Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30078709

RESUMO

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Assuntos
Orelha Interna/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Células Receptoras Sensoriais/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Calbindina 2/genética , Cóclea/fisiologia , Surdez/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Gânglio Espiral da Cóclea/fisiologia , Transmissão Sináptica , Transgenes
2.
Cell Mol Biol Lett ; 29(1): 44, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553684

RESUMO

Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Mitocondriais , Células Precursoras de Oligodendrócitos , Transtornos Psicomotores , Camundongos , Animais , Regulação para Baixo/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ácido Aspártico/metabolismo , Isoformas de Proteínas/metabolismo , Ácidos Graxos
3.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34462350

RESUMO

Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.


Assuntos
Hemorragia Cerebral Intraventricular/metabolismo , Proteínas da Mielina/biossíntese , PPAR gama/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Animais Recém-Nascidos , Antiporters/deficiência , Antiporters/metabolismo , Hemorragia Cerebral Intraventricular/patologia , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Recém-Nascido Prematuro , Microglia/metabolismo , Doenças Mitocondriais/metabolismo , Oligodendroglia/patologia , PPAR gama/agonistas , Transtornos Psicomotores/metabolismo , Coelhos , Rosiglitazona/farmacologia , Análise de Sequência de RNA/métodos
4.
PLoS Genet ; 16(8): e1008745, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845888

RESUMO

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolipídeos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Homeostase , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese
5.
J Neurosci ; 41(12): 2581-2600, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33547164

RESUMO

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Química Encefálica/fisiologia , Núcleos da Rafe/metabolismo , Rombencéfalo/metabolismo , Serotonina/metabolismo , Fatores de Transcrição/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/análise , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Núcleos da Rafe/química , Rombencéfalo/química , Serotonina/análise , Fatores de Transcrição/análise
6.
J Neurosci ; 41(13): 2930-2943, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33574178

RESUMO

Cochlear outer hair cells (OHCs) are known to uniquely participate in auditory processing through their electromotility, and like inner hair cells, are also capable of releasing vesicular glutamate onto spiral ganglion (SG) neurons: in this case, onto the sparse Type II SG neurons. However, unlike glutamate signaling at the inner hair cell-Type I SG neuron synapse, which is robust across a wide spectrum of sound intensities, glutamate signaling at the OHC-Type II SG neuron synapse is weaker and has been hypothesized to occur only at intense, possibly damaging sound levels. Here, we tested the ability of the OHC-Type II SG pathway to signal to the brain in response to moderate, nondamaging sound (80 dB SPL) as well as to intense sound (115 dB SPL). First, we determined the VGluTs associated with OHC signaling and then confirmed the loss of glutamatergic synaptic transmission from OHCs to Type II SG neurons in KO mice using dendritic patch-clamp recordings. Next, we generated genetic mouse lines in which vesicular glutamate release occurs selectively from OHCs, and then assessed c-Fos expression in the cochlear nucleus in response to sound. From these analyses, we show, for the first time, that glutamatergic signaling at the OHC-Type II SG neuron synapse is capable of activating cochlear nucleus neurons, even at moderate sound levels.SIGNIFICANCE STATEMENT Evidence suggests that cochlear outer hair cells (OHCs) release glutamate onto Type II spiral ganglion neurons only when exposed to loud sound, and that Type II neurons are activated by tissue damage. Knowing whether moderate level sound, without tissue damage, activates this pathway has functional implications for this fundamental auditory pathway. We first determined that OHCs rely largely on VGluT3 for synaptic glutamate release. We then used a genetically modified mouse line in which OHCs, but not inner hair cells, release vesicular glutamate to demonstrate that moderate sound exposure activates cochlear nucleus neurons via the OHC-Type II spiral ganglion pathway. Together, these data indicate that glutamate signaling at the OHC-Type II afferent synapse participates in auditory function at moderate sound levels.


Assuntos
Estimulação Acústica/métodos , Núcleo Coclear/metabolismo , Ácido Glutâmico/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Neurônios/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Vias Aferentes/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Vias Auditivas/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
J Neurosci ; 41(1): 103-117, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33208470

RESUMO

Amacrine cells of the retina are conspicuously variable in their morphologies, their population demographics, and their ensuing functions. Vesicular glutamate transporter 3 (VGluT3) amacrine cells are a recently characterized type of amacrine cell exhibiting local dendritic autonomy. The present analysis has examined three features of this VGluT3 population, including their density, local distribution, and dendritic spread, to discern the extent to which these are interrelated, using male and female mice. We first demonstrate that Bax-mediated cell death transforms the mosaic of VGluT3 cells from a random distribution into a regular mosaic. We subsequently examine the relationship between cell density and mosaic regularity across recombinant inbred strains of mice, finding that, although both traits vary across the strains, they exhibit minimal covariation. Other genetic determinants must therefore contribute independently to final cell number and to mosaic order. Using a conditional KO approach, we further demonstrate that Bax acts via the bipolar cell population, rather than cell-intrinsically, to control VGluT3 cell number. Finally, we consider the relationship between the dendritic arbors of single VGluT3 cells and the distribution of their homotypic neighbors. Dendritic field area was found to be independent of Voronoi domain area, while dendritic coverage of single cells was not conserved, simply increasing with the size of the dendritic field. Bax-KO retinas exhibited a threefold increase in dendritic coverage. Each cell, however, contributed less dendrites at each depth within the plexus, intermingling their processes with those of neighboring cells to approximate a constant volumetric density, yielding a uniformity in process coverage across the population.SIGNIFICANCE STATEMENT Different types of retinal neuron spread their processes across the surface of the retina to achieve a degree of dendritic coverage that is characteristic of each type. Many of these types achieve a constant coverage by varying their dendritic field area inversely with the local density of like-type neighbors. Here we report a population of retinal amacrine cells that do not develop dendritic arbors in relation to the spatial positioning of such homotypic neighbors; rather, this cell type modulates the extent of its dendritic branching when faced with a variable number of overlapping dendritic fields to approximate a uniformity in dendritic density across the retina.


Assuntos
Células Amácrinas/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Dendritos/fisiologia , Retina/citologia , Retina/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Apoptose/fisiologia , Contagem de Células , Morte Celular , Mapeamento Cromossômico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Aferentes/fisiologia , Locos de Características Quantitativas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/fisiologia
8.
Cardiovasc Drugs Ther ; 36(3): 437-447, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34259984

RESUMO

PURPOSE: Systemic hypertension may induce adverse hypertrophy of the left cardiac ventricle. Pathological cardiac hypertrophy is a common cause of heart failure. We investigated the significance of ferroptosis repressor xCT in hypertrophic cardiomyopathy. METHODS: xCT expression in angiotensin II (Ang II)-treated mouse hearts and rat cardiomyocytes was determined using qRT-PCR and Western blotting. Cardiac hypertrophy was induced by Ang II infusion in xCT knockout mice and their wildtype counterparts. Blood pressure, cardiac pump function, and pathological changes of cardiac remodeling were analyzed in these mice. Cell death, oxidative stress, and xCT-mediated ferroptosis were examined in Ang II-treated rat cardiomyocytes. RESULTS: After Ang II infusion, xCT was downregulated at day 1 but upregulated at day 14 at both mRNA and protein levels. It was also decreased in Ang II-treated cardiomyocytes, but not in cardiofibroblasts. Inhibition of xCT exacerbated cardiomyocyte hypertrophy and boosted the levels of ferroptosis biomarkers Ptgs2, malondialdehyde, and reactive oxygen species induced by Ang II, while overexpression of xCT opposed these detrimental effects. Furthermore, knockout of xCT aggravated Ang II-mediated mouse cardiac fibrosis, hypertrophy, and dysfunction. Ferrostatin-1, a ferroptosis inhibitor, alleviated the exacerbation of cardiomyocyte hypertrophy caused by inhibiting xCT in cultured rat cells or ablating xCT in mice. CONCLUSION: xCT acts as a suppressor in Ang II-mediated cardiac hypertrophy by blocking ferroptosis. Positive modulation of xCT may therefore represent a novel therapeutic approach against cardiac hypertrophic diseases.


Assuntos
Ferroptose , Sistema y+ de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos , Ratos
9.
Addict Biol ; 27(4): e13178, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754102

RESUMO

Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.


Assuntos
Alcoolismo , Ceftriaxona , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Ceftriaxona/metabolismo , Ceftriaxona/farmacologia , Etanol/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Núcleo Accumbens , Ratos , Recidiva
10.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008954

RESUMO

AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.


Assuntos
Agrecanas/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Predisposição Genética para Doença , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/etiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Transtornos Psicomotores/etiologia , Transtornos Psicomotores/metabolismo , Agrecanas/deficiência , Agrecanas/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Antiporters/metabolismo , Biomarcadores , Encéfalo/metabolismo , Terapia Combinada , Gerenciamento Clínico , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Metabolismo Energético , Estudos de Associação Genética , Ácido Glutâmico/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/terapia , Humanos , Malatos/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Bainha de Mielina/metabolismo , Oxirredução , Fenótipo , Transtornos Psicomotores/diagnóstico , Transtornos Psicomotores/terapia
11.
J Neurosci ; 40(40): 7688-7701, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32895292

RESUMO

Innocuous mechanical stimuli, such as rubbing or stroking the skin, relieve itch through the activation of low-threshold mechanoreceptors. However, the mechanisms behind this inhibition remain unknown. We presently investigated whether stroking the skin reduces the responses of superficial dorsal horn neurons to pruritogens in male C57BL/6J mice. Single-unit recordings revealed that neuronal responses to chloroquine were enhanced during skin stroking, and this was followed by suppression of firing below baseline levels after the termination of stroking. Most of these neurons additionally responded to capsaicin. Stroking did not suppress neuronal responses to capsaicin, indicating state-dependent inhibition. Vesicular glutamate transporter 3 (VGLUT3)-lineage sensory nerves compose a subset of low-threshold mechanoreceptors. Stroking-related inhibition of neuronal responses to chloroquine was diminished by optogenetic inhibition of VGLUT3-lineage sensory nerves in male and female Vglut3-cre/NpHR-EYFP mice. Conversely, in male and female Vglut3-cre/ChR2-EYFP mice, optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited firing responses of spinal neurons to pruritogens after the termination of stimulation. This inhibition was nearly abolished by spinal delivery of the κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride, but not the neuropeptide Y receptor Y1 antagonist BMS193885. Optogenetic stimulation of VGLUT3-lineage sensory nerves inhibited pruritogen-evoked scratching without affecting mechanical and thermal pain behaviors. Therefore, VGLUT3-lineage sensory nerves appear to mediate inhibition of itch by tactile stimuli.SIGNIFICANCE STATEMENT Rubbing or stroking the skin is known to relieve itch. We investigated the mechanisms behind touch-evoked inhibition of itch in mice. Stroking the skin reduced the activity of itch-responsive spinal neurons. Optogenetic inhibition of VGLUT3-lineage sensory nerves diminished stroking-evoked inhibition, and optogenetic stimulation of VGLUT3-lineage nerves inhibited pruritogen-evoked firing. Together, our results provide a mechanistic understanding of touch-evoked inhibition of itch.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Mecanorreceptores/metabolismo , Prurido/metabolismo , Limiar Sensorial , Tato , Potenciais de Ação , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Capsaicina/farmacologia , Di-Hidropiridinas/farmacologia , Feminino , Masculino , Mecanorreceptores/efeitos dos fármacos , Mecanorreceptores/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Inibição Neural , Compostos de Fenilureia/farmacologia , Fármacos do Sistema Sensorial/farmacologia
12.
Development ; 145(20)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30275281

RESUMO

In vivo genetic mutation has become a powerful tool for dissecting gene function; however, multi-gene interaction and the compensatory mechanisms involved can make findings from single mutations, at best difficult to interpret, and, at worst, misleading. Hence, it is necessary to establish an efficient way to disrupt multiple genes simultaneously. CRISPR/Cas9-mediated base editing disrupts gene function by converting a protein-coding sequence into a stop codon; this is referred to as CRISPR-stop. Its application in generating zygotic mutations has not been well explored yet. Here, we first performed a proof-of-principle test by disrupting Atoh1, a gene crucial for auditory hair cell generation. Next, we individually mutated vGlut3 (Slc17a8), otoferlin (Otof) and prestin (Slc26a5), three genes needed for normal hearing function. Finally, we successfully disrupted vGlut3, Otof and prestin simultaneously. Our results show that CRISPR-stop can efficiently generate single or triple homozygous F0 mouse mutants, bypassing laborious mouse breeding. We believe that CRISPR-stop is a powerful method that will pave the way for high-throughput screening of mouse developmental and functional genes, matching the efficiency of methods available for model organisms such as Drosophila.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Zigoto/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Sequência de Bases , Cóclea/metabolismo , Surdez/genética , Surdez/fisiopatologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Motores Moleculares/metabolismo , Mutação/genética
13.
Am J Med Genet A ; 185(10): 3068-3073, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34037307

RESUMO

PYCR2 pathogenic variants lead to an autosomal recessive hypomyelinating leukodystrophy 10 (HLD10), characterized by global developmental delay, microcephaly, facial dysmorphism, movement disorder, and hypomyelination. This study identified the first two unrelated Thai patients with HLD10. Patient 1 harbored the novel compound heterozygous variants, c.257T>G (p.Val86Gly) and c.400G>A (p.Val134Met), whereas patient 2 possessed the homozygous variant, c.400G>A (p.Val134Met), in PYCR2. Haplotype analysis revealed that the two families' members shared a 2.3 Mb region covering the c.400G>A variant, indicating a common ancestry. The variant was estimated to age 1450 years ago. Since the c.400G>A was detected in three out of four mutant alleles and with a common ancestry, this variant might be common in Thai patients. We also reviewed the phenotype and genotype of all 35 previously reported PYCR2 patients and found that majorities of cases were homozygous with a consanguineous family history, except patient 1 and another reported case who were compound heterozygous. All patients had microcephaly and developmental delay. Hypotonia and peripheral spasticity were common. Hypomyelination or delayed myelination was a typical radiographic feature. Here, we report the first two Thai patients with HLD10 with the novel PYCR2 variants expanding the genotypic spectrum and suggest that the c.400G>A might be a common mutation in Thai patients.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Deficiências do Desenvolvimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos dos Movimentos/genética , Transtornos Psicomotores/genética , Pirrolina Carboxilato Redutases/genética , Adolescente , Alelos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Feminino , Genótipo , Haplótipos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/complicações , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Masculino , Microcefalia/complicações , Microcefalia/patologia , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/patologia , Mutação , Linhagem , Fenótipo , Transtornos Psicomotores/complicações , Transtornos Psicomotores/patologia , Adulto Jovem
14.
PLoS Biol ; 16(8): e2005651, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080851

RESUMO

Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cílios/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Antiporters/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Drosophila melanogaster/metabolismo , Heterozigoto , Humanos , Canais Iônicos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Peixe-Zebra
15.
Nature ; 518(7537): 68-73, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25652997

RESUMO

Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/química , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Transporte Biológico , Cristalografia por Raios X , Detergentes , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Movimento , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteolipídeos/metabolismo , Sódio/metabolismo , Solventes , Termodinâmica
16.
Alcohol Alcohol ; 56(2): 210-219, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33063090

RESUMO

AIM: Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that ß-lactam antibiotics restored their expression. METHODS: In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a ß-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS: Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION: Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga , Etanol/administração & dosagem , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animais , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Masculino , Ratos , beta-Lactamas/farmacologia
17.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926748

RESUMO

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Ácido Glutâmico/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Sinapses/fisiologia , Envelhecimento/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Limiar Auditivo/fisiologia , Cálcio/metabolismo , Potenciais Evocados Auditivos , Exocitose , Feminino , Dosagem de Genes , Genes Reporter , Células Ciliadas Auditivas Externas/fisiologia , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Receptores de AMPA/fisiologia , Recuperação de Função Fisiológica , Gânglio Espiral da Cóclea/citologia , Sinapses/ultraestrutura
18.
J Neurosci ; 39(36): 7086-7101, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31300524

RESUMO

Small-diameter vesicular glutamate transporter 3-lineage (Vglut3lineage) dorsal root ganglion (DRG) neurons play an important role in mechanosensation and thermal hypersensitivity; however, little is known about their intrinsic electrical properties. We therefore set out to investigate mechanisms of excitability within this population. Calcium microfluorimetry analysis of male and female mouse DRG neurons demonstrated that the cooling compound menthol selectively activates a subset of Vglut3lineage neurons. Whole-cell recordings showed that small-diameter Vglut3lineage DRG neurons fire menthol-evoked action potentials and exhibited robust, transient receptor potential melastatin 8 (TRPM8)-dependent discharges at room temperature. This heightened excitability was confirmed by current-clamp and action potential phase-plot analyses, which showed menthol-sensitive Vglut3lineage neurons to have more depolarized membrane potentials, lower firing thresholds, and higher evoked firing frequencies compared with menthol-insensitive Vglut3lineage neurons. A biophysical analysis revealed voltage-gated sodium channel (NaV) currents in menthol-sensitive Vglut3lineage neurons were resistant to entry into slow inactivation compared with menthol-insensitive neurons. Multiplex in situ hybridization showed similar distributions of tetrodotoxin (TTX)-sensitive NaV transcripts between TRPM8-positive and -negative Vglut3lineage neurons; however, NaV1.8 transcripts, which encode TTX-resistant channels, were more prevalent in TRPM8-negative neurons. Conversely, pharmacological analyses identified distinct functional contributions of NaV subunits, with NaV1.1 driving firing in menthol-sensitive neurons, whereas other small-diameter Vglut3lineage neurons rely primarily on TTX-resistant NaV channels. Additionally, when NaV1.1 channels were blocked, the remaining NaV current readily entered into slow inactivation in menthol-sensitive Vglut3lineage neurons. Thus, these data demonstrate that TTX-sensitive NaVs drive action potential firing in menthol-sensitive sensory neurons and contribute to their heightened excitability.SIGNIFICANCE STATEMENT Somatosensory neurons encode various sensory modalities including thermoreception, mechanoreception, nociception, and itch. This report identifies a previously unknown requirement for tetrodotoxin-sensitive sodium channels in action potential firing in a discrete subpopulation of small-diameter sensory neurons that are activated by the cooling agent menthol. Together, our results provide a mechanistic understanding of factors that control intrinsic excitability in functionally distinct subsets of peripheral neurons. Furthermore, as menthol has been used for centuries as an analgesic and anti-pruritic, these findings support the viability of NaV1.1 as a therapeutic target for sensory disorders.


Assuntos
Potenciais de Ação , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neurônios Aferentes/fisiologia , Animais , Células Cultivadas , Feminino , Gânglios Espinais/citologia , Células HEK293 , Humanos , Masculino , Mentol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Cátion TRPM/metabolismo , Tetrodotoxina/farmacologia
19.
Am J Hum Genet ; 100(6): 969-977, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575651

RESUMO

Progressive limb spasticity and cerebellar ataxia are frequently found together in clinical practice and form a heterogeneous group of degenerative disorders that are classified either as pure spastic ataxia or as complex spastic ataxia with additional neurological signs. Inheritance is either autosomal dominant or autosomal recessive. Hypomyelinating features on MRI are sometimes seen with spastic ataxia, but this is usually mild in adults and severe and life limiting in children. We report seven individuals with an early-onset spastic-ataxia phenotype. The individuals come from three families of different ethnic backgrounds. Affected members of two families had childhood onset disease with very slow progression. They are still alive in their 30s and 40s and show predominant ataxia and cerebellar atrophy features on imaging. Affected members of the third family had a similar but earlier-onset presentation associated with brain hypomyelination. Using a combination of homozygozity mapping and exome sequencing, we mapped this phenotype to deleterious nonsense or homeobox domain missense mutations in NKX6-2. NKX6-2 encodes a transcriptional repressor with early high general and late focused CNS expression. Deficiency of its mouse ortholog results in widespread hypomyelination in the brain and optic nerve, as well as in poor motor coordination in a pattern consistent with the observed human phenotype. In-silico analysis of human brain expression and network data provides evidence that NKX6-2 is involved in oligodendrocyte maturation and might act within the same pathways of genes already associated with central hypomyelination. Our results support a non-redundant developmental role of NKX6-2 in humans and imply that NKX6-2 mutations should be considered in the differential diagnosis of spastic ataxia and hypomyelination.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/complicações , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Espasticidade Muscular/complicações , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/complicações , Atrofia Óptica/genética , Transtornos Psicomotores/complicações , Transtornos Psicomotores/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Adulto , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Encéfalo/embriologia , Encéfalo/metabolismo , Criança , Feminino , Redes Reguladoras de Genes , Proteínas de Homeodomínio/química , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem
20.
Toxicol Appl Pharmacol ; 407: 115241, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937103

RESUMO

Neurological diseases were often characterized by progressive neuronal death, and emerging evidences suggested that ferroptosis may be an active driver of multiple neurodegenerative diseases. However, the mechanisms underlying ferroptosis in neuron cells are unclear. Here, we demonstrated that ferroptotic stimuli caused injury in neuron-like PC12 cells by modulating the expression of proteins involved in iron metabolism and lipid peroxidation at multiple levels, such as altering iron import/export, activating ferritinophagy, and decreasing glutathione (GSH) level. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple genes involved in ferroptosis, however, its exact role remain elusive. Our mechanistic inquiry revealed that Nrf2 expression enhanced iron storage capacity by increasing ferritin heavy chain 1 (FTH1) expression in PC12 cells. Moreover, Nrf2 alleviated the decrease in GSH level by promoting the expression of genes related to GSH synthesis, including solute carrier family 7 member 11 (SLC7A11) and cysteine ligase (GCL). The contribution of Nrf2 on ferroptosis resistance was further verified by increasing cell tolerance to oxidative stress. Furthermore, Nfe2l2 (Nrf2) knockdown sensitized cells to ferroptotic cell death. Taken together, our findings suggested that iron accumulation caused by altering iron metabolism and the decrease of GSH content are key factors in determining ferroptosis in PC12 cells, and Nrf2 inhibits ferroptosis by combating iron-induced oxidative stress. Our present study provided new clues for the intervention and prevention against ferroptosis-associated neurological diseases.


Assuntos
Ferroptose/efeitos dos fármacos , Glutationa/biossíntese , Sobrecarga de Ferro/tratamento farmacológico , Fator 2 Relacionado a NF-E2/biossíntese , Neurônios/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos Acídicos/biossíntese , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Técnicas de Silenciamento de Genes , Glutationa/deficiência , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Células PC12 , RNA Interferente Pequeno , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA