Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.785
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 85: 455-83, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26844394

RESUMO

Nitrogenase is a versatile metalloenzyme that is capable of catalyzing two important reactions under ambient conditions: the reduction of nitrogen (N2) to ammonia (NH3), a key step in the global nitrogen cycle; and the reduction of carbon monoxide (CO) and carbon dioxide (CO2) to hydrocarbons, two reactions useful for recycling carbon waste into carbon fuel. The molybdenum (Mo)- and vanadium (V)-nitrogenases are two homologous members of this enzyme family. Each of them contains a P-cluster and a cofactor, two high-nuclearity metalloclusters that have crucial roles in catalysis. This review summarizes the progress that has been made in elucidating the biosynthetic mechanisms of the P-cluster and cofactor species of nitrogenase, focusing on what is known about the assembly mechanisms of the two metalloclusters in Mo-nitrogenase and giving a brief account of the possible assembly schemes of their counterparts in V-nitrogenase, which are derived from the homology between the two nitrogenases.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Amônia/química , Amônia/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Coenzimas/química , Ferro/química , Ferro/metabolismo , Molibdênio/química , Nitrogênio/química , Nitrogênio/metabolismo , Nitrogenase/química , Nitrogenase/genética , Oxirredução , Subunidades Proteicas/química , Subunidades Proteicas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vanádio/química , Vanádio/metabolismo
2.
Nature ; 607(7917): 86-90, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794270

RESUMO

Nitrogen (N2) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal-sulfur-carbon cluster as its active-site co-factor ([(R-homocitrate)MoFe7S9C], FeMoco)1,2, and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N2 (refs. 3-6). Although there are a few examples of synthetic counterparts of the FeMoco, metal-sulfur cluster, which have shown binding of N2 (refs. 7-9), the reduction of N2 by any synthetic metal-sulfur cluster or by the extracted form of FeMoco10 has remained elusive, despite nearly 50 years of research. Here we show that the Fe atoms in our synthetic [Mo3S4Fe] cubes11,12 can capture a N2 molecule and catalyse N2 silylation to form N(SiMe3)3 under treatment with excess sodium and trimethylsilyl chloride. These results exemplify the catalytic silylation of N2 by a synthetic metal-sulfur cluster and demonstrate the N2-reduction capability of Fe atoms in a sulfur-rich environment, which is reminiscent of the ability of FeMoco to bind and activate N2.


Assuntos
Ferro , Molibdênio , Nitrogênio , Nitrogenase , Enxofre , Biocatálise , Carbono , Ferro/química , Ferro/metabolismo , Molibdênio/química , Molibdênio/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Nitrogenase/química , Nitrogenase/metabolismo , Sódio , Enxofre/química , Enxofre/metabolismo , Ácidos Tricarboxílicos , Compostos de Trimetilsilil
3.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871225

RESUMO

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Assuntos
Azotobacter vinelandii , Metaloproteínas , Nitrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fixação de Nitrogênio/genética , Oxirredutases/metabolismo , Metaloproteínas/metabolismo , Proteínas de Bactérias/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(34): e2305142120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585462

RESUMO

Introducing nitrogen fixation (nif  ) genes into eukaryotic genomes and targeting Nif components to mitochondria or chloroplasts is a promising strategy for engineering nitrogen-fixing plants. A prerequisite for achieving nitrogen fixation in crops is stable and stoichiometric expression of each component in organelles. Previously, we designed a polyprotein-based nitrogenase system depending on Tobacco Etch Virus protease (TEVp) to release functional Nif components from five polyproteins. Although this system satisfies the demand for specific expression ratios of Nif components in Escherichia coli, we encountered issues with TEVp cleavage of polyproteins targeted to yeast mitochondria. To overcome this obstacle, a version of the Nif polyprotein system was constructed by replacing TEVp cleavage sites with minimal peptide sequences, identified by knowledge-based engineering, that are susceptible to cleavage by the endogenous mitochondrial-processing peptidase. This replacement not only further reduces the number of genes required, but also prevents potential precleavage of polyproteins outside the target organelle. This version of the polyprotein-based nitrogenase system achieved levels of nitrogenase activity in E. coli, comparable to those observed with the TEVp-based polyprotein nitrogenase system. When applied to yeast mitochondria, stable and balanced expression of Nif components was realized. This strategy has potential advantages, not only for transferring nitrogen fixation to eukaryotic cells, but also for the engineering of other metabolic pathways that require mitochondrial compartmentalization.


Assuntos
Escherichia coli , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Nitrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nitrogênio/metabolismo
5.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526235

RESUMO

Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.


Assuntos
Fixação de Nitrogênio , Nitrogenase , Nitrogenase/genética , Nitrogenase/química , Nitrogenase/metabolismo , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo
6.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319744

RESUMO

Nitrogen is essential for all organisms, but biological nitrogen fixation (BNF) occurs only in a small fraction of prokaryotes. Previous studies divided nitrogenase-gene-carrying prokaryotes into Groups I to IV and provided evidence that BNF first evolved in bacteria. This study constructed a timetree of the evolution of nitrogen-fixation genes and estimated that archaea evolved BNF much later than bacteria and that nitrogen-fixing cyanobacteria evolved later than 1,900 MYA, considerably younger than the previous estimate of 2,200 MYA. Moreover, Groups III and II/I diverged ∼2,280 MYA, after the Kenorland supercontinent breakup (∼2,500-2,100 MYA) and the Great Oxidation Event (∼2,400-2,100 MYA); Groups III and Vnf/Anf diverged ∼2,086 MYA, after the Yarrabubba impact (∼2,229 MYA); and Groups II and I diverged ∼1,920 MYA, after the Vredefort impact (∼2,023 MYA). In summary, this study provided a timescale of BNF events and discussed the possible effects of geological events on BNF evolution.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Cianobactérias/genética , Archaea/metabolismo , Nitrogênio
7.
Annu Rev Microbiol ; 74: 247-266, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660386

RESUMO

The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.


Assuntos
Bactérias/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Archaea/enzimologia , Archaea/metabolismo , Bactérias/enzimologia , Molibdênio/metabolismo , Fixação de Nitrogênio
8.
Chem Rev ; 123(9): 5755-5797, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36542730

RESUMO

The Fischer-Tropsch (FT) process converts a mixture of CO and H2 into liquid hydrocarbons as a major component of the gas-to-liquid technology for the production of synthetic fuels. Contrary to the energy-demanding chemical FT process, the enzymatic FT-type reactions catalyzed by nitrogenase enzymes, their metalloclusters, and synthetic mimics utilize H+ and e- as the reducing equivalents to reduce CO, CO2, and CN- into hydrocarbons under ambient conditions. The C1 chemistry exemplified by these FT-type reactions is underscored by the structural and electronic properties of the nitrogenase-associated metallocenters, and recent studies have pointed to the potential relevance of this reactivity to nitrogenase mechanism, prebiotic chemistry, and biotechnological applications. This review will provide an overview of the features of nitrogenase enzymes and associated metalloclusters, followed by a detailed discussion of the activities of various nitrogenase-derived FT systems and plausible mechanisms of the enzymatic FT reactions, highlighting the versatility of this unique reactivity while providing perspectives onto its mechanistic, evolutionary, and biotechnological implications.


Assuntos
Hidrocarbonetos , Nitrogenase , Nitrogenase/química , Hidrocarbonetos/química , Biotecnologia
9.
Proc Natl Acad Sci U S A ; 119(49): e2215855119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459643

RESUMO

Most diazotrophs fix nitrogen only under nitrogen-limiting conditions, for example, in the presence of relatively low concentrations of NH4+ (0 to 2 mM). However, Paenibacillus sabinae T27 exhibits an unusual pattern of nitrogen regulation of nitrogen fixation, since although nitrogenase activities are high under nitrogen-limiting conditions (0 to 3 mM NH4+) and are repressed under conditions of nitrogen sufficiency (4 to 30 mM NH4+), nitrogenase activity is reestablished when very high levels of NH4+ (30 to 300 mM) are present in the medium. To further understand this pattern of nitrogen fixation regulation, we carried out transcriptome analyses of P. sabinae T27 in response to increasing ammonium concentrations. As anticipated, the nif genes were highly expressed, either in the absence of fixed nitrogen or in the presence of a high concentration of NH4+ (100 mM), but were subject to negative feedback regulation at an intermediate concentration of NH4+ (10 mM). Among the differentially expressed genes, ald1, encoding alanine dehydrogenase (ADH1), was highly expressed in the presence of a high level of NH4+ (100 mM). Mutation and complementation experiments revealed that ald1 is required for nitrogen fixation at high ammonium concentrations. We demonstrate that alanine, synthesized by ADH1 from pyruvate and NH4+, inhibits GS activity, leading to a low intracellular glutamine concentration that prevents feedback inhibition of GS and mimics nitrogen limitation, enabling activation of nif transcription by the nitrogen-responsive regulator GlnR in the presence of high levels of extracellular ammonium.


Assuntos
Alanina Desidrogenase , Compostos de Amônio , Fixação de Nitrogênio/genética , Alanina/genética , Nitrogênio , Ácido Pirúvico , Nitrogenase/genética
10.
Proc Natl Acad Sci U S A ; 119(31): e2203576119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35905315

RESUMO

Electron transfers coupled to the hydrolysis of ATP allow various metalloenzymes to catalyze reductions at very negative reduction potentials. The double-cubane cluster protein (DCCP) catalyzes the reduction of small molecules, such as acetylene and hydrazine, with electrons provided by its cognate ATP-hydrolyzing reductase (DCCP-R). How ATP-driven electron transfer occurs is not known. To resolve the structural basis for ATP-driven electron transfer, we solved the structures of the DCCP:DCCP-R complex in three different states. The structures show that the DCCP-R homodimer is covalently bridged by a [4Fe4S] cluster that is aligned with the twofold axis of the DCCP homodimer, positioning the [4Fe4S] cluster to enable electron transfer to both double-cubane clusters in the DCCP dimer. DCCP and DCCP-R form stable complexes independent of oxidation state or nucleotides present, and electron transfer requires the hydrolysis of ATP. Electron transfer appears to be additionally driven by modulating the angle between the helices binding the [4Fe4S] cluster. We observed hydrogen bond networks running from the ATP binding site via the [4Fe4S] cluster in DCCP-R to the double-cubane cluster in DCCP, allowing the propagation of conformational changes. Remarkable similarities between the DCCP:DCCP-R complex and the nonhomologous nitrogenases suggest a convergent evolution of catalytic strategies to achieve ATP-driven electron transfers between iron-sulfur clusters.


Assuntos
Trifosfato de Adenosina , Transporte de Elétrons , Proteínas Ferro-Enxofre , Nitrogenase , Trifosfato de Adenosina/química , Catálise , Elétrons , Hidrólise , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Oxirredução , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412890

RESUMO

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Assuntos
Azorhizobium caulinodans , Grão Comestível , Hordeum , Fixação de Nitrogênio , Nitrogenase , Raízes de Plantas , Azorhizobium caulinodans/enzimologia , Azorhizobium caulinodans/genética , Grão Comestível/microbiologia , Hordeum/microbiologia , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Raízes de Plantas/microbiologia , Simbiose
12.
Proc Natl Acad Sci U S A ; 119(31): e2122677119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881795

RESUMO

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe4S4]n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms (n = 0-4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe4S4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe4S4]0, and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe4S4]2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.


Assuntos
Materiais Biomiméticos , Coenzimas , Hidrocarbonetos , Ferro , Nitrogenase , Enxofre , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Coenzimas/síntese química , Coenzimas/química , Hidrocarbonetos/síntese química , Hidrocarbonetos/química , Ferro/química , Nitrogenase/química , Oxirredução , Enxofre/química
13.
PLoS Genet ; 18(6): e1010276, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727841

RESUMO

Due to the costly energy demands of nitrogen (N) fixation, diazotrophic bacteria have evolved complex regulatory networks that permit expression of the catalyst nitrogenase only under conditions of N starvation, whereas the same condition stimulates upregulation of high-affinity ammonia (NH3) assimilation by glutamine synthetase (GS), preventing excess release of excess NH3 for plants. Diazotrophic bacteria can be engineered to excrete NH3 by interference with GS, however control is required to minimise growth penalties and prevent unintended provision of NH3 to non-target plants. Here, we tested two strategies to control GS regulation and NH3 excretion in our model cereal symbiont Azorhizobium caulinodans AcLP, a derivative of ORS571. We first attempted to recapitulate previous work where mutation of both PII homologues glnB and glnK stimulated GS shutdown but found that one of these genes was essential for growth. Secondly, we expressed unidirectional adenylyl transferases (uATs) in a ΔglnE mutant of AcLP which permitted strong GS shutdown and excretion of NH3 derived from N2 fixation and completely alleviated negative feedback regulation on nitrogenase expression. We placed a uAT allele under control of the NifA-dependent promoter PnifH, permitting GS shutdown and NH3 excretion specifically under microaerobic conditions, the same cue that initiates N2 fixation, then deleted nifA and transferred a rhizopine nifAL94Q/D95Q-rpoN controller plasmid into this strain, permitting coupled rhizopine-dependent activation of N2 fixation and NH3 excretion. This highly sophisticated and multi-layered control circuitry brings us a step closer to the development of a "synthetic symbioses" where N2 fixation and NH3 excretion could be specifically activated in diazotrophic bacteria colonising transgenic rhizopine producing cereals, targeting delivery of fixed N to the crop while preventing interaction with non-target plants.


Assuntos
Azorhizobium caulinodans , Fixação de Nitrogênio , Amônia/metabolismo , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/genética , Nitrogenase/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(47): e2206291119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36375074

RESUMO

Legumes establish endosymbiotic associations with nitrogen-fixing rhizobia, which they host inside root nodules. Here, specific physiological and morphological adaptations, such as the production of oxygen-binding leghemoglobin proteins and the formation of an oxygen diffusion barrier in the nodule periphery, are essential to protect the oxygen-labile bacterial nitrogenase enzyme. The molecular basis of the latter process remains elusive as the identification of required genes is limited by the epistatic effect of nodule organogenesis over nodule infection and rhizobia accommodation. We overcame this by exploring the phenotypic diversity of Lotus japonicus accessions that uncouple nodule organogenesis from nodule infection when inoculated with a subcompatible Rhizobium strain. Using comparative transcriptomics, we identified genes with functions associated with oxygen homeostasis and deposition of lipid polyesters on cell walls to be specifically up-regulated in infected compared to noninfected nodules. As hydrophobic modification of cell walls is pivotal for creating diffusion barriers like the root endodermis, we focused on two Fatty acyl-CoA Reductase genes that were specifically activated in the root and/or in the nodule endodermis. Mutant lines in a Fatty acyl-CoA Reductase gene expressed exclusively in the nodule endodermis had decreased deposition of polyesters on this cell layer and increased nodule permeability compared to wild-type plants. Oxygen concentrations were significantly increased in the inner cortex of mutant nodules, which correlated with reduced nitrogenase activity, and impaired shoot growth. These results provide the first genetic evidence for the formation of the nodule oxygen diffusion barrier, a key adaptation enabling nitrogen fixation in legume nodules.


Assuntos
Lotus , Rhizobium , Lotus/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Oxigênio/metabolismo , Poliésteres , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/genética , Fixação de Nitrogênio/genética , Simbiose/genética , Nitrogenase/metabolismo , Lipídeos
15.
Annu Rev Biochem ; 78: 701-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19489731

RESUMO

Nitrogen-fixing bacteria catalyze the reduction of dinitrogen (N(2)) to two ammonia molecules (NH(3)), the major contribution of fixed nitrogen to the biogeochemical nitrogen cycle. The most widely studied nitrogenase is the molybdenum (Mo)-dependent enzyme. The reduction of N(2) by this enzyme involves the transient interaction of two component proteins, designated the iron (Fe) protein and the MoFe protein, and minimally requires 16 magnesium ATP (MgATP), eight protons, and eight electrons. The current state of knowledge on how these proteins and small molecules together effect the reduction of N(2) to ammonia is reviewed. Included is a summary of the roles of the Fe protein and MgATP hydrolysis, information on the roles of the two metal clusters contained in the MoFe protein in catalysis, insights gained from recent success in trapping substrates and inhibitors at the active-site metal cluster FeMo cofactor, and finally, considerations of the mechanism of N(2) reduction catalyzed by nitrogenase.


Assuntos
Molibdoferredoxina/metabolismo , Nitrogenase/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Molibdoferredoxina/química , Fixação de Nitrogênio , Nitrogenase/química , Nitrogenase/genética
16.
Crit Rev Biochem Mol Biol ; 57(5-6): 492-538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36877487

RESUMO

Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Nitrogenase/química , Nitrogenase/genética , Nitrogenase/metabolismo , Amônia , Nitrogênio
17.
Biochemistry ; 63(1): 152-158, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38091601

RESUMO

Nitrogenase is the only enzyme that catalyzes the reduction of nitrogen gas into ammonia. Nitrogenase is tightly inhibited by the environmental gas carbon monoxide (CO). Many nitrogen fixing bacteria protect nitrogenase from CO inhibition using the protective protein CowN. This work demonstrates that a conserved glutamic acid residue near the C-terminus of Gluconacetobacter diazotrophicus CowN is necessary for its function. Mutation of the glutamic acid residue abolishes both CowN's protection against CO inhibition and the ability of CowN to bind to nitrogenase. In contrast, a conserved C-terminal cysteine residue is not important for CO protection by CowN. Overall, this work uncovers structural features in CowN that are required for its function and provides new insights into its nitrogenase binding and CO protection mechanism.


Assuntos
Ácido Glutâmico , Nitrogenase , Nitrogenase/química , Ácido Glutâmico/genética , Monóxido de Carbono/metabolismo
18.
Mol Microbiol ; 119(4): 492-504, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756754

RESUMO

Under nitrogen-limiting conditions, the filamentous cyanobacterium Nostoc PCC7120 differentiates nitrogen-fixing heterocysts at semi-regular intervals along filaments generating a periodic pattern of two distinct cell types. Heterocysts are micro-oxic cells that host the oxygen-sensitive nitrogenase allowing two antagonistic activities to take place simultaneously. Although several factors required to control the differentiation process are known, the molecular mechanisms engaged have only been elucidated for a few of them. The patB (cnfR) gene has been shown to be essential for heterocyst formation and nitrogen fixation in this cyanobacterium, but its function remains to be clarified. Here, we show that PatB acts as a direct transcriptional regulator of genes required for nitrogenase production and activity. The DNA-binding activity of PatB does not depend on micro-oxia as it interacts with its target promoters under aerobic conditions both in vitro and in vivo. The absence of the DNA-binding domain of PatB can be rescued in the heterocyst but not in the vegetative cell. Furthermore, the putative ferredoxin domain of PatB is not essential to its interaction with DNA. The patB gene is widely conserved in cyanobacterial genomes and its function can be pleiotropic since it is not limited to nitrogen fixation control.


Assuntos
Anabaena , Nostoc , Proteínas de Bactérias/metabolismo , Nostoc/genética , Nostoc/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Anabaena/metabolismo
19.
Plant Cell Physiol ; 65(6): 1050-1064, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38305573

RESUMO

In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp. PCC 7120 heterocyst. To examine the nitrogen-fixing ability of NIES-4101, we confirmed that NIES-4101 grew well on a combined nitrogen-free medium and showed high nitrogenase activity, which strongly suggested that the complete nifBHDK genes are restored by a complex recombination process in heterocysts. Next, we resequenced the genome prepared from cells grown under nitrogen-fixing conditions. Two contigs covering the complete nifHDK and nifB genes were found by de novo assembly of the sequencing reads. In addition, the DNA fragments covering the nifBHDK operon were successfully amplified by PCR. We propose that the process of nifBHDK restoration occurs as follows. First, the nifD-nifK genes are restored by four excision events. Then, the complete nifH and nifB genes are restored by two excision events followed by two successive inversion events between the inverted repeat sequences and one excision event, forming the functional nif gene cluster, nifB-fdxN-nifS-nifU-nifH-nifD-nifK. All genes coding recombinases responsible for these nine recombination events are located close to the terminal repeat sequences. The restoration of the nifBHDK genes in NIES-4101 is the most complex genome reorganization reported in heterocystous cyanobacteria.


Assuntos
Proteínas de Bactérias , Cianobactérias , Família Multigênica , Fixação de Nitrogênio , Recombinação Genética , Fixação de Nitrogênio/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Recombinação Genética/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Nitrogenase/metabolismo , Nitrogenase/genética , Genes Bacterianos
20.
Biochem Biophys Res Commun ; 728: 150345, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-38971001

RESUMO

The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.


Assuntos
Azotobacter vinelandii , Escherichia coli , Fixação de Nitrogênio , Nitrogenase , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimologia , Azotobacter vinelandii/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrogenase/metabolismo , Nitrogenase/genética , Fixação de Nitrogênio/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA