Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 425
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
2.
Chemphyschem ; 25(11): e202400062, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507519

RESUMO

A series of novel D-π-A type organic small molecules have been designed, synthesized, and demonstrated for non-volatile resistive switching WORM memory application. The electron-deficient phenazine and quinoxaline units were coupled with various functionalized triphenylamine end caps to explore the structure-property correlations. The photophysical investigations displayed considerable intramolecular charge transfer, and the electrochemical analysis revealed an optimum band gap of 2.44 to 2.83 eV. These factors and the thin film morphological studies suggest the feasibility of the compounds as better resistive memory devices. All the compounds indicated potent non-volatile resistive switching memory capabilities with ON/OFF ratios ranging from 103 to 104, and the lowest threshold voltage recorded stands at -0.74 V. A longer retention time of 103 s marks the substantial stability of the devices. The phenazine-based compounds outperformed the others in terms of memory performance. Exceptionally, the compound with -CHO substituted triphenylamine exhibited ternary memory performance owing to its multiple traps. The resistive switching mechanism for the devices was validated using density functional theory calculations, which revealed that the integrated effect of charge transfer and charge trapping contributes significantly to the resistive switching phenomena.

3.
J Fluoresc ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558125

RESUMO

In the present work, we synthesized 3-chloro-6-methoxy-2-(methyl sulfanyl) quinoxaline (3MSQ) using a microwave-assisted synthesis method. The physicochemical structural analysis of the synthesized compound utilizing 1H-NMR, 13C-NMR, and FT-IR spectroscopy techniques. The photophysical properties of 3MSQ was examined through absorption and fluorescence spectroscopy. Spectroscopic analyses revealed a bathochromic shift in both absorption and fluorescence spectra, attributed to the π → π* transition. Ground and excited state dipole moments was experimentally determined using the solvatochromic shift method, employing various correlations such as Lippert's, Bakhshiev's, Kawski-Chamma-Viallet's equations, and solvent polarity parameters. Our findings indicate that the excited state dipole moments exceed those of the ground state, suggesting increased polarity in the excited state. Further, the while detailed bond length, bond angles, dihedral angles, Mulliken charge distribution, ground state dipole moments and HOMO-LUMO energy gap estimated through ab initio computations using Gaussian-09W. The value of energy band gap obtained from both the methods are in good agreement. Furthermore, employing DFT computational analysis, we identified reactive centers such as electrophilic and nucleophilic sites using molecular electrostatic potential (MESP) 3D plots. Additionally, CIE chromaticity analysis was performed to understand the photoluminescent properties of 3MSQ. The insights derived from these analyses contribute to a better understanding of the molecule's electronic structure, photophysical properties, and solute-solvent interactions, thus providing valuable information regarding its behaviour and characteristics under diverse conditions. These results contribute to a comprehensive understanding of the molecular structure and properties of 3-chloro-6-methoxy-2-(methyl sulfanyl) quinoxaline (3MSQ).

4.
J Biochem Mol Toxicol ; 38(4): e23690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493304

RESUMO

The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.


Assuntos
Antineoplásicos , Quinoxalinas , Humanos , Relação Estrutura-Atividade , Sorafenibe/farmacologia , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Apoptose , Antineoplásicos/química , Receptores ErbB/metabolismo , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/farmacologia
5.
Bioorg Chem ; 151: 107694, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151388

RESUMO

An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SNAr followed by an internal nucleophile-triggered intramolecular SNAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position. Interestingly, compound 11f containing the N-1 benzyl substitution demonstrated significant DNA binding (KBH âˆ¼ 2.15 ± 0.25 × 104 M-1 and Ksv âˆ¼ 12.6 ± 1.41 × 103 M-1) accompanied by a bathochromic shift (Δλ âˆ¼ 5 nm). In silico studies indicated possible binding of diazepine hybrid 11f at the GC-rich major groove in the ct-DNA hexamer duplex and showed comparable binding energies to that of ethidium bromide. The antiproliferative activity of compounds was observed in the given order in different cell lines: (HeLa > HT29 > SKOV 3 > HCT116 > HEK293). Lead compound 11f demonstrated maximum cytotoxicity (IC50 value of 13.30 µM) in HeLa cell lines and also caused early apoptosis-mediated cell death in cancer cell lines. We envision that our work will offer newer methodologies for the construction of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine class of molecules.

6.
Bioorg Chem ; 142: 106953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925887

RESUMO

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Assuntos
Antineoplásicos , Isatina , Neoplasias Ovarianas , Humanos , Feminino , Isatina/farmacologia , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Linhagem Celular Tumoral , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , DNA/metabolismo , Relação Estrutura-Atividade
7.
Bioorg Chem ; 143: 107102, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211551

RESUMO

Monoamine oxidases (MAOs) and vascular endothelial growth factor receptor-2 (VEGFR-2) are promoters of colorectal cancer (CRC) and central signaling nodes in epithelial-mesenchymal transition (EMT) induced by activating hypoxia-inducible factors (HIFs). Herein, a novel series of rationally designed triazole-tethered quinoxalines were synthesized and evaluated against HCT-116 CRC cells. The tailored scaffolds combine the pharmacophoric themes of both VEGFR-2 inhibitors and MAO inhibitors. All the synthesized derivatives were screened utilizing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for their possible cytotoxic effects on normal human colonocytes, then evaluated for their anticancer activities against HCT-116 cells overexpressing MAOs. The hit derivatives 11 and 14 exhibited IC50 = 18.04 and 7.850 µM, respectively, against HCT-116cells within their EC100 doses on normal human colonocytes. Wound healing assay revealed their efficient CRC antimetastatic activities recording HCT-116 cell migration inhibition exceeding 75 %. In vitro enzymatic assays demonstrated that both 11 and 14 efficiently inhibited VEGFR-2 (IC50 = 88.79 and 9.910 nM), MAO-A (IC50 = 0.763 and 629.1 nM) and MAO-B (IC50 = 0.488 and 209.6 nM) with observed MAO-B over MAO-A selectivity (SI = 1.546 and 3.001), respectively. Enzyme kinetics studies were performed for both compounds to identify their mode of MAO-B inhibition. Furthermore, qRT-PCR analysis showed that the hits efficiently downregulated HIF-1α in HCT-116cells by 3.420 and 16.96 folds relative to untreated cells. Docking studies simulated their possible binding modes within the active sites of VEGFR-2 and MAO-B to highlight their essential structural determinants of activities. Finally, they recorded in silico drug-like absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles as well as ligand efficiency metrics.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Neoplasias Colorretais/tratamento farmacológico
8.
J Enzyme Inhib Med Chem ; 39(1): 2367128, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38913598

RESUMO

Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 µM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 µM for α-glucosidase inhibition and 31.56 ± 1.33 µM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.


Assuntos
Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases , Hipoglicemiantes , Simulação de Acoplamento Molecular , Quinoxalinas , Tiazóis , alfa-Amilases , alfa-Glucosidases , Quinoxalinas/farmacologia , Quinoxalinas/química , Quinoxalinas/síntese química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Animais , Camundongos , Relação Estrutura-Atividade , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Estrutura Molecular , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Diabetes Mellitus Experimental/tratamento farmacológico , Estreptozocina , Halogenação , Masculino , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
9.
Pestic Biochem Physiol ; 202: 105943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879303

RESUMO

In this study, a new series of thiazolo[4,5-b]quinoxaline derivatives 3-8 were synthesized by treating 2,3-dichloroquinoxaline with thiosemicarbazone and thiourea derivatives under reflux conditions. The chemical structure of the newly designed derivatives was conducted using spectroscopic techniques. The insecticidal bioassay of the designed derivatives was evaluated against the 2nd and 4th larvae of S. litura after five days as toxicity agents via median lethal concentration (LC50) and the lethal time values (LT50). The results indicated that all the tested compounds had insecticidal effects against both instar larvae of S. litura with variable values. Among them, thiazolo[4,5-b]quinoxaline derivative 3 was the most toxic, with LC50 = 261.88 and 433.68 ppm against 2nd and 4th instar larvae, respectively. Moreover, the thiazolo[4,5-b]quinoxaline derivative 3 required the least time to kill the 50% population (LT50) of 2nd larvae were 20.88, 13.2, and 15.84 hs with 625, 1250, and 2500 ppm, respectively, while for the 4th larval instar were 2.75, 2.08, and 1.76 days with concentrations of 625, 1250, and 2500 ppm, respectively. Larvae's morphological and histological studies for the most active derivative 3 were investigated. According to SEM analysis, the exterior morphology of the cuticle and head capsule was affected. In addition, there were some histological alterations in the cuticle layers and the midgut tissues. Columnar cells began breaking down, and vacuolization occurred in the peritrophic membrane. Moreover, treating 4th S litura larvae hemolymph with compound 3 showed significant changes in biochemical analysis, such as total proteins, GPT, GOT, acetylcholinesterase (AChE), and alkaline phosphatase (AlP). Finally, the toxicity prediction of the most active derivative revealed non-corrosive, non-irritant to the eye, non-respiratory toxicity, non-sensitivity to the skin, non-hepatotoxic, and don't have toxicity on minnow toxicity and T. pyriformis indicating a good toxicity profile for human.


Assuntos
Inseticidas , Larva , Quinoxalinas , Spodoptera , Animais , Inseticidas/síntese química , Inseticidas/farmacologia , Inseticidas/toxicidade , Inseticidas/química , Quinoxalinas/toxicidade , Quinoxalinas/farmacologia , Quinoxalinas/síntese química , Quinoxalinas/química , Larva/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Tiazóis/química
10.
Arch Pharm (Weinheim) ; : e2400225, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822393

RESUMO

The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.

11.
Arch Pharm (Weinheim) ; 357(1): e2300301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847883

RESUMO

A new series of quinoxaline derivatives possessing the hydrazone moiety were designed, synthesized, and screened for in-vitro anti-inflammatory activity by the bovine serum albumin (BSA) denaturation technique, and for antioxidant activity, by the (2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The synthesized compounds were also tested for p38α mitogen-activated protein (MAP) kinase inhibition. The in-vivo anti-inflammatory activity was assessed by the carrageenan-induced rat paw edema inhibition method. All the compounds (4a-n) exhibited moderate to high in-vitro anti-inflammatory activity. Compound 4a displayed the highest inhibitory activity in the BSA assay (83.42%) in comparison to the standard drug diclofenac sodium (82.90%), while 4d exhibited comparable activity (81.87%). The DPPH assay revealed that compounds 4a and 4d have free radical scavenging potential (74.70% and 74.34%, respectively) comparable to the standard butylated hydroxyanisole (74.09%). Furthermore, the p38α MAP kinase inhibition assay demonstrated that compound 4a is highly selective against p38α MAP kinase (IC50 = 0.042) in comparison to the standard SB203580 (IC50 = 0.044). The five most active compounds (4a-4d and 4f) with good in-vitro profiles were selected for in-vivo anti-inflammatory studies. Compounds 4a and 4d were found to display the highest activity (83.61% and 82.92% inhibition, respectively) in comparison to the standard drug diclofenac sodium (82.65% inhibition). These compounds (4a and 4d) also exhibited better ulcerogenic and lipid peroxidation profiles than diclofenac sodium. The molecular docking and molecular dynamics simulation studies were also performed and found to be in agreement with the p38α MAP kinase inhibitory activity.


Assuntos
Anti-Inflamatórios não Esteroides , Proteína Quinase 14 Ativada por Mitógeno , Ratos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Diclofenaco/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Quinoxalinas/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores de Proteínas Quinases/química , Desenho de Fármacos
12.
J Labelled Comp Radiopharm ; 67(4): 120-130, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332677

RESUMO

Kainate receptors play a crucial role in mediating synaptic transmission within the central nervous system. However, the lack of selective pharmacological tool compounds for the GluK3 subunit represents a significant challenge in studying these receptors. Recently presented compound 1 stands out as a potent antagonist of GluK3 receptors, exhibiting nanomolar affinity at GluK3 receptors and strongly inhibiting glutamate-induced currents at homomeric GluK1 and GluK3 receptors in HEK293 cells with Kb values of 65 and 39 nM, respectively. This study presents the synthesis of two potent GluK3-preferring iodine derivatives of compound 1, serving as precursors for radiolabelling. Furthermore, we demonstrate the optimisation of dehalogenation conditions using hydrogen and deuterium, resulting in [2H]-1, and demonstrate the efficient synthesis of the radioligand [3H]-1 with a specific activity of 1.48 TBq/mmol (40.1 Ci/mmol). Radioligand binding studies conducted with [3H]-1 as a radiotracer at GluK1, GluK2, and GluK3 receptors expressed in Sf9 and rat P2 membranes demonstrated its potential applicability for selectively studying native GluK3 receptors in the presence of GluK1 and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-blocking ligands.


Assuntos
Ácido Glutâmico , Receptores de Ácido Caínico , Ratos , Animais , Humanos , Trítio , Deutério , Células HEK293 , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de AMPA/química , Receptores de AMPA/metabolismo
13.
Drug Dev Res ; 85(4): e22216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831547

RESUMO

A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.


Assuntos
Inibidores da Colinesterase , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Quinoxalinas , Sulfonamidas , alfa-Amilases , alfa-Glucosidases , Quinoxalinas/química , Quinoxalinas/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Modelos Moleculares , Farmacóforo
14.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673872

RESUMO

Dyes based on quinoline and quinoxaline skeletons were designed for application as visible light photoinitiators. The obtained compounds absorb electromagnetic radiation on the border between ultraviolet and visible light, which allows the use of dental lamps as light sources during the initiation of the photopolymerization reaction. Their another desirable feature is the ability to create a long-lived excited state, which enables the chain reaction to proceed through the mechanism of intermolecular electron transfer. In two-component photoinitiating systems, in the presence of an electron donor or a hydrogen atom donor, the synthesized compounds show excellent abilities to photoinitiate the polymerization of acrylates. In control tests, the efficiency of photopolymerization using modified quinoline and quinoxaline derivatives is comparable to that obtained using a typical, commercial photoinitiator for dentistry, camphorquinone. Moreover, the use of the tested compounds requires a small amount of photoinitiator (only 0.04% by weight) to initiate the reaction. The research also showed a significant acceleration of the photopolymerization process and shortening of the reaction time. In practice, this means that the new two-component initiating systems can be used in much lower concentrations without slowing down the speed of obtaining polymer materials. It is worth emphasizing that these two features of the new initiating system allow for cost reduction by reducing financial outlays on both materials (photoinitiators) and electricity.


Assuntos
Corantes , Luz , Polimerização , Quinolinas , Quinoxalinas , Quinolinas/química , Quinoxalinas/química , Quinoxalinas/síntese química , Corantes/química , Processos Fotoquímicos
15.
Molecules ; 29(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38893377

RESUMO

Plant pathogenic fungi pose a major threat to global food security, ecosystem services, and human livelihoods. Effective and broad-spectrum fungicides are needed to combat these pathogens. In this study, a novel antifungal 2-oxyacetate hydrazide quinoxaline scaffold as a simple analogue was designed and synthesized. Their antifungal activities were evaluated against Botrytis cinerea (B. cinerea), Altemaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctonia solani (R. solani), Colletotrichum orbiculare (C. orbiculare), and Alternaria alternata (A. alternata). These results demonstrated that most compounds exhibited remarkable inhibitory activities and possessed better efficacy than ridylbacterin, such as compound 15 (EC50 = 0.87 µg/mL against G. zeae, EC50 = 1.01 µg/mL against C. orbiculare) and compound 1 (EC50 = 1.54 µg/mL against A. alternata, EC50 = 0.20 µg/mL against R. solani). The 3D-QSAR analysis of quinoxaline-2-oxyacetate hydrazide derivatives has provided new insights into the design and optimization of novel antifungal drug molecules based on quinoxaline.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Quinoxalinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Quinoxalinas/farmacologia , Quinoxalinas/química , Quinoxalinas/síntese química , Desenho de Fármacos , Alternaria/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Estrutura Molecular , Colletotrichum/efeitos dos fármacos , Gibberella/efeitos dos fármacos
16.
Chembiochem ; 24(8): e202200715, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36747378

RESUMO

The dynamic topological states of chromosomal DNA regulate many cellular fundamental processes universally in all three domains of life, that is, bacteria, archaea, and eukaryotes. DNA-binding proteins maintain the regional and global supercoiling of the chromosome and thereby regulate the chromatin architecture that ultimately influences the gene expression network and other DNA-centric molecular events in various microenvironments and growth phases. DNA-binding small molecules are pivotal weapons for treating a wide range of cancers. Recent advances in single-molecule biophysical tools have uncovered the fact that many DNA-binding ligands not only alter the regional DNA supercoiling but also modulate the overall morphology of DNA. Here we provide insight into recent advances in atomic force microscopy (AFM) acquired DNA structural change induced by therapeutically important mono- and bis-intercalating anticancer agents as well as DNA-adduct-forming anticancer drugs. We also emphasize the growing evidence of the mechanistic relevance of changes in DNA topology in the anticancer cellular responses of DNA-targeting chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Conformação de Ácido Nucleico , DNA/química , Cromatina , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Microscopia de Força Atômica , Microambiente Tumoral
17.
Bioorg Med Chem Lett ; 80: 129107, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549396

RESUMO

Initial optimization of a series of novel imidazo[1,5-a]quinoxaline compounds originated from a heuristic approach combining two known structural moieties towards α5-GABAA receptor is shown. This work reveals one-digit nanomolar active compounds as well as positive and negative allosteric modulators resulted from our exploratory approach. To deepen our understanding, their diverse mechanistic nature resulted from in silico modeling is also disclosed.


Assuntos
Quinoxalinas , Receptores de GABA-A , Quinoxalinas/farmacologia
18.
Bioorg Med Chem Lett ; 93: 129415, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532107

RESUMO

The intramolecular electrophilic cyclization of alkynes with disulfides to form thieno[2,3-b]quinoxaline structures and to introduce thioether substituents afforded quinoxaline derivatives (7a-7d, 8a-8d). Among obtained eight derivatives, the raloxifene analogues (7c, 8b) showed specifically high cytotoxicity against breast cancer cells (SK-BR-3), and raloxifene analogues (8a) showed the highest cytotoxicity against human leukemia cells (HL-60). None of the raloxifene analogues (7a-7d, 8a-8d) showed cytotoxicity against human lung fibroblasts (WI-38), which are normal cells.


Assuntos
Quinoxalinas , Cloridrato de Raloxifeno , Humanos , Ciclização , Quinoxalinas/farmacologia , Cloridrato de Raloxifeno/farmacologia , Dissulfetos
19.
Bioorg Chem ; 141: 106816, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716274

RESUMO

Pentamethinium indolium salts are promising fluorescence probes and anticancer agents with high mitochondrial selectivity. We synthesized two indolium pentamethinium salts: a cyclic form with quinoxaline directly incorporated in the pentamethinium chain (cPMS) and an open form with quinoxaline substitution in the γ-position (oPMS). To better understand their properties, we studied their interaction with mitochondrial phospholipids (cardiolipin and phosphatidylcholine) by spectroscopic methods (UV-Vis, fluorescence, and NMR spectroscopy). Both compounds displayed significant affinity for cardiolipin and phosphatidylcholine, which was associated with a strong change in their UV-Vis spectra. Nevertheless, we surprisingly observed that fluorescence properties of cPMS changed in complex with both cardiolipin and phosphatidylcholine, whereas those of oPMS only changed in complex with cardiolipin. Both salts, especially cPMS, display high usability in mitochondrial imaging and are cytotoxic for cancer cells. The above clearly indicates that conjugates of pentamethinium and quinoxaline group, especially cPMS, represent promising structural motifs for designing mitochondrial-specific agents.


Assuntos
Antineoplásicos , Cardiolipinas , Quinoxalinas/farmacologia , Sais , Antineoplásicos/farmacologia , Antineoplásicos/química , Fosfatidilcolinas
20.
Bioorg Chem ; 139: 106735, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37531818

RESUMO

Vascular endothelial growth factor receptor-2 is a dynamic target for therapeutic intervention in various types of cancer. This study was aimed at exploring the VEGFR-2 inhibitory activity of a novel library of quinoxalin-2-one derivatives such as 3-furoquinoxaline carboxamides, 3-pyrazolylquinoxalines, and 3-pyridopyrimidyl-quinoxalines. Among them, 6c, 7a, and 7d-f produced remarkable cytotoxicity against HCT-116 (IC50's 4.28-9.31 µM) and MCF-7 (IC50's 3.57-7.57 µM) cell lines using the MTT assay and doxorubicin (DOX) as a reference standard. Interestingly, results of cytotoxicity towards the human fibroblast cell line WI38 revealed that these hits demonstrated higher selectivity indices towards both HCT-116 (SI 8.69-23.19) and MCF-7 (SI 9.48-27.80) than DOX, SI 0.72 and 0.90, respectively. Then, these hits were subjected to a mechanistic study; they showed direct inhibition of VEGFR-2. Impressively, compound 7f displayed 1.2 times the VEGFR-2 inhibitory activity of sorafenib. The antiangiogenic potential of 7f was proved via lowering the level of VEGF-A, than that of control. It as well, exhibited scratch closure percent of 61.8%, compared with 74.5% of control at 48 hrs, indicating the potential anti-migratory effect of the compound 7f. It significantly increased the expression of tumor suppressor gene (p53) on MCF-7 cells by almost 18 folds and upregulated the caspase-3 level by 10.7 folds, compared to the control. Cell cycle analysis revealed cell cycle arrest at G2/M together with a PreG increase which indicated apoptosis induction potential. Annexin V-FITC apoptosis results proposed the two modes of cell death (apoptosis and necrosis) as an inherent mechanism of cytotoxicity of compound 7f. Molecular docking further supported the mechanism showing the affinity of target compounds for VEGFR-2 active site. Moreover, physicochemical and drug-like properties were assessed from the ADME properties.


Assuntos
Antineoplásicos , Quinoxalinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Doxorrubicina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinoxalinas/farmacologia , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA