoidance is predicted to reduce use of available forage adjacent to disturbance. We used GPS collar data collected from migratory mule deer (Odocoileus hemionus) to evaluate habitat selection, movement patterns, and time-budgeting behavior in response to varying levels of forage availability and human disturbance in three different populations exposed to a gradient of energy development. Subsequently, we linked animal behavior with measured use of forage relative to human disturbance, forage availability, and quality. Mule deer avoided human disturbance at both home range and winter range scales, but showed negligible differences in vigilance rates at the site level. Use of the primary winter forage, sagebrush (Artemisia tridentata), increased as production of new annual growth increased but use decreased with proximity to disturbance. Consequently, avoidance of human disturbance prompted loss of otherwise available forage, resulting in indirect habitat loss that was 4.6-times greater than direct habitat loss from roads, well pads, and other infrastructure. The multiplicative effects of indirect habitat loss, as mediated by behavior, impaired use of the foodscape by reducing the amount of available forage for mule deer, a consequence of which may be winter ranges that support fewer animals than they did before development.


Assuntos
Cervos , Animais , Ecossistema , Comportamento de Retorno ao Território Vital , Humanos , Estações do Ano
13.
J Anim Ecol ; 88(3): 450-460, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449042

RESUMO

The migratory movements of wild animals can promote abundance and support ecosystem functioning. For large herbivores, mounting evidence suggests that migratory behaviour is an individually variable trait, where individuals can easily switch between migrant and resident tactics. The degree of migratory plasticity, including whether and where to migrate, has important implications for the ecology and conservation of large herbivores in a changing world. Mule deer (Odocoileus hemionus) are an iconic species of western North America, but are notably absent from the body of literature that suggests large herbivore migrations are highly plastic. We evaluated plasticity of migration in female mule deer using longitudinal GPS data collected from 312 individuals across nine populations in the western United States, including 882 animal-years (801 migrants and 81 residents). We followed both resident and migratory mule deer through time to determine whether individual animals switched migratory behaviours (i.e., whether to migrate) from migratory to residency or vice versa. Additionally, we examined the fidelity of individuals to their migration routes (i.e., where to migrate) to determine whether they used the same routes year after year. We also evaluated whether age and reproductive status affected propensity to migrate or fidelity to migratory routes. Our results indicate that mule deer, unlike other large herbivores, have little or no plasticity in terms of whether or where they migrate. Resident deer remained residents, and migrant deer remained migrants, regardless of age, reproductive status or number of years monitored. Further, migratory individuals showed strong fidelity (>80%) to their migration routes year after year. Our study clearly shows that migration plasticity is not ubiquitous among large herbivores. Because of their rigid migratory behaviour, mule deer may not adapt to changing environmental conditions as readily as large herbivores with more plastic migratory behaviour (e.g., elk). The fixed migratory behaviours of mule deer make clear that conservation efforts aimed at traditional seasonal ranges and migration routes are warranted for sustaining this iconic species that continues to decline across its range.


Assuntos
Cervos , Herbivoria , Migração Animal , Animais , Ecossistema , Feminino , América do Norte , Estações do Ano
14.
Oecologia ; 189(2): 487-500, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30539299

RESUMO

The non-consumptive effects of predators on prey are now widely recognized, but the need remains for studies identifying the factors that determine how particular prey species respond behaviorally when threatened with predation. We took advantage of ongoing gray wolf (Canis lupus) recolonization in eastern Washington, USA, to contrast habitat use of two sympatric prey species-mule (Odocoileus hemionus) and white-tailed (O. virginianus) deer-at sites with and without established wolf packs. Under the hypothesis that the nature and scale of responses by these ungulates to wolf predation risk depend on their divergent flight tactics (i.e., modes of fleeing from an approaching predator), we predicted that (1) mule deer would respond to wolves with coarse-scale spatial shifts to rugged terrain favoring their stotting tactic; (2) white-tailed deer would manage wolf risk with fine-scale shifts toward gentle terrain facilitating their galloping tactic within their current home range. Resource selection functions based on 61 mule deer and 59 white-tailed deer equipped with GPS radio-collars from 2013 to 2016 revealed that habitat use for each species was altered by wolf presence, but in divergent ways that supported our predictions. Our findings add to a growing literature highlighting flight behavior as a viable predictor of prey responses to predation risk across multiple ecosystem types. Consequently, they suggest that predators could initiate multiple indirect non-consumptive effects in the same ecosystem that are transmitted by divergent responses of sympatric prey with different flight tactics.


Assuntos
Cervos , Lobos , Animais , Ecossistema , Comportamento Predatório , Washington
15.
Ecol Appl ; 28(8): 2153-2164, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30329189

RESUMO

Long-distance migration by terrestrial mammals is a phenomenon critical to the persistence of populations, but such migrations are declining globally because of over-harvest, habitat loss, and movement barriers. Increasingly, there is a need to improve existing routes, mitigate route segments affected by anthropogenic disturbance, and in some instances, determine whether alternative routes are available. Using a hypothesis-driven approach, we identified landscape features associated with the primary functional attributes, stopovers and movement corridors, of spring migratory routes for mule deer in two study areas using resource selection functions. Patterns of selection for landscape attributes of movement corridors and stopovers mostly were similar; however, landscape features associated with movement corridors aligned better with areas that facilitated movement, whereas selection of stopovers was consistent with sites offering early access to spring forage. For movement corridors, deer selected for dry sites, low elevation, and low anthropogenic disturbance. For stopovers, deer selected for dry sites, with consistently early green-up across years, south-southwesterly aspects, low elevation, and low anthropogenic disturbance. Stopovers and movement corridors of a migratory route presumably promote different functions, but for a terrestrial migrant, patterns of habitat selection indicate that the same general habitat attributes may facilitate both movement and foraging in spring. Our findings emphasize the roles of topographical wetness, vegetation phenology, and anthropogenic disturbance in shaping use of the landscape during migration for this large herbivore. Avoiding human disturbance and tracking ephemeral forage resources appear to be a consistent pattern during migration, which reinforces the notion that movement during migration has a nutritional underpinning and disturbance potentially alters the net benefits of migration.


Assuntos
Migração Animal , Cervos/fisiologia , Ecossistema , Herbivoria , Animais , Feminino , Estações do Ano
16.
Ecol Appl ; 28(3): 786-797, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29676861

RESUMO

Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes.


Assuntos
Comportamento Animal , Coiotes , Cervos , Modelos Biológicos , Animais , Controle de Pragas
17.
Ecol Lett ; 20(6): 741-750, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28444870

RESUMO

The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration.


Assuntos
Migração Animal , Cervos , Herbivoria , Animais , Ecossistema , Estações do Ano
18.
Glob Chang Biol ; 21(11): 3961-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26264447

RESUMO

Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.


Assuntos
Conservação dos Recursos Naturais , Cervos/fisiologia , Ecossistema , Comportamento de Retorno ao Território Vital , Indústria de Petróleo e Gás , Animais , Ritmo Circadiano , Colorado , Estações do Ano
19.
Oecologia ; 179(2): 377-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26009244

RESUMO

Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.


Assuntos
Cervos/fisiologia , Ecossistema , Herbivoria , Desenvolvimento Vegetal , Estações do Ano , Fenômenos Fisiológicos da Nutrição Animal , Animais , Clima , Mudança Climática , Colorado , Cervos/anatomia & histologia , Dinâmica Populacional , Especificidade da Espécie , Tempo (Meteorologia)
20.
J Hered ; 105(2): 173-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336966

RESUMO

Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.


Assuntos
DNA Viral/isolamento & purificação , Cervos/virologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/isolamento & purificação , Genoma Viral , Animais , Análise por Conglomerados , DNA Viral/genética , Cervos/classificação , Evolução Molecular , Marcadores Genéticos , Repetições de Microssatélites , Montana , Mutagênese Insercional , Filogenia , Polimorfismo Genético , Proteínas Recombinantes , Seleção Genética , Análise de Sequência de DNA , Utah , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA