Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.535
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978320

RESUMO

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Assuntos
Eletrofisiologia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Imagem Óptica/métodos , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Potenciais Sinápticos/fisiologia , Vibrissas/fisiologia
2.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946783

RESUMO

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Assuntos
Diferenciação Celular/genética , Organoides/citologia , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Análise de Célula Única/métodos , Sinapses/fisiologia , Transcriptoma/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular , Eletrofisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Predisposição Genética para Doença/genética , Humanos , Hibridização In Situ , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica , Família Multigênica , Naftoquinonas , Organoides/efeitos da radiação , Organoides/ultraestrutura , Retina/patologia , Retina/efeitos da radiação
3.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753423

RESUMO

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Assuntos
Regulação do Apetite , Núcleo Dorsal da Rafe/metabolismo , Neurônios/metabolismo , Animais , Peso Corporal , Encéfalo/fisiologia , Núcleo Dorsal da Rafe/citologia , Eletrofisiologia , Jejum , Fome , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Optogenética
4.
Cell ; 164(5): 937-49, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919430

RESUMO

Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/química , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Potássio/metabolismo , Eletrofisiologia , Humanos , Cinética , Simulação de Dinâmica Molecular , Canais de Potássio de Domínios Poros em Tandem/genética
5.
Cell ; 164(1-2): 197-207, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26709045

RESUMO

Hippocampal neurons show selectivity with respect to visual cues in primates, including humans, but this has never been found in rodents. To address this long-standing discrepancy, we measured hippocampal activity from rodents during real-world random foraging. Surprisingly, ∼ 25% of neurons exhibited significant directional modulation with respect to visual cues. To dissociate the contributions of visual and vestibular cues, we made similar measurements in virtual reality, in which only visual cues were informative. Here, we found significant directional modulation despite the severe loss of vestibular information, challenging prevailing theories of directionality. Changes in the amount of angular information in visual cues induced corresponding changes in head-directional modulation at the neuronal and population levels. Thus, visual cues are sufficient for-and play a predictable, causal role in-generating directionally selective hippocampal responses. These results dissociate hippocampal directional and spatial selectivity and bridge the gap between primate and rodent studies.


Assuntos
Comportamento Apetitivo , Hipocampo/fisiologia , Animais , Eletrofisiologia/métodos , Movimentos da Cabeça , Hipocampo/citologia , Humanos , Masculino , Neurônios/citologia , Ratos , Ratos Long-Evans , Vestíbulo do Labirinto/fisiologia
6.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
7.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326610

RESUMO

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Assuntos
Sinais (Psicologia) , Medo , Vias Neurais , Córtex Pré-Frontal , Aprendizado Social , Animais , Camundongos , Tonsila do Cerebelo/fisiologia , Cálcio/metabolismo , Eletrofisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Aprendizado Social/fisiologia , Reação de Congelamento Cataléptica/fisiologia
8.
Nature ; 632(8024): 451-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085604

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels1 are essential for pacemaking activity and neural signalling2,3. Drugs inhibiting HCN1 are promising candidates for management of neuropathic pain4 and epileptic seizures5. The general anaesthetic propofol (2,6-di-iso-propylphenol) is a known HCN1 allosteric inhibitor6 with unknown structural basis. Here, using single-particle cryo-electron microscopy and electrophysiology, we show that propofol inhibits HCN1 by binding to a mechanistic hotspot in a groove between the S5 and S6 transmembrane helices. We found that propofol restored voltage-dependent closing in two HCN1 epilepsy-associated polymorphisms that act by destabilizing the channel closed state: M305L, located in the propofol-binding site in S5, and D401H in S6 (refs. 7,8). To understand the mechanism of propofol inhibition and restoration of voltage-gating, we tracked voltage-sensor movement in spHCN channels and found that propofol inhibition is independent of voltage-sensor conformational changes. Mutations at the homologous methionine in spHCN and an adjacent conserved phenylalanine in S6 similarly destabilize closing without disrupting voltage-sensor movements, indicating that voltage-dependent closure requires this interface intact. We propose a model for voltage-dependent gating in which propofol stabilizes coupling between the voltage sensor and pore at this conserved methionine-phenylalanine interface in HCN channels. These findings unlock potential exploitation of this site to design specific drugs targeting HCN channelopathies.


Assuntos
Epilepsia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Mutação , Canais de Potássio , Propofol , Humanos , Sítios de Ligação , Microscopia Crioeletrônica , Eletrofisiologia , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/metabolismo , Células HEK293 , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Movimento/efeitos dos fármacos , Fenilalanina/genética , Fenilalanina/metabolismo , Polimorfismo Genético , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio/ultraestrutura , Propofol/farmacologia , Propofol/química
9.
Cell ; 158(6): 1225-1229, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215480

RESUMO

This year, the Lasker∼DeBakey Clinical Medical Research Award will be shared by Mahlon R. DeLong and Alim-Louis Benabid for elucidating the role of the subthalamic nucleus in mediating the motor dysfunction of Parkinson's disease and for pioneering the use of deep-brain stimulation to alleviate symptoms of the disease.


Assuntos
Distinções e Prêmios , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/patologia , Estimulação Encefálica Profunda , Eletrofisiologia , França , História do Século XX , Humanos , Doença de Parkinson/terapia , Estados Unidos
10.
Nature ; 624(7991): 295-302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092907

RESUMO

Connecting different electronic devices is usually straightforward because they have paired, standardized interfaces, in which the shapes and sizes match each other perfectly. Tissue-electronics interfaces, however, cannot be standardized, because tissues are soft1-3 and have arbitrary shapes and sizes4-6. Shape-adaptive wrapping and covering around irregularly sized and shaped objects have been achieved using heat-shrink films because they can contract largely and rapidly when heated7. However, these materials are unsuitable for biological applications because they are usually much harder than tissues and contract at temperatures higher than 90 °C (refs. 8,9). Therefore, it is challenging to prepare stimuli-responsive films with large and rapid contractions for which the stimuli and mechanical properties are compatible with vulnerable tissues and electronic integration processes. Here, inspired by spider silk10-12, we designed water-responsive supercontractile polymer films composed of poly(ethylene oxide) and poly(ethylene glycol)-α-cyclodextrin inclusion complex, which are initially dry, flexible and stable under ambient conditions, contract by more than 50% of their original length within seconds (about 30% per second) after wetting and become soft (about 100 kPa) and stretchable (around 600%) hydrogel thin films thereafter. This supercontraction is attributed to the aligned microporous hierarchical structures of the films, which also facilitate electronic integration. We used this film to fabricate shape-adaptive electrode arrays that simplify the implantation procedure through supercontraction and conformally wrap around nerves, muscles and hearts of different sizes when wetted for in vivo nerve stimulation and electrophysiological signal recording. This study demonstrates that this water-responsive material can play an important part in shaping the next-generation tissue-electronics interfaces as well as broadening the biomedical application of shape-adaptive materials.


Assuntos
Eletrofisiologia , Polímeros , Água , Animais , alfa-Ciclodextrinas/química , Eletrodos , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Eletrofisiologia/tendências , Coração , Músculos , Polietilenoglicóis/química , Polímeros/química , Seda/química , Aranhas , Água/química , Hidrogéis/química , Eletrônica/instrumentação , Eletrônica/métodos , Eletrônica/tendências
11.
Nature ; 615(7951): 292-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859543

RESUMO

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Assuntos
Comportamento Animal , Encéfalo , Emoções , Coração , Animais , Camundongos , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Coração/fisiologia , Comportamento Animal/fisiologia , Eletrofisiologia , Optogenética , Córtex Insular/fisiologia , Frequência Cardíaca , Channelrhodopsins , Taquicardia/fisiopatologia , Marca-Passo Artificial
12.
Nature ; 622(7981): 149-155, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758945

RESUMO

A regular heartbeat is essential to vertebrate life. In the mature heart, this function is driven by an anatomically localized pacemaker. By contrast, pacemaking capability is broadly distributed in the early embryonic heart1-3, raising the question of how tissue-scale activity is first established and then maintained during embryonic development. The initial transition of the heart from silent to beating has never been characterized at the timescale of individual electrical events, and the structure in space and time of the early heartbeats remains poorly understood. Using all-optical electrophysiology, we captured the very first heartbeat of a zebrafish and analysed the development of cardiac excitability and conduction around this singular event. The first few beats appeared suddenly, had irregular interbeat intervals, propagated coherently across the primordial heart and emanated from loci that varied between animals and over time. The bioelectrical dynamics were well described by a noisy saddle-node on invariant circle bifurcation with action potential upstroke driven by CaV1.2. Our work shows how gradual and largely asynchronous development of single-cell bioelectrical properties produces a stereotyped and robust tissue-scale transition from quiescence to coordinated beating.


Assuntos
Desenvolvimento Embrionário , Frequência Cardíaca , Coração , Peixe-Zebra , Animais , Potenciais de Ação , Coração/embriologia , Coração/inervação , Coração/fisiologia , Frequência Cardíaca/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Eletrofisiologia , Análise de Célula Única
13.
Nature ; 615(7950): 111-116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813962

RESUMO

Many animals use Earth's magnetic field (also known as the geomagnetic field) for navigation1. The favoured mechanism for magnetosensitivity involves a blue-light-activated electron-transfer reaction between flavin adenine dinucleotide (FAD) and a chain of tryptophan residues within the photoreceptor protein CRYPTOCHROME (CRY). The spin-state of the resultant radical pair, and therefore the concentration of CRY in its active state, is influenced by the geomagnetic field2. However, the canonical CRY-centric radical-pair mechanism does not explain many physiological and behavioural observations2-8. Here, using electrophysiology and behavioural analyses, we assay magnetic-field responses at the single-neuron and organismal levels. We show that the 52 C-terminal amino acid residues of Drosophila melanogaster CRY, lacking the canonical FAD-binding domain and tryptophan chain, are sufficient to facilitate magnetoreception. We also show that increasing intracellular FAD potentiates both blue-light-induced and magnetic-field-dependent effects on the activity mediated by the C terminus. High levels of FAD alone are sufficient to cause blue-light neuronal sensitivity and, notably, the potentiation of this response in the co-presence of a magnetic field. These results reveal the essential components of a primary magnetoreceptor in flies, providing strong evidence that non-canonical (that is, non-CRY-dependent) radical pairs can elicit magnetic-field responses in cells.


Assuntos
Criptocromos , Drosophila melanogaster , Campos Magnéticos , Animais , Criptocromos/química , Criptocromos/metabolismo , Drosophila melanogaster/química , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Triptofano/metabolismo , Eletrofisiologia , Comportamento Animal , Análise de Célula Única , Neurônios/citologia , Neurônios/metabolismo
14.
Nature ; 616(7957): 606-614, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949202

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that regulates salt and fluid homeostasis across epithelial membranes1. Alterations in CFTR cause cystic fibrosis, a fatal disease without a cure2,3. Electrophysiological properties of CFTR have been analysed for decades4-6. The structure of CFTR, determined in two globally distinct conformations, underscores its evolutionary relationship with other ATP-binding cassette transporters. However, direct correlations between the essential functions of CFTR and extant structures are lacking at present. Here we combine ensemble functional measurements, single-molecule fluorescence resonance energy transfer, electrophysiology and kinetic simulations to show that the two nucleotide-binding domains (NBDs) of human CFTR dimerize before channel opening. CFTR exhibits an allosteric gating mechanism in which conformational changes within the NBD-dimerized channel, governed by ATP hydrolysis, regulate chloride conductance. The potentiators ivacaftor and GLPG1837 enhance channel activity by increasing pore opening while NBDs are dimerized. Disease-causing substitutions proximal (G551D) or distal (L927P) to the ATPase site both reduce the efficiency of NBD dimerization. These findings collectively enable the framing of a gating mechanism that informs on the search for more efficacious clinical therapies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Condutividade Elétrica , Eletrofisiologia , Transferência Ressonante de Energia de Fluorescência , Ativação do Canal Iônico , Multimerização Proteica/genética
15.
Nature ; 617(7960): 360-368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37138088

RESUMO

Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modelling neural dynamics during adaptive behaviours to probe neural representations1-3. In particular, although neural latent embeddings can reveal underlying correlates of behaviour, we lack nonlinear techniques that can explicitly and flexibly leverage joint behaviour and neural data to uncover neural dynamics3-5. Here, we fill this gap with a new encoding method, CEBRA, that jointly uses behavioural and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce both consistent and high-performance latent spaces. We show that consistency can be used as a metric for uncovering meaningful differences, and the inferred latents can be used for decoding. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks and in simple or complex behaviours across species. It allows leverage of single- and multi-session datasets for hypothesis testing or can be used label free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, for the production of consistent latent spaces across two-photon and Neuropixels data, and can provide rapid, high-accuracy decoding of natural videos from visual cortex.


Assuntos
Fenômenos Biomecânicos , Aprendizado de Máquina , Neurônios , Córtex Visual , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Conjuntos de Dados como Assunto , Eletrofisiologia , Neurônios/fisiologia , Fótons , Reprodutibilidade dos Testes , Gravação em Vídeo , Córtex Visual/citologia , Córtex Visual/fisiologia , Movimento/fisiologia
16.
Nature ; 623(7986): 375-380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758948

RESUMO

Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs2-8, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways9,10. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.


Assuntos
Encéfalo , Corte , Dopamina , Neurônios Dopaminérgicos , Retroalimentação Fisiológica , Retroalimentação Psicológica , Tentilhões , Animais , Feminino , Masculino , Dopamina/metabolismo , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Água , Retroalimentação Fisiológica/fisiologia , Ingestão de Líquidos/fisiologia , Sede/fisiologia , Neurônios Dopaminérgicos/metabolismo , Eletrofisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Comunicação , Recompensa , Retroalimentação Psicológica/fisiologia
17.
Nature ; 622(7981): 130-138, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730990

RESUMO

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) can provide long-term symptom relief for treatment-resistant depression (TRD)1. However, achieving stable recovery is unpredictable2, typically requiring trial-and-error stimulation adjustments due to individual recovery trajectories and subjective symptom reporting3. We currently lack objective brain-based biomarkers to guide clinical decisions by distinguishing natural transient mood fluctuations from situations requiring intervention. To address this gap, we used a new device enabling electrophysiology recording to deliver SCC DBS to ten TRD participants (ClinicalTrials.gov identifier NCT01984710). At the study endpoint of 24 weeks, 90% of participants demonstrated robust clinical response, and 70% achieved remission. Using SCC local field potentials available from six participants, we deployed an explainable artificial intelligence approach to identify SCC local field potential changes indicating the patient's current clinical state. This biomarker is distinct from transient stimulation effects, sensitive to therapeutic adjustments and accurate at capturing individual recovery states. Variable recovery trajectories are predicted by the degree of preoperative damage to the structural integrity and functional connectivity within the targeted white matter treatment network, and are matched by objective facial expression changes detected using data-driven video analysis. Our results demonstrate the utility of objective biomarkers in the management of personalized SCC DBS and provide new insight into the relationship between multifaceted (functional, anatomical and behavioural) features of TRD pathology, motivating further research into causes of variability in depression treatment.


Assuntos
Estimulação Encefálica Profunda , Depressão , Transtorno Depressivo Maior , Humanos , Inteligência Artificial , Biomarcadores , Estimulação Encefálica Profunda/métodos , Depressão/fisiopatologia , Depressão/terapia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/terapia , Eletrofisiologia , Resultado do Tratamento , Medida de Potenciais de Campo Local , Substância Branca , Lobo Límbico/fisiologia , Lobo Límbico/fisiopatologia , Expressão Facial
18.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
19.
Nature ; 621(7978): 381-388, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648849

RESUMO

Only recently have more specific circuit-probing techniques become available to inform previous reports implicating the rodent hippocampus in orexigenic appetitive processing1-4. This function has been reported to be mediated at least in part by lateral hypothalamic inputs, including those involving orexigenic lateral hypothalamic neuropeptides, such as melanin-concentrating hormone5,6. This circuit, however, remains elusive in humans. Here we combine tractography, intracranial electrophysiology, cortico-subcortical evoked potentials, and brain-clearing 3D histology to identify an orexigenic circuit involving the lateral hypothalamus and converging in a hippocampal subregion. We found that low-frequency power is modulated by sweet-fat food cues, and this modulation was specific to the dorsolateral hippocampus. Structural and functional analyses of this circuit in a human cohort exhibiting dysregulated eating behaviour revealed connectivity that was inversely related to body mass index. Collectively, this multimodal approach describes an orexigenic subnetwork within the human hippocampus implicated in obesity and related eating disorders.


Assuntos
Hipocampo , Vias Neurais , Orexinas , Humanos , Índice de Massa Corporal , Estudos de Coortes , Sinais (Psicologia) , Eletrofisiologia , Potenciais Evocados/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Comportamento Alimentar , Alimentos , Hipocampo/anatomia & histologia , Hipocampo/citologia , Hipocampo/metabolismo , Obesidade/metabolismo , Orexinas/metabolismo
20.
Nature ; 610(7932): 532-539, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36163289

RESUMO

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.


Assuntos
Canais de Cálcio , Microscopia Crioeletrônica , Proteínas NLR , Proteínas de Plantas , Receptores Imunológicos , Triticum , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arginina , Canais de Cálcio/química , Canais de Cálcio/imunologia , Canais de Cálcio/metabolismo , Cátions/metabolismo , Leucina , Proteínas NLR/química , Proteínas NLR/imunologia , Proteínas NLR/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Triticum/imunologia , Triticum/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Eletrofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA