Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 149(3): 693-707, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541438

RESUMO

Small RNA-mediated gene regulation during development causes long-lasting changes in cellular phenotypes. To determine whether small RNAs of the adult brain can regulate memory storage, a process that requires stable and long-lasting changes in the functional state of neurons, we generated small RNA libraries from the Aplysia CNS. In these libraries, we discovered an unexpectedly abundant expression of a 28 nucleotide sized class of piRNAs in brain, which had been thought to be germline specific. These piRNAs have unique biogenesis patterns, predominant nuclear localization, and robust sensitivity to serotonin, a modulatory transmitter that is important for memory. We find that the Piwi/piRNA complex facilitates serotonin-dependent methylation of a conserved CpG island in the promoter of CREB2, the major inhibitory constraint of memory in Aplysia, leading to enhanced long-term synaptic facilitation. These findings provide a small RNA-mediated gene regulatory mechanism for establishing stable long-term changes in neurons for the persistence of memory.


Assuntos
Epigenômica , Memória , Plasticidade Neuronal , Neurônios/fisiologia , RNA Interferente Pequeno/metabolismo , Animais , Aplysia/metabolismo , Sequência de Bases , Regulação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo
2.
Learn Mem ; 25(12): 620-628, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30442770

RESUMO

Long-term but not short-term memory and synaptic plasticity in many brain areas require neurotrophin signaling, transcription, and epigenetic mechanisms including DNA methylation. However, it has been difficult to relate these cellular mechanisms directly to behavior because of the immense complexity of the mammalian brain. To address that problem, we and others have examined numerically simpler systems such as the hermaphroditic marine mollusk Aplysia californica. As a further simplification, we have used a semi-intact preparation of the Aplysia siphon withdrawal reflex in which it is possible to relate cellular plasticity directly to behavioral learning. We find that inhibitors of neurotrophin signaling, transcription, and DNA methylation block sensitization and classical conditioning beginning ∼1 h after the start of training, which is in the time range of an intermediate-term stage of plasticity that combines elements of short- and long-term plasticity and may form a bridge between them. Injection of decitabine (an inhibitor of DNA methylation that may have other actions in these experiments) into an LE sensory neuron blocks the neural correlates of conditioning in the same time range. In addition, we found that both DNA and RNA methylation in the abdominal ganglion are correlated with learning in the same preparations. These results begin to suggest the functions and integration of these different molecular mechanisms during behavioral learning.


Assuntos
Condicionamento Clássico/fisiologia , Metilação de DNA , Memória/fisiologia , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal/fisiologia , Transcrição Gênica , Animais , Aplysia , Condicionamento Clássico/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Inibidores Enzimáticos/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/metabolismo , Memória/efeitos dos fármacos , Microeletrodos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , RNA/metabolismo , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 112(52): 16030-5, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668355

RESUMO

Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 µM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.


Assuntos
Condicionamento Clássico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Motores/fisiologia , Sequência de Aminoácidos , Animais , Condicionamento Clássico/efeitos dos fármacos , AMP Cíclico/farmacologia , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Transporte de Íons/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Potássio/metabolismo , Pirimidinas/farmacologia , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus laevis
4.
Proc Natl Acad Sci U S A ; 110(18): 7464-9, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23589870

RESUMO

Here we describe a strategy designed to identify RNAs that are actively transported to synapses during learning. Our approach is based on the characterization of RNA transport complexes carried by molecular motor kinesin. Using this strategy in Aplysia, we have identified 5,657 unique sequences consisting of both coding and noncoding RNAs from the CNS. Several of these RNAs have key roles in the maintenance of synaptic function and growth. One of these RNAs, myosin heavy chain, is critical in presynaptic sensory neurons for the establishment of long-term facilitation, but not for its persistence.


Assuntos
Aplysia/genética , Perfilação da Expressão Gênica/métodos , Sinapses/genética , Transcriptoma/genética , Animais , Sistema Nervoso Central/metabolismo , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização In Situ , Cinesinas/metabolismo , Potenciação de Longa Duração/genética , Cadeias Pesadas de Miosina/metabolismo , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transporte Proteico/genética , RNA/genética , RNA/metabolismo , Transporte de RNA/genética , Análise de Sequência de RNA
6.
J Neurosci ; 30(16): 5781-91, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20410130

RESUMO

Synaptic plasticity and learning involve different mechanisms depending on the following: (1) the stage of plasticity and (2) the history of plasticity, or metaplasticity. However, little is known about how these two factors are related. We have addressed that question by examining mechanisms of synaptic plasticity during short-term and intermediate-term behavioral sensitization and dishabituation in a semi-intact preparation of the Aplysia siphon-withdrawal reflex. Dishabituation differs from sensitization in that it is preceded by habituation, and is thus a paradigm for metaplasticity. We find that whereas facilitation during short-term sensitization by one tail shock involves presynaptic covalent modifications by protein kinase A (PKA) and CamKII, facilitation during intermediate-term sensitization by four shocks involves both presynaptic (PKA, CaMKII) and postsynaptic (Ca(2+), CaMKII) covalent modifications, as well as both presynaptic and postsynaptic protein synthesis. The facilitation also involves presynaptic spike broadening 2.5 min after either one or four shocks, but not at later times. Dishabituation by four shocks differs from sensitization in several ways. First, it does not involve PKA or CaMKII, but rather involves presynaptic PKC. In addition, unlike sensitization with the same shock, dishabituation by four shocks does not involve protein synthesis or presynaptic spike broadening, and it also does not involve postsynaptic Ca(2+). These results demonstrate that not only the mechanisms but also the site of plasticity depend on both the stage of plasticity and metaplasticity during memory formation.


Assuntos
Aplysia/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Técnicas In Vitro , Transmissão Sináptica/fisiologia , Fatores de Tempo
7.
Neuron ; 37(1): 135-47, 2003 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-12526779

RESUMO

Using a simplified preparation of the Aplysia siphon-withdrawal reflex, we previously found that associative plasticity at synapses between sensory neurons and motor neurons contributes importantly to classical conditioning of the reflex. We have now tested the roles in that plasticity of two associative cellular mechanisms: activity-dependent enhancement of presynaptic facilitation and postsynaptically induced long-term potentiation. By perturbing molecular signaling pathways in individual neurons, we have provided the most direct evidence to date that each of these mechanisms contributes to behavioral learning. In addition, our results suggest that the two mechanisms are not independent but rather interact through retrograde signaling.


Assuntos
Sistema Nervoso Central/fisiologia , Condicionamento Psicológico/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Quelantes/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
8.
J Neurosci ; 27(41): 10993-1002, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17928440

RESUMO

Nitric oxide (NO) is thought to be involved in several forms of learning in vivo and synaptic plasticity in vitro, but very little is known about the role of NO during physiological forms of plasticity that occur during learning. We addressed that question in a simplified preparation of the Aplysia siphon-withdrawal reflex. We first used in situ hybridization to show that the identified L29 facilitator neurons express NO synthase. Furthermore, exogenous NO produced facilitation of sensory-motor neuron EPSPs, and an inhibitor of NO synthase or an NO scavenger blocked behavioral conditioning. Application of the scavenger to the ganglion or injection into a sensory neuron blocked facilitation of the EPSP and changes in the sensory-neuron membrane properties during conditioning. Injection of the scavenger into the motor neuron reduced facilitation without affecting sensory neuron membrane properties, and injection of an inhibitor of NO synthase had no effect. Postsynaptic injection of an inhibitor of exocytosis had effects similar to injection of the scavenger. However, changes in the shape of the EPSP during conditioning were not consistent with postsynaptic AMPA-like receptor insertion but were mimicked by presynaptic spike broadening. These results suggest that NO makes an important contribution during conditioning and acts directly in both the sensory and motor neurons to affect different processes of facilitation at the synapses between them. In addition, they suggest that NO does not come from either the sensory or motor neurons but rather comes from another source, perhaps the L29 interneurons.


Assuntos
Aplysia/fisiologia , Condicionamento Clássico/fisiologia , Óxido Nítrico/fisiologia , Reflexo/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal/fisiologia
9.
Mol Brain ; 9(1): 91, 2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770822

RESUMO

Two pharmacologically distinct types of local protein synthesis are required for synapse- specific long-term synaptic facilitation (LTF) in Aplysia: one for initiation and the other for maintenance. ApCPEB, a rapamycin sensitive prion-like molecule regulates a form of local protein synthesis that is specifically required for the maintenance of the LTF. However, the molecular component of the local protein synthesis that is required for the initiation of LTF and that is sensitive to emetine is not known. Here, we identify a homolog of ApCPEB responsible for the initiation of LTF. ApCPEB4 which we have named after its mammalian CPEB4-like homolog lacks a prion-like domain, is responsive to 5-hydroxytryptamine, and is translated (but not transcribed) in an emetine-sensitive, rapamycin-insensitive, and PKA-dependent manner. The ApCPEB4 binds to different target RNAs than does ApCPEB. Knock-down of ApCPEB4 blocked the induction of LTF, whereas overexpression of ApCPEB4 reduces the threshold of the formation of LTF. Thus, our findings suggest that the two different forms of CPEBs play distinct roles in LTF; ApCPEB is required for maintenance of LTF, whereas the ApCPEB4, which lacks a prion-like domain, is required for the initiation of LTF.


Assuntos
Aplysia/fisiologia , Potenciação de Longa Duração/fisiologia , Príons/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Aplysia/genética , Sequência de Bases , Sistema Nervoso Central/fisiologia , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Neuritos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Serotonina/metabolismo , Transdução de Sinais
10.
Cell Rep ; 11(12): 1866-75, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095361

RESUMO

The maintenance phase of memory-related long-term facilitation (LTF) of synapses between sensory and motor neurons of the gill-withdrawal reflex of Aplysia depends on a serotonin (5-HT)-triggered presynaptic upregulation of CPEB, a functional prion that regulates local protein synthesis at the synapse. The mechanisms whereby serotonin regulates CPEB levels in presynaptic sensory neurons are not known. Here, we describe a sensory neuron-specific microRNA 22 (miR-22) that has multiple binding sites on the mRNA of CPEB and inhibits it in the basal state. Serotonin triggers MAPK/Erk-dependent downregulation of miR-22, thereby upregulating the expression of CPEB, which in turn regulates, through functional CPE elements, the presynaptic expression of atypical PKC (aPKC), another candidate regulator of memory maintenance. Our findings support a model in which the neurotransmitter-triggered downregulation of miR-22 coordinates the regulation of genes contributing synergistically to the long-term maintenance of memory-related synaptic plasticity.


Assuntos
Aplysia/fisiologia , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serotonina/metabolismo , Animais , Sítios de Ligação , Potenciação de Longa Duração/genética , Memória/fisiologia , MicroRNAs/genética , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Plasticidade Neuronal/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Células Receptoras Sensoriais , Serotonina/genética , Sinapses/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa