RESUMO
Non-covalent complexes of glycolytic enzymes, called metabolons, were postulated in the 1970s, but the concept has been controversial. Here we show that a c-Myc-responsive long noncoding RNA (lncRNA) that we call glycoLINC (gLINC) acts as a backbone for metabolon formation between all four glycolytic payoff phase enzymes (PGK1, PGAM1, ENO1, and PKM2) along with lactate dehydrogenase A (LDHA). The gLINC metabolon enhances glycolytic flux, increases ATP production, and enables cell survival under serine deprivation. Furthermore, gLINC overexpression in cancer cells promotes xenograft growth in mice fed a diet deprived of serine, suggesting that cancer cells employ gLINC during metabolic reprogramming. We propose that gLINC makes a functional contribution to cancer cell adaptation and provide the first example of a lncRNA-facilitated metabolon.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicólise , Proteínas de Membrana/metabolismo , Neoplasias/enzimologia , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/metabolismo , RNA Longo não Codificante/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , Complexos Multienzimáticos , Neoplasias/genética , Neoplasias/patologia , Fosfoglicerato Quinase/genética , Fosfoglicerato Mutase/genética , Fosfopiruvato Hidratase/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Serina/deficiência , Hormônios Tireóideos/genética , Carga Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas de Ligação a Hormônio da TireoideRESUMO
Serine, glycine and other nonessential amino acids are critical for tumour progression, and strategies to limit their availability are emerging as potential therapies for cancer1-3. However, the molecular mechanisms driving this response remain unclear and the effects on lipid metabolism are relatively unexplored. Serine palmitoyltransferase (SPT) catalyses the de novo biosynthesis of sphingolipids but also produces noncanonical 1-deoxysphingolipids when using alanine as a substrate4,5. Deoxysphingolipids accumulate in the context of mutations in SPTLC1 or SPTLC26,7-or in conditions of low serine availability8,9-to drive neuropathy, and deoxysphinganine has previously been investigated as an anti-cancer agent10. Here we exploit amino acid metabolism and the promiscuity of SPT to modulate the endogenous synthesis of toxic deoxysphingolipids and slow tumour progression. Anchorage-independent growth reprogrammes a metabolic network involving serine, alanine and pyruvate that drives the endogenous synthesis and accumulation of deoxysphingolipids. Targeting the mitochondrial pyruvate carrier promotes alanine oxidation to mitigate deoxysphingolipid synthesis and improve spheroid growth, similar to phenotypes observed with the direct inhibition of SPT or ceramide synthesis. Restriction of dietary serine and glycine potently induces the accumulation of deoxysphingolipids while decreasing tumour growth in xenograft models in mice. Pharmacological inhibition of SPT rescues xenograft growth in mice fed diets restricted in serine and glycine, and the reduction of circulating serine by inhibition of phosphoglycerate dehydrogenase (PHGDH) leads to the accumulation of deoxysphingolipids and mitigates tumour growth. The promiscuity of SPT therefore links serine and mitochondrial alanine metabolism to membrane lipid diversity, which further sensitizes tumours to metabolic stress.
Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Serina/deficiência , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Alanina/biossíntese , Alanina/metabolismo , Alanina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Dieta , Feminino , Glicina/biossíntese , Glicina/deficiência , Glicina/metabolismo , Glicina/farmacologia , Células HCT116 , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Serina/sangue , Serina/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Esferoides Celulares/patologia , Esfingolipídeos/biossíntese , Estresse Fisiológico/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease that is highly correlated with obesity. Haptoglobin serum levels have recently been recognized as an important biomarker linking obesity with chronic inflammation. OBJECTIVE: To compare haptoglobin with previously proposed serum biomarkers for the determination of disease severity in HS patients. For this purpose, disease severity of HS patients was determined by a panel of clinical scores as well as several risk factors, such as weight and smoking habits. METHODS: A prospective, diagnostic accuracy study was performed at the International Centre for Hidradenitis suppurativa/Acne inversa Bochum (ICH). The study included a total of 263 patients, including 131 who had a confirmed diagnosis of HS in Hurley I (n = 16), II (n = 56) and III (n = 59) HS, and 132 healthy controls. The main outcome was to identify serological inflammatory markers for HS disease severity [severe (III) vs. moderate/mild (II/I)] as assessed by Hurley classification. RESULTS: The serum levels of acute phase proteins haptoglobin and CRP, as well as the number of neutrophils in peripheral blood, number of monocytes, the systemic immune-inflammation index and the pan-immune-inflammatory value correlated with disease severity according to established clinical scores (mHSS, SAHS, Hurley, DLQI). HS patients had significantly higher haptologlobin levels compared to healthy controls. Logistic regression analysis revealed haptoglobin as the only independent marker predicting severe HS. CONCLUSION: In this prospective study, we discovered that the serum levels of the acute phase protein haptoglobin levels serve as an independent marker of disease severity in HS. While this presents the first study in the context of HS. Thus, the present data not only yield a highly promising serum marker to be further validated.
Assuntos
Hidradenite Supurativa , Serina , Humanos , Biomarcadores , Haptoglobinas , Hidradenite Supurativa/diagnóstico , Inflamação/complicações , Obesidade/complicações , Gravidade do Paciente , Estudos Prospectivos , Índice de Gravidade de Doença , Serina/deficiência , Progressão da DoençaRESUMO
The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.
Assuntos
Glicina/deficiência , Neoplasias Intestinais/dietoterapia , Neoplasias Intestinais/metabolismo , Linfoma/dietoterapia , Linfoma/metabolismo , Serina/deficiência , Animais , Antioxidantes/metabolismo , Biguanidas/farmacologia , Linhagem Celular Tumoral , Dieta , Modelos Animais de Doenças , Feminino , Privação de Alimentos , Glicina/metabolismo , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Linfoma/patologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estado Nutricional , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Serina/biossíntese , Serina/metabolismo , Serina/farmacologia , Taxa de SobrevidaRESUMO
It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.
Assuntos
Adaptação Fisiológica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteólise , Serina/deficiência , Regulação para Baixo , Células HCT116 , Humanos , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
A woman with ichthyosis, contractures, and progressive neuropathy represents the first case of phosphoserine aminotransferase deficiency diagnosed and treated in an adult. She has novel compound heterozygous mutations in the gene PSAT1. Treatment with high dose oral L-serine completely resolved the ichthyosis. Consideration of this diagnosis is important because early treatment with L-serine repletion can halt progression of neurodegeneration and potentially improve neurological disabilities. As exome sequencing becomes more widely implemented in the diagnostic evaluation of progressive neurodegenerative phenotypes, adult neurologists and geneticists will increasingly encounter later onset manifestations of inborn errors of metabolism classically considered in infancy and early childhood.
Assuntos
Anormalidades Congênitas/genética , Ictiose/genética , Serina/biossíntese , Transaminases/genética , Adulto , Pré-Escolar , Anormalidades Congênitas/patologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Humanos , Ictiose/metabolismo , Ictiose/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Microcefalia/genética , Microcefalia/patologia , Transtornos Psicomotores/genética , Transtornos Psicomotores/patologia , Convulsões/genética , Convulsões/patologia , Serina/deficiência , Serina/genética , Esfingolipídeos/deficiência , Esfingolipídeos/genética , Transaminases/deficiência , Sequenciamento do ExomaRESUMO
Fifty-five to two hundred CGG repeats (called a premutation, or PM) in the 5'-UTR of the FMR1 gene are generally unstable, often expanding to a full mutation (>200) in one generation through maternal inheritance, leading to fragile X syndrome, a condition associated with autism and other intellectual disabilities. To uncover the early mechanisms of pathogenesis, we performed metabolomics and proteomics on amniotic fluids from PM carriers, pregnant with male fetuses, who had undergone amniocentesis for fragile X prenatal diagnosis. The prenatal metabolic footprint identified mitochondrial deficits, which were further validated by using internal and external cohorts. Deficits in the anaplerosis of the Krebs cycle were noted at the level of serine biosynthesis, which was confirmed by rescuing the mitochondrial dysfunction in the carriers' umbilical cord fibroblasts using alpha-ketoglutarate precursors. Maternal administration of serine and its precursors has the potential to decrease the risk of developing energy shortages associated with mitochondrial dysfunction and linked comorbidities.
Assuntos
Transtorno Autístico/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Mitocôndrias/genética , Mutação , Serina/deficiência , Regiões 5' não Traduzidas , Adulto , Amniocentese , Líquido Amniótico/química , Transtorno Autístico/diagnóstico , Transtorno Autístico/metabolismo , Transtorno Autístico/patologia , Ciclo do Ácido Cítrico/genética , Feminino , Feto , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Expressão Gênica , Teste de Complementação Genética , Heterozigoto , Humanos , Masculino , Metabolômica/métodos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Gravidez , Cultura Primária de Células , Proteômica/métodos , Serina/biossíntese , Repetições de TrinucleotídeosRESUMO
Inflammation and oxidative stress play key roles in the process of aging and age-related diseases. Since serine availability plays important roles in the support of antioxidant and anti-inflammatory defense system, we explored whether serine deficiency affects inflammatory and oxidative status in D-galactose-induced aging mice. Male mice were randomly assigned into four groups: mice fed a basal diet, mice fed a serine- and glycine-deficient (SGD) diet, mice injected with D-galactose and fed a basal diet, and mice injected with D-galactose and fed an SGD diet. The results showed that D-galactose resulted in oxidative and inflammatory responses, while serine deficiency alone showed no such effects. However, serine deficiency significantly exacerbated oxidative stress and inflammation in D-galactose-treated mice. The composition of fecal microbiota was affected by D-galactose injection, which was characterized by decreased microbiota diversity and downregulated ratio of Firmicutes/Bacteroidetes, as well as decreased proportion of Clostridium XIVa. Furthermore, serine deficiency exacerbated these changes. Additionally, serine deficiency in combination with D-galactose injection significantly decreased fecal butyric acid content and gene expression of short-chain fatty acid transporters (Slc16a3 and Slc16a7) and receptor (Gpr109a) in the brain. Finally, serine deficiency exacerbated the decrease of expression of phosphorylated AMPK and the increase of expression of phosphorylated NFκB p65, which were caused by D-galactose injection. In conclusion, our results suggested that serine deficiency exacerbated inflammation and oxidative stress in D-galactose-induced aging mice. The involved mechanisms might be partially attributed to the changes in the microbiota-gut-brain axis affected by serine deficiency.
Assuntos
Galactose/farmacologia , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Clostridium/fisiologia , Firmicutes/fisiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Glicina/deficiência , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Serina/deficiência , Fator de Transcrição RelA/metabolismoRESUMO
Cancer cells acquire distinct metabolic adaptations to survive stress associated with tumour growth and to satisfy the anabolic demands of proliferation. The tumour suppressor protein p53 (also known as TP53) influences a range of cellular metabolic processes, including glycolysis, oxidative phosphorylation, glutaminolysis and anti-oxidant response. In contrast to its role in promoting apoptosis during DNA-damaging stress, p53 can promote cell survival during metabolic stress, a function that may contribute not only to tumour suppression but also to non-cancer-associated functions of p53. Here we show that human cancer cells rapidly use exogenous serine and that serine deprivation triggered activation of the serine synthesis pathway and rapidly suppressed aerobic glycolysis, resulting in an increased flux to the tricarboxylic acid cycle. Transient p53-p21 (also known as CDKN1A) activation and cell-cycle arrest promoted cell survival by efficiently channelling depleted serine stores to glutathione synthesis, thus preserving cellular anti-oxidant capacity. Cells lacking p53 failed to complete the response to serine depletion, resulting in oxidative stress, reduced viability and severely impaired proliferation. The role of p53 in supporting cancer cell proliferation under serine starvation was translated to an in vivo model, indicating that serine depletion has a potential role in the treatment of p53-deficient tumours.
Assuntos
Metabolismo Energético , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo , Serina/deficiência , Proteína Supressora de Tumor p53/metabolismo , Aerobiose , Animais , Antioxidantes/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Ciclo do Ácido Cítrico , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Feminino , Fase G1 , Glutationa/biossíntese , Glicólise/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Transplante de Neoplasias , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas/genética , Serina/biossíntese , Serina/metabolismo , Serina/farmacologia , Inanição , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
'Rods and rings' (RRs) are conserved, non-membrane-bound intracellular polymeric structures composed, in part, of inosine monophosphate dehydrogenase (IMPDH), a key enzyme leading to GMP and GTP biosynthesis. RR formation is induced by IMPDH inhibitors as well as glutamine deprivation. They also form upon treatment of cells with glutamine synthetase inhibitors. We now report that depriving cells of serine and glycine promotes RR formation, and we have traced these effects to dihydrofolate reductase (DHFR) and serine hydroxymethyltransferase-2 (SHMT2), pivotal enzymes in one-carbon metabolism and nucleotide biosynthesis. RR assembly is likewise induced upon DHFR inhibition by methotrexate or aminopterin as well as siRNA-mediated knockdown of DHFR or SHMT2. Because RR assembly occurs when guanine nucleotide biosynthesis is inhibited, and because RRs rapidly disassemble after the addition of guanine nucleotide precursors, RR formation might be an adaptive homeostatic mechanism, allowing IMPDH to sense changes in the one-carbon folate pathway.
Assuntos
Carbono/metabolismo , IMP Desidrogenase/metabolismo , Redes e Vias Metabólicas , Aminopterina/farmacologia , Meios de Cultura/farmacologia , Técnicas de Silenciamento de Genes , Glicina/farmacologia , Glicina Hidroximetiltransferase/metabolismo , Guanosina/farmacologia , Células HeLa , Humanos , Hipoxantina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metotrexato/farmacologia , RNA Interferente Pequeno/metabolismo , Serina/deficiência , Tetra-Hidrofolato Desidrogenase/metabolismoRESUMO
Patients with primary serine biosynthetic defects manifest with intellectual disability, microcephaly, ichthyosis, seizures and peripheral neuropathy. The underlying pathogenesis of peripheral neuropathy in these patients has not been elucidated, but could be related to a decrease in the availability of certain classical sphingolipids, or to an increase in atypical sphingolipids. Here, we show that patients with primary serine deficiency have a statistically significant elevation in specific atypical sphingolipids, namely deoxydihydroceramides of 18-22 carbons in acyl length. We also show that patients with aberrant plasma serine and alanine levels secondary to mitochondrial disorders also display peripheral neuropathy along with similar elevations of atypical sphingolipids. We hypothesize that the etiology of peripheral neuropathy in patients with primary mitochondrial disorders is related to this elevation of deoxysphingolipids, in turn caused by increased availability of alanine and decreased availability of serine. These findings could have important therapeutic implications for the management of these patients.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Doenças Mitocondriais/fisiopatologia , Serina/deficiência , Esfingolipídeos/metabolismo , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
Neu-Laxova syndrome (NLS) is a rare autosomal-recessive disorder characterized by severe fetal growth restriction, microcephaly, a distinct facial appearance, ichthyosis, skeletal anomalies, and perinatal lethality. The pathogenesis of NLS remains unclear despite extensive clinical and pathological phenotyping of the >70 affected individuals reported to date, emphasizing the need to identify the underlying genetic etiology, which remains unknown. In order to identify the cause of NLS, we conducted a positional-mapping study combining autozygosity mapping and whole-exome sequencing in three consanguineous families affected by NLS. Surprisingly, the NLS-associated locus identified in this study was solved at the gene level to reveal mutations in PHGDH, which is known to be mutated in individuals with microcephaly and developmental delay. PHGDH encodes the first enzyme in the phosphorylated pathway of de novo serine synthesis, and complete deficiency of its mouse ortholog recapitulates many of the key features of NLS. This study shows that NLS represents the extreme end of a known inborn error of serine metabolism and highlights the power of genomic sequencing in revealing the unsuspected allelic nature of apparently distinct clinical entities.
Assuntos
Anormalidades Múltiplas/genética , Encefalopatias/genética , Retardo do Crescimento Fetal/genética , Ictiose/genética , Deformidades Congênitas dos Membros/genética , Microcefalia/genética , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Cromossomos Humanos Par 1/genética , Consanguinidade , Feminino , Loci Gênicos , Homozigoto , Humanos , Lactente , Imageamento por Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem , Fenótipo , Fosfoglicerato Desidrogenase/deficiência , Fosfoglicerato Desidrogenase/metabolismo , Conformação Proteica , Transtornos Psicomotores/genética , Doenças Raras/genética , Convulsões/genética , Serina/deficiência , Ultrassonografia Pré-NatalRESUMO
In recent years the number of disorders known to affect amino acid synthesis has grown rapidly. Nor is it just the number of disorders that has increased: the associated clinical phenotypes have also expanded spectacularly, primarily due to the advances of next generation sequencing diagnostics. In contrast to the "classical" inborn errors of metabolism in catabolic pathways, in which elevated levels of metabolites are easily detected in body fluids, synthesis defects present with low values of metabolites or, confusingly, even completely normal levels of amino acids. This makes the biochemical diagnosis of this relatively new group of metabolic diseases challenging. Defects in the synthesis pathways of serine metabolism, glutamine, proline and, recently, asparagine have all been reported. Although these amino acid synthesis defects are in unrelated metabolic pathways, they do share many clinical features. In children the central nervous system is primarily affected, giving rise to (congenital) microcephaly, early onset seizures and varying degrees of mental disability. The brain abnormalities are accompanied by skin disorders such as cutis laxa in defects of proline synthesis, collodion-like skin and ichthyosis in serine deficiency, and necrolytic erythema in glutamine deficiency. Hypomyelination with accompanying loss of brain volume and gyration defects can be observed on brain MRI in all synthesis disorders. In adults with defects in serine or proline synthesis, spastic paraplegia and several forms of polyneuropathy with or without intellectual disability appear to be the major symptoms in these late-presenting forms of amino acid disorders. This review provides a comprehensive overview of the disorders in amino acid synthesis.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos/deficiência , Sequenciamento de Nucleotídeos em Larga Escala , Anormalidades Múltiplas/genética , Aminoácidos/biossíntese , Animais , Asparagina/deficiência , Encefalopatias/genética , Sistema Nervoso Central/metabolismo , Retardo do Crescimento Fetal/genética , Glutamina/deficiência , Humanos , Ictiose/genética , Deformidades Congênitas dos Membros/genética , Doenças Metabólicas/genética , Camundongos , Microcefalia/genética , Prolina/deficiência , Serina/deficiênciaRESUMO
L-serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize L-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external L-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking D-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of L-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in L-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external L-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with L-serine but was potentiated by increasing the ratio of L-alanine to L-serine in the medium. Unlike with L-serine, depriving cells of external L-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, L-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of L-alanine to L-serine in cells and tissues lacking Phgdh, and de novo synthesis of L-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.
Assuntos
Gotículas Lipídicas/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Alanina/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Feminino , Técnicas de Inativação de Genes , Lipídeos , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/deficiência , Esfingosina/metabolismoRESUMO
Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.
Assuntos
Regulação Neoplásica da Expressão Gênica , Melanócitos/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/deficiência , Proteína Supressora de Tumor p53/genética , Fator 4 Ativador da Transcrição/antagonistas & inibidores , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imidazóis/farmacologia , Melanócitos/efeitos dos fármacos , Melanócitos/patologia , Dados de Sequência Molecular , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/metabolismo , Piperazinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Serina/biossíntese , Transdução de Sinais , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismoRESUMO
l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy.
Assuntos
Anormalidades Múltiplas/metabolismo , Sistema ASC de Transporte de Aminoácidos/metabolismo , Encefalopatias/metabolismo , Retardo do Crescimento Fetal/metabolismo , Ictiose/metabolismo , Deformidades Congênitas dos Membros/metabolismo , Microcefalia/metabolismo , Serina/biossíntese , Criança , Humanos , Neurônios/enzimologia , Neurônios/metabolismo , Transporte Proteico , Serina/deficiênciaRESUMO
We have used mutant mice to probe the roles of the endogenous co-agonists of the NMDA receptor (NMDAR), D-serine and glycine, in fear learning and memory. Serine racemase knockout (SR-/-) mice have less than 15% of wild type forebrain levels of D-serine, whereas glycine transporter 1 heterozygous knockout (GlyT1+/-) mice have elevated synaptic glycine. While cued fear was normal in both delay and trace conditioned mice of both mutant genotypes, contextual fear was affected in trace conditioned subjects: SR-/- mice showed decreased contextual freezing, whereas GlyT1+/- mice showed elevated contextual freezing. These results indicate that endogenous co-agonists of the NMDAR modulate the conditioning of contextual fear responses, particularly in trace conditioning. They further suggest that endogenous glycine can compensate for the D-serine deficiency in cued and contextual fear following delay conditioning.
Assuntos
Condicionamento Clássico/fisiologia , Medo/fisiologia , Glicina/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Serina/fisiologia , Animais , Sinais (Psicologia) , Glicina/deficiência , Proteínas da Membrana Plasmática de Transporte de Glicina/deficiência , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Serina/deficiênciaRESUMO
Murine resting (G(0)) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G(0) T cells expressed the PHGDH mRNA in G(1) with a maximum level in S phase. G(0) T cells activated with either immobilized anti-CD3 plus CsA or PBu(2), which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added. Blocking of IL-2R signaling by adding anti-IL-2 and anti-IL-2Rα resulted in no expression of the PHGDH mRNA during immobilized anti-CD3 activation of G(0) T cells. Deprivation of l-serine from culture medium or addition of antisense PHGDH oligonucleotide significantly reduced [(3)H]TdR incorporation of activated T cells. These results indicate that the PHGDH gene expression, dictated by IL-2R signaling, is a crucial event for DNA synthesis during S phase of activated T cells.
Assuntos
Fosfoglicerato Desidrogenase/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular , Linfócitos T/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Complexo CD3/imunologia , Proliferação de Células , Células Cultivadas , Células Imobilizadas/enzimologia , Células Imobilizadas/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfoglicerato Desidrogenase/genética , Receptores de Interleucina-2/imunologia , Receptores de Interleucina-2/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Serina/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologiaRESUMO
Serine deficiency disorders are caused by a defect in one of the three synthesising enzymes of the L-serine biosynthesis pathway. Serine deficiency disorders give rise to a neurological phenotype with psychomotor retardation, microcephaly and seizures in newborns and children or progressive polyneuropathy in adult patients. There are three defects that cause serine deficiency of which 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency, the defect affecting the first step in the pathway, has been reported most frequently. The other two disorders in L-serine biosynthesis phosphoserine aminotransferase (PSAT) deficiency and phosphoserine phosphatase (PSP) deficiency have been reported only in a limited number of patients. The biochemical hallmarks of all three disorders are low concentrations of serine in cerebrospinal fluid and plasma. Prompt recognition of affected patients is important, since serine deficiency disorders are treatable causes of neurometabolic disorders. The use of age-related reference values for serine in CSF and plasma can be of great help in establishing a correct diagnosis of serine deficiency, in particular in newborns and young children.