RESUMO
A strong genetic predictor of outcome following untreated HIV-1 infection is the carriage of specific alleles of human leukocyte antigens (HLAs) that present viral epitopes to T cells. Residual variation in outcome measures may be attributed, in part, to viral adaptation to HLA-restricted T cell responses. Variants of the endoplasmic reticulum aminopeptidases (ERAPs) influence the repertoire of T cell epitopes presented by HLA alleles as they trim pathogen-derived peptide precursors to optimal lengths for antigen presentation, along with other functions unrelated to antigen presentation. We investigated whether ERAP variants influence HLA-associated HIV-1 adaptation with demonstrable effects on overall HIV-1 disease outcome. Utilizing host and viral data of 249 West Australian individuals with HIV-1 subtype B infection, we identified a novel association between two linked ERAP2 single nucleotide polymorphisms (SNPs; rs2248374 and rs2549782) with plasma HIV RNA concentration (viral load) (P adjusted = 0.0024 for both SNPs). Greater HLA-associated HIV-1 adaptation in the HIV-1 Gag gene correlated significantly with higher viral load, lower CD4+ T cell count and proportion; P = 0.0103, P = 0.0061, P = 0.0061, respectively). When considered together, there was a significant interaction between the two ERAP2 SNPs and HLA-associated HIV-1 adaptation on viral load (P = 0.0111). In a comprehensive multivariate model, addition of ERAP2 haplotypes and HLA associated adaptation as an interaction term to known HLA and CCR5 determinants and demographic factors, increased the explanatory variance of population viral load from 17.67% to 45.1% in this dataset. These effects were not replicated in publicly available datasets with comparably sized cohorts, suggesting that any true global epistasis may be dependent on specific HLA-ERAP allelic combinations. Our data raises the possibility that ERAP2 variants may shape peptide repertoires presented to HLA class I-restricted T cells to modulate the degree of viral adaptation within individuals, in turn contributing to disease variability at the population level. Analyses of other populations and experimental studies, ideally with locally derived ERAP genotyping and HLA-specific viral adaptations are needed to elucidate this further.
Assuntos
Aminopeptidases , Epistasia Genética , Infecções por HIV , HIV-1 , Polimorfismo de Nucleotídeo Único , Humanos , Aminopeptidases/genética , Infecções por HIV/imunologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/genética , Austrália , Masculino , Feminino , Antígenos HLA/genética , Carga Viral , Adulto , Pessoa de Meia-IdadeRESUMO
Standard single-cell RNA-sequencing alignment pipelines exhibit a propensity for misassigning killer immunoglobulin-like receptor (KIR) transcripts, thereby giving rise to inaccuracies in quantifying KIR expression. Alves et al. elucidated that these default workflows frequently misclassify activating KIR transcripts as inhibitory KIR expression, resulting in a skewed representation of the KIR repertoire.
Assuntos
Células Matadoras Naturais , Análise da Expressão Gênica de Célula Única , Células Matadoras Naturais/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Expressão Gênica , GenótipoRESUMO
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.
Assuntos
Genoma Viral , RNA Viral/genética , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Chlorocebus aethiops , Humanos , Limite de Detecção , Células VeroRESUMO
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Estudos Transversais , Austrália , Antígenos de Histocompatibilidade Classe I , Antígenos HLA , Antígenos de Histocompatibilidade Classe II , Linfócitos T CD8-PositivosRESUMO
OBJECTIVES: Inclusion body myositis (IBM) is a progressive inflammatory-degenerative muscle disease of older individuals, with some patients producing anti-cytosolic 5'-nucleotidase 1A (NT5C1A, aka cN1A) antibodies. Human Leukocyte Antigens (HLA) is the highest genetic risk factor for developing IBM. In this study, we aimed to further define the contribution of HLA alleles to IBM and the production of anti-cN1A antibodies. METHODS: We HLA haplotyped a Western Australian cohort of 113 Caucasian IBM patients and 112 ethnically matched controls using Illumina next-generation sequencing. Allele frequency analysis and amino acid alignments were performed using the Genentech/MiDAS bioinformatics package. Allele frequencies were compared using Fisher's exact test. Age at onset analysis was performed using the ggstatsplot package. All analysis was carried out in RStudio version 1.4.1717. RESULTS: Our findings validated the independent association of HLA-DRB1*03:01:01 with IBM and attributed the risk to an arginine residue in position 74 within the DRß1 protein. Conversely, DRB4*01:01:01 and DQA1*01:02:01 were found to have protective effects; the carriers of DRB1*03:01:01 that did not possess these alleles had a fourteenfold increased risk of developing IBM over the general Caucasian population. Furthermore, patients with the abovementioned genotype developed symptoms on average five years earlier than patients without. We did not find any HLA associations with anti-cN1A antibody production. CONCLUSIONS: High-resolution HLA sequencing more precisely characterised the alleles associated with IBM and defined a haplotype linked to earlier disease onset. Identification of the critical amino acid residue by advanced biostatistical analysis of immunogenetics data offers mechanistic insights and future directions into uncovering IBM aetiopathogenesis.
Assuntos
Miosite de Corpos de Inclusão , Miosite , Humanos , Miosite de Corpos de Inclusão/genética , Genótipo , Haplótipos , Arginina , Austrália , Antígenos HLA , Cadeias HLA-DRB1/genética , AlelosRESUMO
Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.
Assuntos
Proteínas de Bactérias , Helicobacter pylori , Proteínas Repressoras , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Helicobacter , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Mutação , Cloreto de Sódio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
Effective strategies to eliminate human immunodeficiency virus type 1 (HIV-1) reservoirs are likely to require more thorough characterizations of proviruses that persist on antiretroviral therapy (ART). The rarity of infected CD4+ T-cells and related technical challenges have limited the characterization of integrated proviruses. Current approaches using next-generation sequencing can be inefficient and limited sequencing depth can make it difficult to link proviral sequences to their respective integration sites. Here, we report on an efficient method by which HIV-1 proviruses and their sites of integration are amplified and sequenced. Across five HIV-1-positive individuals on clinically effective ART, a median of 41.2% (n = 88 of 209) of amplifications yielded near-full-length proviruses and their 5'-host-virus junctions containing a median of 430 bp (range, 18 to 1,363 bp) of flanking host sequence. Unexpectedly, 29.5% (n = 26 of 88) of the sequenced proviruses had structural asymmetries between the 5' and 3' long terminal repeats (LTRs), commonly in the form of major 3' deletions. Sequence-intact proviruses were detected in 3 of 5 donors, and infected CD4+ T-cell clones were detected in 4 of 5 donors. The accuracy of the method was validated by amplifying and sequencing full-length proviruses and flanking host sequences directly from peripheral blood mononuclear cell DNA. The individual proviral sequencing assay (IPSA) described here can provide an accurate, in-depth, and longitudinal characterization of HIV-1 proviruses that persist on ART, which is important for targeting proviruses for elimination and assessing the impact of interventions designed to eradicate HIV-1. IMPORTANCE The integration of human immunodeficiency virus type 1 (HIV-1) into chromosomal DNA establishes the long-term persistence of HIV-1 as proviruses despite effective antiretroviral therapy (ART). Characterizing proviruses is difficult because of their rarity in individuals on long-term suppressive ART, their highly polymorphic sequences and genetic structures, and the need for efficient amplification and sequencing of the provirus and its integration site. Here, we describe a novel, integrated, two-step method (individual proviral sequencing assay [IPSA]) that amplifies the host-virus junction and the full-length provirus except for the last 69 bp of the 3' long terminal repeat (LTR). Using this method, we identified the integration sites of proviruses, including those that are sequence intact and replication competent or defective. Importantly, this new method identified previously unreported asymmetries between LTRs that have implications for how proviruses are detected and quantified. The IPSA method reported is unaffected by LTR asymmetries, permitting a more accurate and comprehensive characterization of the proviral landscape.
Assuntos
HIV-1 , Provírus , Sequências Repetidas Terminais , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares/virologia , Provírus/genética , Provírus/metabolismo , Sequências Repetidas Terminais/genéticaRESUMO
The precise role of CD4 T cell turnover in maintaining HIV persistence during antiretroviral therapy (ART) has not yet been well characterized. In resting CD4 T cell subpopulations from 24 HIV-infected ART-suppressed and 6 HIV-uninfected individuals, we directly measured cellular turnover by heavy water labeling, HIV reservoir size by integrated HIV-DNA (intDNA) and cell-associated HIV-RNA (caRNA), and HIV reservoir clonality by proviral integration site sequencing. Compared to HIV-negatives, ART-suppressed individuals had similar fractional replacement rates in all subpopulations, but lower absolute proliferation rates of all subpopulations other than effector memory (TEM) cells, and lower plasma IL-7 levels (p = 0.0004). Median CD4 T cell half-lives decreased with cell differentiation from naïve to TEM cells (3 years to 3 months, p<0.001). TEM had the fastest replacement rates, were most highly enriched for intDNA and caRNA, and contained the most clonal proviral expansion. Clonal proviruses detected in less mature subpopulations were more expanded in TEM, suggesting that they were maintained through cell differentiation. Earlier ART initiation was associated with lower levels of intDNA, caRNA and fractional replacement rates. In conclusion, circulating integrated HIV proviruses appear to be maintained both by slow turnover of immature CD4 subpopulations, and by clonal expansion as well as cell differentiation into effector cells with faster replacement rates.
Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular , Infecções por HIV/virologia , HIV-1/imunologia , Carga Viral , Replicação Viral , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , DNA Viral/análise , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Inherited retinal diseases (IRDs) are a heterogeneous group of blinding disorders, which result in dysfunction or death of the light-sensing cone and rod photoreceptors. Despite individual IRDs (Inherited retinal disease) being rare, collectively, they affect up to 1:2000 people worldwide, causing a significant socioeconomic burden, especially when cone-mediated central vision is affected. This study uses the Pde6ccpfl1 mouse model of achromatopsia, a cone-specific vision loss IRD (Inherited retinal disease), to investigate the potential gene-independent therapeutic benefits of a histone demethylase inhibitor GSK-J4 on cone cell survival. We investigated the effects of GSK-J4 treatment on cone cell survival in vivo and ex vivo and changes in cone-specific gene expression via single-cell RNA sequencing. A single intravitreal GSK-J4 injection led to transcriptional changes in pathways involved in mitochondrial dysfunction, endoplasmic reticulum stress, among other key epigenetic pathways, highlighting the complex interplay between methylation and acetylation in healthy and diseased cones. Furthermore, continuous administration of GSK-J4 in retinal explants increased cone survival. Our results suggest that IRD (Inherited retinal disease)-affected cones respond positively to epigenetic modulation of histones, indicating the potential of this approach in developing a broad class of novel therapies to slow cone degeneration.
Assuntos
Defeitos da Visão Cromática , Distrofia de Cones , Animais , Defeitos da Visão Cromática/metabolismo , Distrofia de Cones/metabolismo , Modelos Animais de Doenças , Histonas/metabolismo , Humanos , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismoRESUMO
Cryptosporidium is a major cause of diarrhoeal disease and mortality in young children in resource-poor countries, for which no vaccines or adequate therapeutic options are available. Infection in humans is primarily caused by two species: C. hominis and C. parvum. Despite C. hominis being the dominant species infecting humans in most countries, very little is known about its growth characteristics and life cycle in vitro, given that the majority of our knowledge of the in vitro development of Cryptosporidium has been based on C. parvum. In the present study, the growth and development of two C. parvum isolates (subtypes Iowa-IIaA17G2R1 and IIaA18G3R1) and one C. hominis isolate (subtype IdA15G1) in HCT-8 cells were examined and compared at 24 h and 48 h using morphological data acquired with scanning electron microscopy. Our data indicated no significant differences in the proportion of meronts or merozoites between species or subtypes at either time-point. Sexual development was observed at the 48-h time-point across both species through observations of both microgamonts and macrogamonts, with a higher frequency of macrogamont observations in C. hominis (IdA15G1) cultures at 48-h post-infection compared to both C. parvum subtypes. This corresponded to differences in the proportion of trophozoites observed at the same time point. No differences in proportion of microgamonts were observed between the three subtypes, which were rarely observed across all cultures. In summary, our data indicate that asexual development of C. hominis is similar to that of C. parvum, while sexual development is accelerated in C. hominis. This study provides new insights into differences in the in vitro growth characteristics of C. hominis when compared to C. parvum, which will facilitate our understanding of the sexual development of both species.
Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criança , Animais , Humanos , Pré-Escolar , Iowa , Estágios do Ciclo de VidaRESUMO
To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.
Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Regiões 5' não Traduzidas/genética , Animais , Catalase/genética , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Gerbillinae/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Inflamação/genética , MutaçãoRESUMO
Cellular immune responses to Gag correlate with improved HIV viral control. The full extent of cellular immune responses comprise both the number of epitopes recognized by CD4+ and CD8+ T cells, as well as the diversity of the T cell receptor (TCR) repertoire directed against each epitope. The optimal diversity of the responsive TCR repertoire is unclear. Therefore, we evaluated the TCR diversity of CD4+ and CD8+ T cells responding to HIV-1 Gag to determine if TCR diversity correlates with clinical or virologic metrics. Previous studies of TCR repertoires have been limited primarily to CD8+ T cell responses directed against a small number of well-characterized T cell epitopes restricted by specific human leucocyte antigens. We stimulated peripheral blood mononuclear cells from 21chronic HIV-infected individuals overnight with a pool of HIV-1 Gag peptides, followed by sorting of activated CD4+ and CD8+ T cells and TCR deep sequencing. We found Gag-reactive CD8+ T cells to be more oligoclonal, with a few dominant TCRs comprising the bulk of the repertoire, compared to the highly diverse TCR repertoires of Gag-reactive CD4+ T cells. HIV viral sequencing of the same donors revealed that high CD4+ T cell TCR diversity was strongly associated with lower HIV Gag genetic diversity. We conclude that the TCR repertoire of Gag-reactive CD4+ T helper cells display substantial diversity without a clearly dominant circulating TCR clonotype, in contrast to a hierarchy of dominant TCR clonotypes in the Gag-reactive CD8+ T cells, and may serve to limit HIV diversity during chronic infection.IMPORTANCE Human T cells recognize portions of viral proteins bound to host molecules (human leucocyte antigens) on the surface of infected cells. T cells recognize these foreign proteins through their T cell receptors (TCRs), which are formed by the assortment of several available V, D and J genes to create millions of combinations of unique TCRs. We measured the diversity of T cells responding to the HIV Gag protein. We found the CD8+ T cell response is primarily made up of a few dominant unique TCRs whereas the CD4+ T cell subset has a much more diverse repertoire of TCRs. We also found there was less change in the virus sequences in subjects with more diverse TCR repertoires. HIV has a high mutation rate, which allows it to evade the immune response. Our findings describe the characteristics of a virus-specific T cell response that may allow it to limit viral evolution.
RESUMO
Human immunodeficiency virus (HIV) can adapt to an individual's T cell immune response via genomic mutations that affect antigen recognition and impact disease outcome. These viral adaptations are specific to the host's human leucocyte antigen (HLA) alleles, as these molecules determine which peptides are presented to T cells. As HLA molecules are highly polymorphic at the population level, horizontal transmission events are most commonly between HLA-mismatched donor/recipient pairs, representing new immune selection environments for the transmitted virus. In this study, we utilised a deep sequencing approach to determine the HIV quasispecies in 26 mother-to-child transmission pairs where the potential for founder viruses to be pre-adapted is high due to the pairs being haplo-identical at HLA loci. This scenario allowed the assessment of specific HIV adaptations following transmission in either a non-selective immune environment, due to recipient HLA mismatched to original selecting HLA, or a selective immune environment, mediated by matched donor/recipient HLA. We show that the pattern of reversion or fixation of HIV adaptations following transmission provides insight into the replicative cost, and likely compensatory networks, associated with specific adaptations in vivo. Furthermore, although transmitted viruses were commonly heavily pre-adapted to the child's HLA genotype, we found evidence of de novo post-transmission adaptation, representing new epitopes targeted by the child's T cell response. High-resolution analysis of HIV adaptation is relevant when considering vaccine and cure strategies for individuals exposed to adapted viruses via transmission or reactivated from reservoirs.
Assuntos
Adaptação Biológica/genética , Infecções por HIV/genética , HIV-1/genética , Transmissão Vertical de Doenças Infecciosas , Adaptação Biológica/imunologia , Adulto , Criança , Pré-Escolar , Evolução Molecular , Feminino , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS: Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS: We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS: Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.
Assuntos
Transferência Adotiva/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/terapia , Reações Cruzadas/imunologia , Norovirus/imunologia , Doadores de Tecidos , Sequência de Aminoácidos , Antígenos Virais/imunologia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Epitopos de Linfócito T/imunologia , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Hospedeiro Imunocomprometido , Epitopos Imunodominantes/imunologia , Norovirus/genéticaRESUMO
BACKGROUND: Vancomycin is a prevalent cause of the severe hypersensitivity syndrome drug reaction with eosinophilia and systemic symptoms (DRESS), which leads to significant morbidity and mortality and commonly occurs in the setting of combination antibiotic therapy, affecting future treatment choices. Variations in HLA class I in particular have been associated with serious T cell-mediated adverse drug reactions, which has led to preventive screening strategies for some drugs. OBJECTIVE: We sought to determine whether variation in the HLA region is associated with vancomycin-induced DRESS. METHODS: Probable vancomycin-induced DRESS cases were matched 1:2 with tolerant control subjects based on sex, race, and age by using BioVU, Vanderbilt's deidentified electronic health record database. Associations between DRESS and carriage of HLA class I and II alleles were assessed by means of conditional logistic regression. An extended sample set from BioVU was used to conduct a time-to-event analysis of those exposed to vancomycin with and without the identified HLA risk allele. RESULTS: Twenty-three subjects met the inclusion criteria for vancomycin-associated DRESS. Nineteen (82.6%) of 23 cases carried HLA-A*32:01 compared with 0 (0%) of 46 of the matched vancomycin-tolerant control subjects (P = 1 × 10-8) and 6.3% of the BioVU population (n = 54,249, P = 2 × 10-16). Time-to-event analysis of DRESS development during vancomycin treatment among the HLA-A*32:01-positive group indicated that 19.2% had DRESS and did so within 4 weeks. CONCLUSIONS: HLA-A*32:01 is strongly associated with vancomycin-induced DRESS in a population of predominantly European ancestry. HLA-A*32:01 testing could improve antibiotic safety, help implicate vancomycin as the causal drug, and preserve future treatment options with coadministered antibiotics.
Assuntos
Antibacterianos/efeitos adversos , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Antígenos HLA-A/imunologia , Vancomicina/efeitos adversos , Adolescente , Adulto , Idoso , Antibacterianos/química , Síndrome de Hipersensibilidade a Medicamentos/etiologia , Feminino , Antígenos HLA-A/química , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Vancomicina/química , Adulto JovemRESUMO
Abacavir administration is associated with drug-induced hypersensitivity reactions in HIV+ individuals expressing the HLA-B*57:01 allele. However, the immunological effects of abacavir administration in an HLA-B57 mismatched transplantation setting have not been studied. We hypothesized that abacavir exposure could induce de novo HLA-B57-specific allorecognition. HIV-specific CD8 T cell clones were generated from HIV+ individuals, using single cell sorting based on HIV peptide/HLA tetramer staining. The T cell clones were assayed for alloreactivity against a panel of single HLA-expressing cell lines, in the presence or absence of abacavir. Cytokine assay, CD137 upregulation, and cytotoxicity were used as readout. Abacavir exposure can induce de novo HLA-B57 allorecognition by HIV-specific T cells. A HIV Gag RK9/HLA-A3-specific T cell did exhibit interferon-γ production, CD137 upregulation, and cytolytic effector function against allogeneic HLA-B57, but only in the presence of abacavir. Allorecognition was specific to the virus specificity, HLA restriction, and T cell receptor TRBV use of the T cell. We provide proof-of-principle evidence that administration of a drug could induce specific allorecognition of mismatched HLA molecules in the transplant setting. We suggest that HIV-seropositive recipients of an HLA-B57 mismatched graft should not receive abacavir until further studies are completed.
Assuntos
Fármacos Anti-HIV/efeitos adversos , Didesoxinucleosídeos/efeitos adversos , Hipersensibilidade a Drogas/imunologia , Infecções por HIV/sangue , Antígenos HLA-B/imunologia , Alelos , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Infecções por HIV/complicações , Infecções por HIV/imunologia , Soropositividade para HIV/imunologia , Teste de Histocompatibilidade , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/citologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
The hepatitis C virus (HCV) E2 glycoprotein is a major target of the neutralizing antibody (nAb) response, with multiple type-specific and broadly neutralizing antibody (bnAb) epitopes identified. The 412-to-423 region can generate bnAbs that block interaction with the cell surface receptor CD81, with activity toward multiple HCV genotypes. In this study, we reveal the structure of rodent monoclonal antibody 24 (MAb24) with an extensive contact area toward a peptide spanning the 412-to-423 region. The crystal structure of the MAb24-peptide 412-to-423 complex reveals the paratope bound to a peptide hairpin highly similar to that observed with human MAb HCV1 and rodent MAb AP33, but with a different angle of approach. In viral outgrowth experiments, we demonstrated three distinct genotype 2a viral populations that acquired resistance to MAb24 via N415D, N417S, and N415D/H386R mutations. Importantly, the MAb24-resistant viruses exhibited significant increases in sensitivity to the majority of bnAbs directed to epitopes within the 412-to-423 region and in additional antigenic determinants located within E2 and the E1E2 complex. This study suggests that modification of N415 causes a global change in glycoprotein structure that increases its vulnerability to neutralization by other antibodies. This finding suggests that in the context of an antibody response to viral infection, acquisition of escape mutations in the 412-to-423 region renders the virus more susceptible to neutralization by other specificities of nAbs, effectively reducing the immunological fitness of the virus. A vaccine for HCV that generates polyspecific humoral immunity with specificity for the 412-to-423 region and at least one other region of E2 is desirable.IMPORTANCE Understanding how antibodies neutralize hepatitis C virus (HCV) is essential for vaccine development. This study reveals for the first time that when HCV develops resistance to a major class of bnAbs targeting the 412-to-423 region of E2, this results in a concomitant increase in sensitivity to neutralization by a majority of other bnAb specificities. Vaccines for the prevention of HCV infection should therefore generate bnAbs directed toward the 412-to-423 region of E2 and additional bnAb epitopes within the viral glycoproteins.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Epitopos/metabolismo , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Epitopos/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/metabolismo , Humanos , Neoplasias Hepáticas , Estrutura Secundária de Proteína , Tetraspanina 28/imunologia , Vacinas contra Hepatite Viral/imunologiaRESUMO
Select CMV epitopes drive life-long CD8+ T cell memory inflation, but the extent of CD4 memory inflation is poorly studied. CD4+ T cells specific for human CMV (HCMV) are elevated in HIV+ HCMV+ subjects. To determine whether HCMV epitope-specific CD4+ T cell memory inflation occurs during HIV infection, we used HLA-DR7 (DRB1*07:01) tetramers loaded with the glycoprotein B DYSNTHSTRYV (DYS) epitope to characterize circulating CD4+ T cells in coinfected HLA-DR7+ long-term nonprogressor HIV subjects with undetectable HCMV plasma viremia. DYS-specific CD4+ T cells were inflated among these HIV+ subjects compared with those from an HIV- HCMV+ HLA-DR7+ cohort or with HLA-DR7-restricted CD4+ T cells from the HIV-coinfected cohort that were specific for epitopes of HCMV phosphoprotein-65, tetanus toxoid precursor, EBV nuclear Ag 2, or HIV gag protein. Inflated DYS-specific CD4+ T cells consisted of effector memory or effector memory-RA+ subsets with restricted TCRß usage and nearly monoclonal CDR3 containing novel conserved amino acids. Expression of this near-monoclonal TCR in a Jurkat cell-transfection system validated fine DYS specificity. Inflated cells were polyfunctional, not senescent, and displayed high ex vivo levels of granzyme B, CX3CR1, CD38, or HLA-DR but less often coexpressed CD38+ and HLA-DR+ The inflation mechanism did not involve apoptosis suppression, increased proliferation, or HIV gag cross-reactivity. Instead, the findings suggest that intermittent or chronic expression of epitopes, such as DYS, drive inflation of activated CD4+ T cells that home to endothelial cells and have the potential to mediate cytotoxicity and vascular disease.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Proteínas Virais/imunologia , ADP-Ribosil Ciclase 1/imunologia , Linfócitos T CD4-Positivos/patologia , Infecções por Citomegalovirus/patologia , Feminino , Infecções por HIV/patologia , Antígeno HLA-DR7/imunologia , Humanos , Memória Imunológica , Masculino , Glicoproteínas de Membrana/imunologiaRESUMO
OBJECTIVE: Helicobacter pylori is the strongest risk factor for gastric cancer; however, the majority of infected individuals do not develop disease. Pathological outcomes are mediated by complex interactions among bacterial, host and environmental constituents, and two dietary factors linked with gastric cancer risk are iron deficiency and high salt. We hypothesised that prolonged adaptation of H. pylori to in vivo carcinogenic microenvironments results in genetic modification important for disease. DESIGN: Whole genome sequencing of genetically related H. pylori strains that differ in virulence and targeted H. pylori sequencing following prolonged exposure of bacteria to in vitro carcinogenic conditions were performed. RESULTS: A total of 180 unique single nucleotide polymorphisms (SNPs) were identified among the collective genomes when compared with a reference H. pylori genome. Importantly, common SNPs were identified in isolates harvested from iron-depleted and high salt carcinogenic microenvironments, including an SNP within fur (FurR88H). To investigate the direct role of low iron and/or high salt, H. pylori was continuously cultured in vitro under low iron or high salt conditions to assess fur genetic variation. Exposure to low iron or high salt selected for the FurR88H variant after only 5 days. To extend these results, fur was sequenced in 339 clinical H. pylori strains. Among the isolates examined, 17% (40/232) of strains isolated from patients with premalignant lesions harboured the FurR88H variant, compared with only 6% (6/107) of strains from patients with non-atrophic gastritis alone (p=0.0034). CONCLUSION: These results indicate that specific genetic variation arises within H. pylori strains during in vivo adaptation to conditions conducive for gastric carcinogenesis.
Assuntos
Carcinogênese , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Proteínas de Bactérias/genética , Infecções por Helicobacter/patologia , Infecções por Helicobacter/fisiopatologia , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Humanos , Técnicas In Vitro/métodos , Polimorfismo de Nucleotídeo Único/fisiologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/fisiopatologiaRESUMO
BACKGROUND: Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. RESULTS: We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. CONCLUSION: Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.