Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 69(3): 438-450.e5, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358077

RESUMO

S-nitrosation, commonly referred to as S-nitrosylation, is widely regarded as a ubiquitous, stable post-translational modification that directly regulates many proteins. Such a widespread role would appear to be incompatible with the inherent lability of the S-nitroso bond, especially its propensity to rapidly react with thiols to generate disulfide bonds. As anticipated, we observed robust and widespread protein S-nitrosation after exposing cells to nitrosocysteine or lipopolysaccharide. Proteins detected using the ascorbate-dependent biotin switch method are typically interpreted to be directly regulated by S-nitrosation. However, these S-nitrosated proteins are shown to predominantly comprise transient intermediates leading to disulfide bond formation. These disulfides are likely to be the dominant end effectors resulting from elevations in nitrosating cellular nitric oxide species. We propose that S-nitrosation primarily serves as a transient intermediate leading to disulfide formation. Overall, we conclude that the current widely held perception that stable S-nitrosation directly regulates the function of many proteins is significantly incorrect.


Assuntos
Dissulfetos/metabolismo , Nitrosação/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , S-Nitrosotióis/metabolismo , Cisteína/metabolismo , Humanos , Óxido Nítrico/metabolismo , Oxirredução , Proteínas/metabolismo , Proteólise , Proteômica/métodos , Compostos de Sulfidrila/metabolismo
2.
Circulation ; 148(13): 1023-1034, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37548012

RESUMO

BACKGROUND: The major cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) has emerged as a key mediator of inflammation that underlies cardiovascular disease. On interaction with double-stranded DNA, cGAS generates the second messenger 2',3'-cyclic GMP-AMP (cGAMP) that directly binds to and activates the stimulator of interferon genes, which in turn leads to enhanced expression of genes encoding interferons and proinflammatory cytokines. Here, we show that cGAMP generated by cGAS also directly activates PKGI (cGMP-dependent protein kinase 1), a mechanism that underlies crosstalk between inflammation and blood pressure regulation. METHODS: The ability of cGAS and cGAMP to activate PKGI was assessed using molecular, cellular, and biochemical analyses, and in myography experiments, as well. The release of cGAMP from the endothelium was measured using an ELISA, and its uptake into the vascular smooth muscle was assessed using molecular and biochemical approaches, including the identification and targeting of specific cGAMP transporters. The blood pressure of wild-type and cGAS-/- mice was assessed using implanted telemetry probes. cGAS was activated by in vivo transfection with G3-YSD or mice were made septic by administration of lipopolysaccharide. RESULTS: The detection of cytosolic DNA by cGAS within the vascular endothelium leads to formation of cGAMP that was found to be actively extruded by MRP1 (multidrug resistance protein 1). Once exported, this cGAMP is then imported into neighboring vascular smooth muscle cells through the volume-regulated anion channel, where it can directly activate PKGI. The activation of PKGI by cGAMP mediates vasorelaxation that is dependent on the activity of MRP1 and volume-regulated anion channel, but independent of the canonical nitric oxide pathway. This mechanism of PKGI activation mediates lowering of blood pressure and contributes to hypotension and tissue hypoperfusion during sepsis. CONCLUSIONS: The activation of PKGI by cGAMP enables the coupling of blood pressure to cytosolic DNA sensing by cGAS, which plays a key role during sepsis by mediating hypotension and tissue hypoperfusion.


Assuntos
DNA , Hipotensão , Animais , Camundongos , Pressão Sanguínea , DNA/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação
3.
Circulation ; 140(2): 126-137, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116951

RESUMO

BACKGROUND: The health-promoting and disease-limiting abilities of resveratrol, a natural polyphenol, has led to considerable interest in understanding the mechanisms of its therapeutic actions. The polyphenolic rings of resveratrol enable it to react with and detoxify otherwise injurious oxidants. Whilst the protective actions of resveratrol are commonly ascribed to its antioxidant activity, here we show that this is a misconception. METHODS: The ability of resveratrol to oxidize cGMP-dependent PKG1α (protein kinase 1α) was assessed in isolated rat aortic smooth muscle cells, and the mechanism of action of this polyphenol was characterized using in vitro experiments, mass spectrometry and electron paramagnetic resonance. The blood pressure of wild-type and C42S knock-in mice was assessed using implanted telemetry probes. Mice were made hypertensive by administration of angiotensin II via osmotic mini-pumps and blood pressure monitored during 15 days of feeding with chow diet containing vehicle or resveratrol. RESULTS: Oxidation of the phenolic rings of resveratrol paradoxically leads to oxidative modification of proteins, explained by formation of a reactive quinone that oxidizes the thiolate side chain of cysteine residues; events that were enhanced in cells under oxidative stress. Consistent with these observations and its ability to induce vasodilation, resveratrol induced oxidative activation of PKG1α and lowered blood pressure in hypertensive wild-type mice, but not C42S PKG1α knock-in mice that are resistant to disulfide activation. CONCLUSIONS: Resveratrol mediates lowering of blood pressure by paradoxically inducing protein oxidation, especially during times of oxidative stress, a mechanism that may be a common feature of antioxidant molecules.


Assuntos
Antioxidantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Pressão Sanguínea/fisiologia , Células Cultivadas , Humanos , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Telemetria/métodos
4.
J Mol Cell Cardiol ; 115: 20-31, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29294329

RESUMO

BACKGROUND: Type 2A protein phosphatase (PP2A) enzymes are serine/threonine phosphatases which comprise a scaffold A subunit, a regulatory B subunit and a catalytic C subunit, and have been implicated in the dephosphorylation of multiple cardiac phosphoproteins. B subunits determine subcellular targeting, substrate specificity and catalytic activity, and can themselves be regulated by post-translational modifications. We explored potential ß-adrenergic regulation of PP2A in cardiomyocytes through phosphorylation of the regulatory B subunit isoform B56δ. METHODS AND RESULTS: Phosphate affinity SDS-PAGE and immunoblot analysis revealed increased phosphorylation of B56δ in adult rat ventricular myocytes (ARVM) exposed to the ß-adrenergic receptor (ßAR) agonist isoprenaline (ISO). Phosphorylation of B56δ occurred at S573, primarily through stimulation of the ß1AR subtype, and was dependent on PKA activity. The functional role of the phosphorylation was explored in ARVM transduced with adenoviruses expressing wild type (WT) or non-phosphorylatable (S573A) B56δ, fused to GFP at the N-terminus. C subunit expression was increased in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A, both of which co-immunoprecipitated with endogenous C and A subunits. PP2A activity in cell lysates was increased in response to ISO in ARVM expressing GFP-B56δ-WT but not GFP-B56δ-S573A. Immunoblot analysis of the phosphoproteome in ARVM expressing GFP-B56δ-WT or GFP-B56δ-S573A with antibodies detecting (i) phospho-serine/threonine residues in distinct kinase substrate motifs or (ii) specific phosphorylated residues of functional importance in selected proteins revealed a comparable phosphorylation profile in the absence or presence of ISO stimulation. CONCLUSIONS: In cardiomyocytes, ßAR stimulation induces PKA-mediated phosphorylation of the PP2A regulatory subunit isoform B56δ at S573, which increases associated PP2A catalytic activity. This is likely to regulate the phosphorylation status of specific B56δ-PP2A substrates, which remain to be identified.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Miocárdio/enzimologia , Fosfosserina/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Adenoviridae/metabolismo , Sequência de Aminoácidos , Animais , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/química , Subunidades Proteicas/química , Ratos Wistar
5.
J Biol Chem ; 292(39): 16161-16173, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28739872

RESUMO

The kinase p38α MAPK (p38α) plays a pivotal role in many biological processes. p38α is activated by canonical upstream kinases that phosphorylate the activation region. The purpose of our study was to determine whether such activation may depend on redox-sensing cysteines within p38α. p38α was activated and formed a disulfide-bound heterodimer with MAP2K3 (MKK3) in rat cardiomyocytes and isolated hearts exposed to H2O2 This disulfide heterodimer was sensitive to reduction by mercaptoethanol and was enhanced by the thioredoxin-reductase inhibitor auranofin. We predicted that Cys-119 or Cys-162 of p38α, close to the known MKK3 docking domain, were relevant for these redox characteristics. The C119S mutation decreased whereas the C162S mutation increased the dimer formation, suggesting that these two Cys residues act as vicinal thiols, consistent with C119S/C162S being incapable of sensing H2O2 Similarly, disulfide heterodimer formation was abolished in H9C2 cells expressing both MKK3 and p38α C119S/C162S and subjected to simulated ischemia and reperfusion. However, the p38α C119S/C162S mutants did not exhibit appreciable alteration in activating dual phosphorylation. In contrast, the anti-inflammatory agent 10-nitro-oleic acid (NO2-OA), a component of the Mediterranean diet, reduced p38α activation and covalently modified Cys-119/Cys-162, probably obstructing MKK3 access. Moreover, NO2-OA reduced the dephosphorylation of p38α by hematopoietic tyrosine phosphatase (HePTP). Furthermore, steric obstruction of Cys-119/Cys-162 by NO2-OA pretreatment in Langendorff-perfused murine hearts prevented the p38-MKK3 disulfide dimer formation and attenuated H2O2-induced contractile dysfunction. Our findings suggest that cysteine residues within p38α act as redox sensors that can dynamically regulate the association between p38 and MKK3.


Assuntos
Cistina/metabolismo , Ventrículos do Coração/enzimologia , MAP Quinase Quinase 3/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Miócitos Cardíacos/enzimologia , Estresse Oxidativo , Substituição de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Cisteína/química , Cisteína/metabolismo , Cistina/química , Ativação Enzimática , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Técnicas In Vitro , MAP Quinase Quinase 3/química , MAP Quinase Quinase 3/genética , Masculino , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Conformação Proteica , Multimerização Proteica , Ratos Wistar , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
6.
J Biol Chem ; 291(4): 1774-1788, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26620565

RESUMO

The gasotransmitter, hydrogen sulfide (H2S) is recognized as an important mediator of endothelial cell homeostasis and function that impacts upon vascular tone and blood pressure. Cystathionine-γ-lyase (CSE) is the predominant endothelial generator of H2S, and recent evidence suggests that its transcriptional expression is regulated by the reactive oxygen species, H2O2. However, the cellular source of H2O2 and the redox-dependent molecular signaling pathway that modulates this is not known. We aimed to investigate the role of Nox4, an endothelial generator of H2O2, in the regulation of CSE in endothelial cells. Both gain- and loss-of-function experiments in human endothelial cells in vitro demonstrated Nox4 to be a positive regulator of CSE transcription and protein expression. We demonstrate that this is dependent upon a heme-regulated inhibitor kinase/eIF2α/activating transcription factor 4 (ATF4) signaling module. ATF4 was further demonstrated to bind directly to cis-regulatory sequences within the first intron of CSE to activate transcription. Furthermore, CSE expression was also increased in cardiac microvascular endothelial cells, isolated from endothelial-specific Nox4 transgenic mice, compared with wild-type littermate controls. Using wire myography we demonstrate that endothelial-specific Nox4 transgenic mice exhibit a hypo-contractile phenotype in response to phenylephrine that was abolished when vessels were incubated with a CSE inhibitor, propargylglycine. We, therefore, conclude that Nox4 is a positive transcriptional regulator of CSE in endothelial cells and propose that it may in turn contribute to the regulation of vascular tone via the modulation of H2S production.


Assuntos
Cistationina gama-Liase/genética , Regulação Enzimológica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/enzimologia , NADPH Oxidases/metabolismo , Transcrição Gênica , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Cistationina gama-Liase/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/genética , Transdução de Sinais
7.
Biochemistry ; 55(5): 751-61, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26784639

RESUMO

8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) is a nitrated derivative of guanosine 3',5'-cyclic monophosphate (cGMP) formed endogenously under conditions associated with production of both reactive oxygen species and nitric oxide. It acts as an electrophilic second messenger in the regulation of cellular signaling by inducing a post-translational modification of redox-sensitive protein thiols via covalent adduction of cGMP moieties to protein thiols (protein S-guanylation). Here, we demonstrate that 8-nitro-cGMP potentially S-guanylates thiol groups of cGMP-dependent protein kinase (PKG), the enzyme that serves as one of the major receptor proteins for intracellular cGMP and controls a variety of cellular responses. S-Guanylation of PKG was found to occur in a site specific manner; Cys42 and Cys195 were the susceptible residues among 11 Cys residues. Importantly, S-guanylation at Cys195, which is located in the high-affinity cGMP binding domain of PKG, causes persistent enzyme activation as determined by in vitro kinase assay as well as by an organ bath assay. In vivo, S-guanylation of PKG was demonstrated to occur in mice without any specific treatment and was significantly enhanced by lipopolysaccharide administration. These findings warrant further investigation in terms of the physiological and pathophysiological roles of S-guanylation-dependent persistent PKG activation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Guanina/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteínas/metabolismo , Animais , Ativação Enzimática , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Miocárdio/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(24): 9909-13, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716652

RESUMO

Sepsis is a common life-threatening clinical syndrome involving complications as a result of severe infection. A cardinal feature of sepsis is inflammation that results in oxidative stress. Sepsis in wild-type mice induced oxidative activation of cGMP-dependent protein kinase 1 alpha (PKG Iα), which increased blood vessel dilation and permeability, and also lowered cardiac output. These responses are typical features of sepsis and their combined effect is a lowering of blood pressure. This hypotension, a hallmark of sepsis, resulted in underperfusion of end organs, resulting in their damage. A central role for PKG Iα oxidative activation in injury is supported by oxidation-resistant Cys42Ser PKG Iα knock-in mice being markedly protected from these clinical indices of injury during sepsis. We conclude that oxidative activation of PKG Iα is a key mediator of hypotension and consequential organ injury during sepsis.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Hipotensão/fisiopatologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Sepse/fisiopatologia , Substituição de Aminoácidos , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Ativação Enzimática/genética , Hipotensão/enzimologia , Hipotensão/genética , Immunoblotting , L-Lactato Desidrogenase/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Insuficiência de Múltiplos Órgãos/enzimologia , Insuficiência de Múltiplos Órgãos/genética , Oxirredução , Sepse/enzimologia , Sepse/genética
10.
J Biol Chem ; 288(21): 15380-9, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23548900

RESUMO

We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Indução Enzimática/fisiologia , Humanos , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator A de Crescimento do Endotélio Vascular/genética
11.
Circ Res ; 111(8): 1091-106, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23023511

RESUMO

Redox signaling refers to the specific and usually reversible oxidation/reduction modification of molecules involved in cellular signaling pathways. In the heart, redox signaling regulates several physiological processes (eg, excitation-contraction coupling) and is involved in a wide variety of pathophysiological and homoeostatic or stress response pathways. Reactive oxygen species involved in cardiac redox signaling may derive from many sources, but NADPH oxidases, as dedicated sources of signaling reactive oxygen species, seem to be especially important. An increasing number of specific posttranslational oxidative modifications involved in cardiac redox signaling are being defined, along with the reactive oxygen species sources that are involved. Here, we review current knowledge on the molecular targets of signaling reactive oxygen species in cardiac cells and their involvement in cardiac physiopathology. Advances in this field may allow the development of targeted therapeutic strategies for conditions such as heart failure as opposed to the general antioxidant approaches that have failed to date.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Contração Miocárdica/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Animais , Cardiomegalia/fisiopatologia , Humanos , NADPH Oxidases/metabolismo , Oxirredução
12.
Circulation ; 126(3): 287-95, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22685118

RESUMO

BACKGROUND: Although nitroglycerin has remained in clinical use since 1879, the mechanism by which it relaxes blood vessels to lower blood pressure remains incompletely understood. Nitroglycerin undergoes metabolism that generates several reaction products, including oxidants, and this bioactivation process is essential for vasodilation. Protein kinase G (PKG) mediates classic nitric oxide-dependent vasorelaxation, but the 1α isoform is also independently activated by oxidation that involves interprotein disulfide formation within this homodimeric protein complex. We hypothesized that nitroglycerin-induced vasodilation is mediated by disulfide activation of PKG1α. METHODS AND RESULTS: Treating smooth muscle cells or isolated blood vessels with nitroglycerin caused PKG1α disulfide dimerization. PKG1α disulfide formation was increased in wild-type mouse aortas by in vivo nitroglycerin treatment, but this oxidation was lost as tolerance developed. To establish whether kinase oxidation underlies nitroglycerin-induced vasodilation in vivo, we used a Cys42Ser PKG1α knock-in mouse that cannot transduce oxidant signals because it does not contain the vital redox-sensing thiol. This redox-dead knock-in mouse was substantively deficient in hypotensive response to nitroglycerin compared with wild-type littermates as measured in vivo by radiotelemetry. Resistance blood vessels from knock-ins were markedly less sensitive to nitroglycerin-induced vasodilation (EC(50)=39.2 ± 10.7 µmol/L) than wild-types (EC(50)=12.1 ± 2.9 µmol/L). Furthermore, after ≈24 hours of treatment, wild-type controls stopped vasodilating to nitroglycerin, and the vascular sensitivity to nitroglycerin was decreased, whereas this tolerance phenomenon, which routinely hampers the management of hypertensive patients, was absent in knock-ins. CONCLUSIONS: PKG1α disulfide formation is a significant mediator of nitroglycerin-induced vasodilation, and tolerance to nitroglycerin is associated with loss of kinase oxidation.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Hipertensão , Nitroglicerina/farmacologia , Substituição de Aminoácidos/genética , Animais , Aorta/citologia , Células Cultivadas , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/química , Dimerização , Dissulfetos/química , Dissulfetos/metabolismo , Técnicas de Introdução de Genes , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Liso Vascular/citologia , Oxirredução/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Compostos de Sulfidrila/metabolismo , Telemetria , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética , Vasodilatadores/farmacologia
13.
FASEB J ; 26(2): 832-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22085642

RESUMO

Here we demonstrate a new paradigm in redox signaling, whereby oxidants resulting from metabolic stress directly alter protein palmitoylation by oxidizing reactive cysteine thiolates. In mice fed a high-fat, high-sucrose diet and in cultured endothelial cells (ECs) treated with high palmitate and high glucose (HPHG), there was decreased HRas palmitoylation on Cys181/184 (61±24% decrease for cardiac tissue and 38±7.0% in ECs). This was due to oxidation of Cys181/184, detected using matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-TOF. Decrease in HRas palmitoylation affected its compartmentalization and Ras binding domain binding activity, with a shift from plasma membrane tethering to Golgi localization. Loss of plasma membrane-bound HRas decreased growth factor-stimulated ERK phosphorylation (84±8.6% decrease) and increased apoptotic signaling (24±6.5-fold increase) after HPHG treatment that was prevented by overexpressing wild-type but not C181/184S HRas. The essential role of HRas in metabolic stress was made evident by the similar effects of expressing an inactive dominant negative N17-HRas or a MEK inhibitor. Furthermore, the relevance of thiol oxidation was demonstrated by overexpressing manganese superoxide dismutase, which improved HRas palmitoylation and ERK phosphorylation, while lessening apoptosis in HPHG treated ECs.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Apoptose/fisiologia , Bovinos , Células Cultivadas , Cisteína/química , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Glucose/administração & dosagem , Glucose/efeitos adversos , Lipoilação , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Estresse Fisiológico , Sacarose/administração & dosagem , Sacarose/efeitos adversos , Superóxido Dismutase/metabolismo
14.
Circ Res ; 108(3): 324-34, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21164107

RESUMO

RATIONALE: 15-Deoxy-Δ-prostaglandin (15d-PG)J(2) is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative posttranslational modifications that modulate protein and tissue function. OBJECTIVE: To investigate the role of oxidative protein modifications in 15d-PGJ(2)-mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion. METHODS AND RESULTS: Proteomic screening with biotinylated 15d-PGJ(2) identified novel vascular targets to which it adducts, most notably soluble epoxide hydrolase (sEH). 15d-PGJ(2) inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic center of the hydrolase. Indeed a Cys521Ser sEH "redox-dead" mutant was resistant to 15d-PGJ(2)-induced hydrolase inhibition. 15d-PGJ(2) dilated coronary vessels and a role for hydrolase inhibition was supported by 2 structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ(2) and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids consistent with their vasodilatory actions. Indeed 14,15-EET alone induced relaxation and 15d-PGJ(2)-mediated vasodilation was blocked by the EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE). Additionally, the coronary vasculature of sEH-null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ(2). Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ(2) adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition, sEH-null mice failed to vasodilate during hypoxia. CONCLUSION: This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation.


Assuntos
Epóxido Hidrolases/metabolismo , Hipóxia/metabolismo , Miocárdio/metabolismo , Prostaglandina D2/análogos & derivados , Vasodilatação/fisiologia , Sequência de Aminoácidos , Animais , Epóxido Hidrolases/análise , Epóxido Hidrolases/genética , Hipóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Dados de Sequência Molecular , Oxirredução , Prostaglandina D2/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
15.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055412

RESUMO

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
16.
Biochem Soc Trans ; 39(5): 1260-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936799

RESUMO

Elevated protein oxidation is a widely reported hallmark of most major diseases. Historically, this 'oxidative stress' has been considered causatively detrimental, as the protein oxidation events were interpreted simply as damage. However, recent advances have changed this antiquated view; sensitive methodology for detecting and identifying proteins susceptible to oxidation has revealed a fundamental role for this modification in physiological cell signalling during health. Reversible protein oxidation that is dynamically coupled with cellular reducing systems allows oxidative protein modifications to regulate protein function, analogous to phosphoregulation. However, the relatively labile nature of many reversible protein oxidation states hampers the reliable detection and identification of modified proteins. Consequently, specialized methods to stabilize protein oxidation in combination with techniques to detect specific types of modification have been developed. Here, these techniques are discussed, and their sensitivity, selectivity and ability to reliably identify reversibly oxidized proteins are critically assessed.


Assuntos
Bioensaio/métodos , Proteínas/química , Compostos de Sulfidrila/química , Bioensaio/normas , Cicloexanonas/química , Dissulfetos/química , Eletroforese/métodos , Glutationa/metabolismo , Immunoblotting/métodos , Immunoblotting/normas , Lipídeos/química , Estrutura Molecular , Oxirredução , Sensibilidade e Especificidade
17.
Nitric Oxide ; 25(2): 118-24, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21130178

RESUMO

Formation of nitric oxide and its derivative reactive nitrogen species during endotoxemia has been implicated in the pathogenesis of the associated cardiovascular dysfunction. This stress can promote nitrosative post-translational modifications of proteins that may alter their activity and contribute to dysregulation. We utilized the ascorbate-dependent biotin-switch method to assay protein S-nitrosylation and immunoblotted for tyrosine nitration to monitor changes in nitrosative protein oxidation during endotoxemia. Hearts from lipopolysaccharide (LPS)-treated rats showed no apparent variation in global protein S-nitrosylation, but this may be due to the poor sensitivity of the biotin-switch method. To sensitize our monitoring of protein S-nitrosylation we exposed isolated hearts to the efficient trans-nitrosylating agent nitrosocysteine (which generated a robust biotin-switch signal) and then identified a number of target proteins using mass spectrometry. We were then able to probe for these target proteins in affinity-capture preparations of S-nitrosylated proteins prepared from vehicle- or LPS-treated animals. Unexpectedly this showed a time-dependent loss in S-nitrosylation during sepsis, which we hypothesized, may be due to concomitant superoxide formation that may lower nitric oxide but simultaneously generate the tyrosine-nitrating agent peroxynitrite. Indeed, this was confirmed by immunoblotting for global tyrosine nitration, which increased time-dependently and temporally correlated with a decrease in mean arterial pressure. We assessed if tyrosine nitration was causative in lowering blood pressure using the putative peroxynitrite scavenger FeTPPS. However, FeTPPS was ineffective in reducing global protein nitration and actually exacerbated LPS-induced hypotension.


Assuntos
Endotoxemia/metabolismo , Coração/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Processamento de Proteína Pós-Traducional , Animais , Biotina/metabolismo , Pressão Sanguínea , Cisteína/metabolismo , Cisteína/farmacologia , Escherichia coli/química , Células HEK293 , Humanos , Hipotensão , Immunoblotting , Técnicas In Vitro , Lipopolissacarídeos/metabolismo , Espectrometria de Massas , Metaloporfirinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Proteínas/química , Proteínas/metabolismo , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , Sensibilidade e Especificidade , Sepse/metabolismo , Transdução de Sinais , Telemetria , Tirosina/análogos & derivados , Tirosina/metabolismo
18.
J Biol Chem ; 284(43): 29260-8, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19726669

RESUMO

The transnitrosylating nitric oxide (NO) donor nitrocysteine (CysNO) induced a disulfide bond between the two regulatory RI subunits of protein kinase A (PKA). The conventional NO donor S-nitroso-N-acetylpenicillamine failed to do this, consistent with our observation that it also did not promote protein S-nitrosylation. This disulfide oxidation event activated PKA and induced vasorelaxation independently of the classical beta-adrenergic or NO signaling pathway. Activation of PKA had also been anticipated to exert a positive inotropic effect on the myocardium but did not. The lack of positive inotropy was explained by CysNO concomitantly activating protein kinase G (PKG) Ialpha. PKG was found to exert a partial negative inotropic influence regardless of whether PKA was activated by classical beta-receptor stimulation or by disulfide bond formation. This work demonstrates that NO molecules that can induce S-nitrosylation directly activate type I PKA, providing a novel cross-talk to beta-adrenergic-like signaling without receptor or adenylate cyclase stimulation. However, the expected positive inotropic consequences of PKA activation by this novel mechanism are countermanded by the simultaneous dual activation of PKGIalpha, which is also activated by CysNO.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/metabolismo , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cisteína/metabolismo , Dissulfetos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Masculino , Doadores de Óxido Nítrico/farmacologia , Nitrocompostos/metabolismo , Ratos , Ratos Wistar , S-Nitroso-N-Acetilpenicilamina/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
19.
Am J Physiol Heart Circ Physiol ; 299(3): H827-36, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20543084

RESUMO

The phosphodiesterase type-5 inhibitor sildenafil has powerful cardioprotective effects against ischemia-reperfusion injury. PKG-mediated signaling has been implicated in this protection, although the mechanism and the downstream targets of this kinase remain to be fully elucidated. In this study we assessed the role of phospholemman (PLM) phosphorylation, which activates the Na(+)/K(+)-ATPase, in cardioprotection afforded by sildenafil administered during reperfusion. Isolated perfused mouse hearts were optimally protected against infarction (indexed by tetrazolium staining) by 0.1 muM sildenafil treatment during the first 10 min of reperfusion. Extended sildenafil treatment (30, 60, or 120 min at reperfusion) did not alter the degree of protection provided. This protection was PKG dependent, since it was blocked by KT-5823. Western blot analysis using phosphospecific antibodies to PLM showed that sildenafil at reperfusion did not modulate PLM Ser63 or Ser68 phosphorylation but significantly increased Ser69 phosphorylation. The treatment of isolated rat ventricular myocytes with sildenafil or 8-bromo-cGMP (PKG agonist) enhanced PLM Ser69 phosphorylation, which was bisindolylmaleimide (PKC inhibitor) sensitive. Patch-clamp studies showed that sildenafil treatment also activated the Na(+)/K(+)-ATPase, which is anticipated in light of PLM Ser69 phosphorylation. Na(+)/K(+)-ATPase activation during reperfusion would attenuate Na(+) overload at this time, providing a molecular explanation of how sildenafil guards against injury at this time. Indeed, using flame photometry and rubidium uptake into isolated mouse hearts, we found that sildenafil enhanced Na(+)/K(+)-ATPase activity during reperfusion. In this study we provide a molecular explanation of how sildenafil guards against myocardial injury during postischemic reperfusion.


Assuntos
Coração/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Piperazinas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Sulfonas/farmacologia , Análise de Variância , Animais , Western Blotting , Cardiotônicos/farmacologia , Células Cultivadas , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Fosforilação/efeitos dos fármacos , Purinas/farmacologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citrato de Sildenafila , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa