Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 32: 279-301, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298092

RESUMO

Inside eukaryotic cells, membrane contact sites (MCSs), regions where two membrane-bound organelles are apposed at less than 30 nm, generate regions of important lipid and calcium exchange. This review principally focuses on the structure and the function of MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM). Here we describe how tethering structures form and maintain these junctions and, in some instances, participate in their function. We then discuss recent insights into the mechanisms by which specific classes of proteins mediate nonvesicular lipid exchange between the ER and PM and how such phenomena, already known to be crucial for maintaining organelle identity, are also emerging as regulators of cell growth and development.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Humanos , Modelos Biológicos
2.
EMBO Rep ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333627

RESUMO

Effective intracellular communication between cellular organelles occurs at dedicated membrane contact sites (MCSs). Tether proteins are responsible for the establishment of MCSs, enabling direct communication between organelles to ensure organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). Here, we identify a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.

3.
Traffic ; 24(2): 52-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36468177

RESUMO

Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.


Assuntos
Complexo de Golgi , Proteínas SNARE , Humanos , Complexo de Golgi/metabolismo , Proteínas SNARE/metabolismo , Glicosilação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas R-SNARE/metabolismo
4.
J Cell Sci ; 136(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37303255

RESUMO

Membrane contact sites enable the exchange of metabolites between subcellular compartments and regulate organelle dynamics and positioning. These structures often contain multiple proteins that tether the membranes, establishing the apposition and functionalizing the structure. In this work, we used drug-inducible tethers in vivo in Saccharomyces cerevisiae to address how different tethers influence each other. We found that the establishment of a region of membrane proximity can recruit tethers, influencing their distribution between different locations or protein complexes. In addition, restricting the localization of one tether to a subdomain of an organelle caused other tethers to be restricted there. Finally, we show that the mobility of contact site tethers can also be influenced by other tethers of the same interface. Overall, our results show that the presence of other tethers at contact sites is an important determinant of the behavior of tethering proteins. This suggests that contact sites with multiple tethers are controlled by the interplay between specific molecular interactions and the cross-influence of tethers of the same interface.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Membranas Mitocondriais/metabolismo , Organelas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129196

RESUMO

Recent advances have revealed common pathological changes in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis with related frontotemporal dementia (ALS/FTD). Many of these changes can be linked to alterations in endoplasmic reticulum (ER)-mitochondria signaling, including dysregulation of Ca2+ signaling, autophagy, lipid metabolism, ATP production, axonal transport, ER stress responses and synaptic dysfunction. ER-mitochondria signaling involves specialized regions of ER, called mitochondria-associated membranes (MAMs). Owing to their role in neurodegenerative processes, MAMs have gained attention as they appear to be associated with all the major neurodegenerative diseases. Furthermore, their specific role within neuronal maintenance is being revealed as mutant genes linked to major neurodegenerative diseases have been associated with damage to these specialized contacts. Several studies have now demonstrated that these specialized contacts regulate neuronal health and synaptic transmission, and that MAMs are damaged in patients with neurodegenerative diseases. This Review will focus on the role of MAMs and ER-mitochondria signaling within neurons and how damage of the ER-mitochondria axis leads to a disruption of vital processes causing eventual neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Demência Frontotemporal/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(13): 7225-7235, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179693

RESUMO

The endoplasmic reticulum (ER) is the site of synthesis of secretory and membrane proteins and contacts every organelle of the cell, exchanging lipids and metabolites in a highly regulated manner. How the ER spatially segregates its numerous and diverse functions, including positioning nanoscopic contact sites with other organelles, is unclear. We demonstrate that hypotonic swelling of cells converts the ER and other membrane-bound organelles into micrometer-scale large intracellular vesicles (LICVs) that retain luminal protein content and maintain contact sites with each other through localized organelle tethers. Upon cooling, ER-derived LICVs phase-partition into microscopic domains having different lipid-ordering characteristics, which is reversible upon warming. Ordered ER lipid domains mark contact sites with ER and mitochondria, lipid droplets, endosomes, or plasma membrane, whereas disordered ER lipid domains mark contact sites with lysosomes or peroxisomes. Tethering proteins concentrate at ER-organelle contact sites, allowing time-dependent behavior of lipids and proteins to be studied at these sites. These findings demonstrate that LICVs provide a useful model system for studying the phase behavior and interactive properties of organelles in intact cells.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/fisiologia , Membranas Mitocondriais/metabolismo , Animais , Transporte Biológico , Células COS , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Células HEK293 , Humanos , Lipídeos , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Transporte Proteico
7.
Proc Natl Acad Sci U S A ; 117(27): 15684-15693, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571921

RESUMO

Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/- photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement.


Assuntos
GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Membranas Mitocondriais/ultraestrutura , Visão Ocular/genética , Animais , Membrana Celular/genética , Membrana Celular/ultraestrutura , Células Ependimogliais/metabolismo , Células Ependimogliais/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Células Fotorreceptoras/ultraestrutura , Visão Ocular/fisiologia
8.
Traffic ; 21(5): 354-363, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32129938

RESUMO

Cholesterol homeostasis is critical for cell function and human health. Cholesterol is heterogeneously distributed among cellular membranes, with the redistribution of endocytosed dietary cholesterol playing a pivotal role in the regulation of cholesterol homeostasis. While gaps remain in our understanding of intracellular dietary cholesterol transport, a highly complex network of pathways is starting to emerge, often involving inter-dependent vesicular and non-vesicular transport mechanisms. The last decade has seen a surge in interest in non-vesicular transport and inter-organellar communication at membrane contact sites. By providing platforms for protein interactions, signalling events, lipid exchange and calcium flux, membrane contact sites (MCS) are now appreciated as controlling the fate of large amounts of lipid and play central roles in the regulation and co-ordination of endocytic trafficking. Here, we review the role of MCS in multiple pathways for cholesterol export from the endocytic pathway and highlight the intriguing interplay between vesicular and non-vesicular transport mechanisms and relationship with neurodegenerative disease.


Assuntos
Colesterol , Doenças Neurodegenerativas , Transporte Biológico , Membrana Celular/metabolismo , Colesterol/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Organelas/metabolismo
9.
J Cell Sci ; 132(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209063

RESUMO

In the general context of an increasing prevalence of obesity-associated diseases, which follows changing paradigms in food consumption and worldwide use of industry-transformed foodstuffs, much attention has been given to the consequences of excessive fattening on health. Highly related to this clinical problem, studies at the cellular and molecular level are focused on the fundamental mechanism of lipid handling in dedicated lipid droplet (LD) organelles. This Review briefly summarizes how views on LD functions have evolved from those of a specialized intracellular compartment dedicated to lipid storage to exerting a more generalized role in the stress response. We focus on the current understanding of how proteins bind to LDs and determine their function, and on the new paradigms that have emerged from the discoveries of the multiple contact sites formed by LDs. We argue that elucidating the important roles of LD tethering to other cellular organelles allows for a better understanding of LD diversity and dynamics.


Assuntos
Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Membranas/metabolismo , Ligação Proteica , Animais , Humanos , Lipídeos , Membranas Mitocondriais/metabolismo
10.
Biol Chem ; 401(6-7): 793-809, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32324151

RESUMO

Contact sites, areas where two organelles are held in close proximity through the action of molecular tethers, enable non-vesicular communication between compartments. Mitochondria have been center stage in the contact site field since the discovery of the first contact between mitochondria and the endoplasmic reticulum (ER) over 60 years ago. However, only now, in the last decade, has there been a burst of discoveries regarding contact site biology in general and mitochondrial contacts specifically. The number and types of characterized contacts increased dramatically, new molecular mechanisms enabling contact formation were discovered, additional unexpected functions for contacts were shown, and their roles in cellular and organismal physiology were emphasized. Here, we focus on mitochondria as we highlight the most recent developments, future goals and unresolved questions in the field.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Humanos , Saccharomyces cerevisiae/metabolismo
11.
Adv Exp Med Biol ; 1131: 719-746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646532

RESUMO

It is generally accepted that interorganellar contacts are central to the control of cellular physiology. Virtually, any intracellular organelle can come into proximity with each other and, by establishing physical protein-mediated contacts within a selected fraction of the membrane surface, novel specific functions are acquired. Endoplasmic reticulum (ER) contacts with mitochondria are among the best studied and have a major role in Ca2+ and lipid transfer, signaling, and membrane dynamics.Their functional (and structural) diversity, their dynamic nature as well as the growing number of new players involved in the tethering concurred to make their monitoring difficult especially in living cells. This review focuses on the most established examples of tethers/modulators of the ER-mitochondria interface and on the roles of these contacts in health and disease by specifically dissecting how Ca2+ transfer occurs and how mishandling eventually leads to disease. Additional functions of the ER-mitochondria interface and an overview of the currently available methods to measure/quantify the ER-mitochondria interface will also be discussed.


Assuntos
Cálcio , Retículo Endoplasmático , Mitocôndrias , Doenças Neurodegenerativas , Cálcio/metabolismo , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais
12.
Chemistry ; 25(12): 3010-3013, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30620089

RESUMO

1,2-Amino alcohols and α-aminocarbonyls are frequently found in natural products, drugs, chiral auxiliaries, and catalysts. This work reports a new method for the palladium-catalyzed oxyalkynylation and oxyarylation of propargylic amines. The reaction is perfectly regioselective based on the in situ introduction of a hemiacetal tether derived from trifluoroacetaldehyde. cis-Selective carbo-oxygenation was achieved for terminal alkynes, whereas internal alkynes gave trans-carbo-oxygenation products. The obtained enol ethers could be easily transformed into 1,2-amino alcohols or α-amino ketones using hydrogenation or hydrolysis, respectively.

13.
Biochem Biophys Res Commun ; 500(1): 2-8, 2018 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28676393

RESUMO

The shape and position of mitochondria are intimately connected to both mitochondrial and cellular function. Mitochondrial anchors play a central role in mitochondrial positioning by exerting spatial, temporal, and contextual control over the cellular position of the organelle. Investigations into the molecular mechanisms of mitochondrial anchoring are still in the early stages, and we are beginning to appreciate the number and variety of anchors that exist. From the insight gained thus far, it is clear that mitochondrial anchoring has functional and physiological consequences that extend beyond mitochondrial positioning to other critical cellular processes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Senescência Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/ultraestrutura , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero , Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Toxoplasma/metabolismo , Toxoplasma/ultraestrutura
14.
Biochem Biophys Res Commun ; 500(3): 557-563, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29673588

RESUMO

Recently, a robust mechanical method has been established to isolate a small subpopulation of highly tumorigenic tumor repopulating cells (TRCs) from parental melanoma cells. In order to characterize the molecular and mechanical properties of TRCs, we utilized the tension gauge tether (TGT) single-molecule platform and investigated force requirements during early cell spreading events. TRCs required the peak single molecular tension of around 40 pN through integrins for initial adhesion like the parental control cells, but unlike the control cells, they did not spread and formed very few mature focal adhesions (FAs). Single molecule resolution RNA quantification of three Rho GTPases showed that downregulation of Cdc42, but not Rac1, is responsible for the unusual biophysical features of TRCs and that a threshold level of Cdc42 transcripts per unit cell area is required to initiate cell spreading. Cdc42 overexpression rescued TRC spreading through FA formation and restored the sensitivity to tension cues such that TRCs, like parental control cells, increase cell spreading with increasing single-molecular tension cues. Our single molecule studies identified an unusual biophysical feature of suppressed spreading of TRCs that may enable us to distinguish TRC population from a pool of heterogeneous tumor cell population.


Assuntos
Movimento Celular , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Fenômenos Biomecânicos , Adesões Focais/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imagem Individual de Molécula , Proteínas rho de Ligação ao GTP/metabolismo
15.
Traffic ; 16(2): 148-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406594

RESUMO

Tethering factors regulate the targeting of membrane-enclosed vesicles under the control of Rab GTPases. p115, a golgin family tether, has been shown to participate in multiple stages of ER/Golgi transport. Despite extensive study, the mechanism of action of p115 is poorly understood. SNARE proteins make up the machinery for membrane fusion, and strong evidence shows that function of p115 is directly linked to its interaction with SNAREs. Using a gel filtration binding assay, we have demonstrated that in solution p115 stably interacts with ER/Golgi SNAREs rbet1 and sec22b, but not membrin and syntaxin 5. These binding preferences stemmed from selectivity of p115 for monomeric SNARE motifs as opposed to SNARE oligomers. Soluble monomeric rbet1 can compete off p115 from coat protein II (COPII) vesicles. Furthermore, excess p115 inhibits p115 function in trafficking. We conclude that monomeric SNAREs are a major binding site for p115 on COPII vesicles, and that p115 dissociates from its SNARE partners upon SNAREpin assembly. Our results suggest a model in which p115 forms a mixed p115/SNARE helix bundle with a monomeric SNARE, facilitates the binding activity and/or concentration of the SNARE at prefusion sites and is subsequently ejected as SNARE complex formation and fusion proceed.


Assuntos
Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Sítios de Ligação , Células CHO , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Cricetinae , Cricetulus , Proteínas da Matriz do Complexo de Golgi , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas Qc-SNARE/química , Proteínas R-SNARE/química , Ratos
16.
Proc Natl Acad Sci U S A ; 111(5): 1849-54, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449908

RESUMO

Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.


Assuntos
Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Membranas Intracelulares/metabolismo , Adesividade , Autoantígenos/metabolismo , Técnicas de Silenciamento de Genes , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Biológicos , Transfecção
17.
J Cell Sci ; 127(Pt 7): 1595-606, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24496453

RESUMO

At the immunological synapse, the activated leukocyte cell adhesion molecule (ALCAM) on a dendritic cell (DC) and CD6 molecules on a T cell contribute to sustained DC-T-cell contacts. However, little is known about how ALCAM-CD6 bonds resist and adapt to mechanical stress. Here, we combine single-cell force spectroscopy (SCFS) with total-internal reflection fluorescence microscopy to examine ALCAM-CD6-mediated cell adhesion. The combination of cells expressing ALCAM constructs with certain cytoplasmic tail mutations and improved SCFS analysis processes reveal that the affinity of ALCAM-CD6 bonds is not influenced by the linking of the intracellular domains of ALCAM to the actin cortex. By contrast, the recruitment of ALCAM to adhesion sites and the propensity of ALCAM to anchor plasma membrane tethers depend on actin cytoskeletal interactions. Furthermore, linking ALCAM to the actin cortex through adaptor proteins stiffens the cortex and strengthens cell adhesion. We propose a framework for how ALCAMs contribute to DC-T-cell adhesion, stabilize DC-T-cell contacts and form a mechanical link between CD6 and the actin cortex to strengthen cell adhesion at the immunological synapse.


Assuntos
Actinas/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Adesão Celular/fisiologia , Proteínas Fetais/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Células K562 , Microscopia de Força Atômica , Microscopia de Fluorescência , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
18.
Cell Calcium ; 121: 102875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701708

RESUMO

The core functions of the anoctamins are Cl- channel activity and phosphatidylserine (and perhaps other lipids) scrambling. These functions have been extensively studied in various tissues and cells. However, another function of the anoctamins that is less recognized and minimally explored is as tethers at membrane contact sites. This short review aims to examine evidence supporting the localization of the anoctamins at membrane contact sites, their tether properties, and their functions as tethers.


Assuntos
Anoctaminas , Humanos , Animais , Anoctaminas/metabolismo , Membrana Celular/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-38520148

RESUMO

The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.

20.
ACS Nano ; 18(4): 3382-3396, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237058

RESUMO

Virus-like particles (VLPs) are emerging as nanoscaffolds in a variety of biomedical applications including delivery of vaccine antigens and cargo such as mRNA to mucosal surfaces. These soft, colloidal, and proteinaceous structures (capsids) are nevertheless susceptible to mucosal environmental stress factors. We cross-linked multiple capsid surface amino acid residues using homobifunctional polyethylene glycol tethers to improve the persistence and survival of the capsid to model mucosal stressors. Surface cross-linking enhanced the stability of VLPs assembled from Acinetobacter phage AP205 coat proteins in low pH (down to pH 4.0) and high protease concentration conditions (namely, in pig and mouse gastric fluids). Additionally, it increased the stiffness of VLPs under local mechanical indentation applied using an atomic force microscopy cantilever tip. Small angle X-ray scattering revealed an increase in capsid diameter after cross-linking and an increase in capsid shell thickness with the length of the PEG cross-linkers. Moreover, surface cross-linking had no effect on the VLPs' mucus translocation and accumulation on the epithelium of in vitro 3D human nasal epithelial tissues with mucociliary clearance. Finally, it did not compromise VLPs' function as vaccines in mouse subcutaneous vaccination models. Compared to PEGylation without cross-linking, the stiffness of surface cross-linked VLPs were higher for the same length of the PEG molecule, and also the lifetimes of surface cross-linked VLPs were longer in the gastric fluids. Surface cross-linking using macromolecular tethers, but not simple conjugation of these molecules, thus offers a viable means to enhance the resilience and survival of VLPs for mucosal applications.


Assuntos
Resiliência Psicológica , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Suínos , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA