Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 24(4): 520-525, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158188

RESUMO

Brain-dead human subjects (decedents) were recently introduced as a potential preclinical experimental model in xenotransplantation. Brain death is associated with major pathophysiological changes, eg, structural injury and cell infiltration in vital organs, and major hormonal, metabolic, inflammatory, and hemodynamic changes. In 2 of the 3 initial experiments, the design of the experiments resulted in little or no new information becoming available. In the third, the experiment was unfortunately unsuccessful as neither of the 2 pig kidneys transplanted into the decedent functioned adequately. Failure may well have been associated with the effects of brain death, but an immune/inflammatory response to the xenograft could not be excluded. Subsequently, 2 further pig kidney transplants and 2 pig heart transplants have been carried out in human decedents, but again the data obtained do not add much to what is already known. In view of the profound changes that take place during and after brain death, it may prove difficult to determine whether graft failure or dysfunction results from the effects of brain death or from an immune/inflammatory response to the xenograft. A major concern is that, if the results are confusing, they may impact decisions relating to the introduction of clinical xenotransplantation.


Assuntos
Morte Encefálica , Sobrevivência de Enxerto , Humanos , Animais , Suínos , Transplante Heterólogo/métodos , Xenoenxertos , Encéfalo , Rejeição de Enxerto/etiologia , Animais Geneticamente Modificados
2.
Am J Transplant ; 24(1): 30-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633449

RESUMO

De novo membranous nephropathy (dnMN) is an uncommon immune complex-mediated late complication of human kidney allografts that causes proteinuria. We report here the first case of dnMN in a pig-to-baboon kidney xenograft. The donor was a double knockout (GGTA1 and ß4GalNT1) genetically engineered pig with a knockout of the growth hormone receptor and addition of 6 human transgenes (hCD46, hCD55, hTBM, hEPCR, hHO1, and hCD47). The recipient developed proteinuria at 42 days posttransplant, which progressively rose to the nephrotic-range at 106 days, associated with an increase in serum antidonor IgG. Kidney biopsies showed antibody-mediated rejection (AMR) with C4d and thrombotic microangiopathy that eventually led to graft failure at 120 days. In addition to AMR, the xenograft had diffuse, global granular deposition of C4d and IgG along the glomerular basement membrane on days 111 and 120. Electron microscopy showed extensive amorphous subepithelial electron-dense deposits with intervening spikes along the glomerular basement membrane. These findings, in analogy to human renal allografts, are interpreted as dnMN in the xenograft superimposed on AMR. The target was not identified but is hypothesized to be a pig xenoantigen expressed on podocytes. Whether dnMN will be a significant problem in other longer-term xenokidneys remains to be determined.


Assuntos
Glomerulonefrite Membranosa , Nefropatias , Transplante de Rim , Humanos , Suínos , Animais , Glomerulonefrite Membranosa/etiologia , Transplante de Rim/efeitos adversos , Xenoenxertos , Rim/patologia , Nefropatias/patologia , Proteinúria/etiologia , Imunoglobulina G , Rejeição de Enxerto/patologia
3.
Xenotransplantation ; 31(1): e12848, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38407936

RESUMO

Clinical pig heart transplant experiments have been undertaken, and further clinical experiments and/or clinical trials of gene-edited pig organ xenotransplantation are anticipated. The ethical issues relating to xenotransplantation have been discussed for decades but with little resolution. Consideration of certain ethical issues is more urgent than others, and the need to attain consensus is important. These issues include: (i) patient selection criteria for expanded access and/or clinical trials; (ii) appropriate protection of the patient from xenozoonoses, that is, infections caused by pig microorganisms transferred with the organ graft, (iii) minimization of the risk of a xenozoonosis to bystanders, and (iv) the need for additional public perception studies. We discuss why it is important and urgent to achieve consensus on these ethical issues prior to carrying out further expanded access experiments or initiating formal clinical trials. The ways forward on each issue are proposed.


Assuntos
Transplante de Coração , Transplante de Órgãos , Suínos , Humanos , Animais , Transplante Heterólogo , Seleção de Pacientes
4.
Xenotransplantation ; 31(2): e12847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468191

RESUMO

With decades of pre-clinical studies culminating in the recent clinical application of xenotransplantation, it would appear timely to provide recommendations for operationalizing oversight of xenotransplantation clinical trials. Ethical issues with clinical xenotransplantation have been described for decades, largely centering on animal welfare, the risks posed to the recipient, and public health risks posed by potential spread of xenozoonosis. Much less attention has been given to considerations relating to potentially elevated risks faced by those who may care for or otherwise have close contact with xenograft recipients. This paper examines the ethical and logistical issues raised by the potential exposure to xenozoonotic disease faced by close contacts of xenotransplant recipients-defined herein as including but not limited to caregivers, household contacts, and sexual partners-which warrants special attention given their increased risk of exposure to infection compared to the general public. We discuss implications of assent or consent by these close contacts to potentially undergo, along with the recipient, procedures for infection screening and possible quarantine. We then propose several options and recommendations for operationalizing oversight of xenotransplantation clinical trials that could account for and address close contacts' education on and agency regarding the risk of xenozoonosis.


Assuntos
Transplante Heterólogo , Animais , Humanos , Transplante Heterólogo/efeitos adversos , Xenoenxertos
5.
Xenotransplantation ; 31(2): e12818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37529830

RESUMO

BACKGROUND: Xenoantigens other than Gal, Neu5Gc, and Sda may be playing a role in pig graft rejection. We investigated the incidence of antibodies to unknown pig xenoantigen in different human groups. METHODS: We collected blood from TKO/hCD55 pigs (n = 3), and isolated PBMCs and RBCs. Serum samples were collected from (i) healthy human volunteers (n = 43), (ii) patients with end-stage renal disease (ESRD) (n = 87), (iii) the same patients after kidney allotransplantation (n = 50), and (iv) renal allotransplant recipients experiencing T cell-mediated rejection (allo-TCMR, n = 10). The sera were initially incubated with TKO/hCD55 pRBCs (1 × 108 cells) for 1 h to absorb anti-pig antibodies (except against SLA and possibly other antigens not expressed on pRBCs) and then the serum (absorbed or unabsorbed) was tested for antibody binding and complement-dependent cytotoxicity (CDC) to TKO/hCD55 pig PBMCs. RESULTS: A significant reduction in IgM/IgG binding and CDC was observed in the absorbed sera. Serum obtained before and after renal allotransplantation showed no significant difference in IgM or IgG binding to, or in CDC of, TKO/hCD55 pig cells. IgM antibodies (but rarely IgG) against unknown xenoantigens expressed on TKO/hCD55 PBMCs, possibly against swine leukocyte antigens, were documented in healthy humans, patients with ESRD, and those with renal allografts undergoing acute T cell rejection. IgM (but not CDC) was higher in patients experiencing allo-TCMR. CONCLUSION: Human sera contain IgM antibodies against unknown pig xenoantigens expressed on TKO/hCD55 pPBMCs. Although not confirmed in the present study, the targets for these antibodies may include swine leukocyte antigens.


Assuntos
Antígenos Heterófilos , Falência Renal Crônica , Animais , Humanos , Suínos , Animais Geneticamente Modificados , Incidência , Transplante Heterólogo , Imunoglobulina M , Imunoglobulina G , Antígenos HLA , Rejeição de Enxerto
6.
Xenotransplantation ; 31(2): e12859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646924

RESUMO

Antibody-mediated rejection (AMR) is a common cause of graft failure after pig-to-nonhuman primate organ transplantation, even when the graft is from a pig with multiple genetic modifications. The specific factors that initiate AMR are often uncertain. We report two cases of pig kidney transplantation into immunosuppressed baboons in which we identify novel factors associated with the initiation of AMR. In the first, membranous nephropathy was the initiating factor that was then associated with the apparent loss of the therapeutic anti-CD154 monoclonal antibody in the urine when severe proteinuria was present. This observation suggests that proteinuria may be associated with the loss of any therapeutic monoclonal antibody, for example, anti-CD154 or eculizumab, in the urine, resulting in xenograft rejection. In the second case, the sequence of events and histopathology tentatively suggested that pyelonephritis may have initiated acute-onset AMR. The association of a urinary infection with graft rejection has been well-documented in ABO-incompatible kidney allotransplantation based on the expression of an antigen on the invading microorganism shared with the kidney graft, generating an immune response to the graft. To our knowledge, these potential initiating factors of AMR in pig xenografts have not been highlighted previously.


Assuntos
Rejeição de Enxerto , Xenoenxertos , Imunossupressores , Transplante de Rim , Papio , Transplante Heterólogo , Animais , Feminino , Masculino , Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Terapia de Imunossupressão/métodos , Transplante de Rim/efeitos adversos , Transplante de Rim/métodos , Suínos , Transplante Heterólogo/métodos , Transplante Heterólogo/efeitos adversos
7.
Am J Transplant ; 23(3): 326-335, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775767

RESUMO

Progress in pig organ xenotransplantation has been made largely through (1) genetic engineering of the organ-source pig to protect its tissues from the human innate immune response, and (2) development of an immunosuppressive regimen based on blockade of the CD40/CD154 costimulation pathway to prevent the adaptive immune response. In the 1980s, after transplantation into nonhuman primates (NHPs), wild-type (genetically unmodified) pig organs were rejected within minutes or hours. In the 1990s, organs from pigs expressing a human complement-regulatory protein (CD55) transplanted into NHPs receiving intensive conventional immunosuppressive therapy functioned for days or weeks. When costimulation blockade was introduced in 2000, the adaptive immune response was suppressed more readily. The identification of galactose-α1,3-galactose as the major antigen target for human and NHP anti-pig antibodies in 1991 allowed for deletion of expression of galactose-α1,3-galactose in 2003, extending pig graft survival for up to 6 months. Subsequent gene editing to overcome molecular incompatibilities between the pig and primate coagulation systems proved additionally beneficial. The identification of 2 further pig carbohydrate xenoantigens allowed the production of 'triple-knockout' pigs that are preferred for clinical organ transplantation. These combined advances enabled the first clinical pig heart transplant to be performed and opened the door to formal clinical trials.


Assuntos
Galactose , Rejeição de Enxerto , Animais , Humanos , Animais Geneticamente Modificados , Transplante Heterólogo , Primatas , Sobrevivência de Enxerto , Proteínas do Sistema Complemento
8.
Am J Transplant ; 23(3): 353-365, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695679

RESUMO

After pig-to-baboon kidney transplantation, episodes of hypovolemia and hypotension from an unexplained mechanism have been reported. This study evaluated the renin-angiotensin-aldosterone system post-kidney xenotransplantation. Kidneys from genetically-engineered pigs were transplanted into 5 immunosuppressed baboons after the excision of the native kidneys. Immunosuppressive therapy was based on the blockade of the CD40/CD154 costimulation pathway. Plasma renin, angiotensinogen (AGT), angiotensin II (Ang II), aldosterone levels, and urine osmolality and electrolytes were measured in healthy pigs, healthy nonimmunosuppressed baboons, and immunosuppressed baboons with life-supporting pig kidney grafts. After pig kidney transplantation, plasma renin and Ang II levels were not significantly different, although Ang II trended lower, even though plasma AGT and potassium were increased. Plasma aldosterone levels were unchanged. Urine osmolality and sodium concentration were decreased. Even in the presence of increasing AGT and potassium levels, lower plasma Ang II concentrations may be because of reduced, albeit not absent, the reactivity of pig renin to cleave baboon AGT, suggesting an impaired response of the renin-angiotensin-aldosterone system to hypovolemic and hypotensive episodes. The maintenance of aldosterone may be protective. The reduced urine osmolality and sodium concentration reflect the decreased ability of the pig kidney to concentrate urine. These considerations should not prohibit successful clinical pig kidney xenotransplantation.


Assuntos
Sistema Renina-Angiotensina , Renina , Animais , Suínos , Sistema Renina-Angiotensina/fisiologia , Renina/metabolismo , Aldosterona/urina , Papio/metabolismo , Transplante Heterólogo , Rim/metabolismo , Angiotensina II/metabolismo , Modelos Animais de Doenças , Sódio/metabolismo , Potássio/metabolismo
9.
Am J Transplant ; 23(9): 1290-1299, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37217005

RESUMO

In June 2022, the US Food and Drug Administration Center for Biologics Evaluation and Research held the 73rd meeting of the Cellular, Tissue, and Gene Therapies Advisory Committee for public discussion of regulatory expectations for xenotransplantation products. The members of a joint American Society of Transplant Surgeons/American Society of Transplantation committee on xenotransplantation compiled a meeting summary focusing on 7 topics believed to be key by the committee: (1) preclinical evidence supporting progression to a clinical trial, (2) porcine kidney function, (3) ethical aspects, (4) design of initial clinical trials, (5) infectious disease issues, (6) industry perspectives, and (7) regulatory oversight.


Assuntos
Motivação , Cirurgiões , Estados Unidos , Animais , Suínos , Humanos , Transplante Heterólogo , United States Food and Drug Administration
10.
Xenotransplantation ; 30(1): e12790, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435961

RESUMO

When clinical trials of gene-edited pig organ transplantation are initiated, the consent form that the patient is requested to sign will be an important document. Consent to receive a pig xenograft will have significant differences when compared with the requirements of most experimental clinical procedures. We here suggest a consent form for pig kidney transplantation that addresses the major points that will be required and hope it will provide a basis for discussion and future modification, if necessary. There is purposely some repetition in the document, but we believe this is necessary to ensure that the patient has a clear understanding of what he/she is consenting to.


Assuntos
Termos de Consentimento , Transplante de Rim , Feminino , Humanos , Suínos , Animais , Edição de Genes , Transplante Heterólogo , Consentimento Livre e Esclarecido
11.
Xenotransplantation ; 30(3): e12802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37029499

RESUMO

The mechanistic/mammalian target of rapamycin (mTOR) is one of the systems that are necessary to maintain cell homeostasis, such as survival, proliferation, and differentiation. mTOR inhibitors (mTOR-Is) are utilized as immunosuppressants and anti-cancer drugs. In organ allotransplantation, current regimens infrequently include an mTOR-I, which are positioned more commonly as alternative immunosuppressants. In clinical allotransplantation, long-term efficacy has been established, but there is a significant incidence of adverse events, for example, inhibition of wound healing, buccal ulceration, anemia, hyperglycemia, dyslipidemia, and thrombocytopenia, some of which are dose-dependent. mTOR-Is have properties that may be especially beneficial in xenotransplantation. These include suppression of T cell proliferation, increases in the number of T regulatory cells, inhibition of pig graft growth, and anti-inflammatory, anti-viral, and anti-cancer effects. We here review the potential benefits and risks of mTOR-Is in xenotransplantation and suggest that the benefits exceed the adverse effects.


Assuntos
Imunossupressores , Sirolimo , Animais , Suínos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Transplante Heterólogo , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Serina-Treonina Quinases TOR , Linfócitos T Reguladores , Mamíferos
12.
Xenotransplantation ; 30(6): e12829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37793086

RESUMO

A conference on progress in the development of xenotransplantation in China was held in Neijiang, Sichuan, in May 2023, and was attended by approximately 100 established researchers and trainees. Progress in xenotransplantation research was reviewed by both Chinese and foreign experts. The topics discussed ranged from genetic engineering of pigs and the results of pig-to-nonhuman primate organ transplantation to the requirements for designated pathogen-free (DPF) pig facilities and regulation of xenotransplantation. This conference served as an opportunity to collectively advance the development of xenotransplantation in China and pave the way for its clinical application.


Assuntos
Transplante de Órgãos , Animais , Suínos , Transplante Heterólogo/métodos , Engenharia Genética , China , Animais Geneticamente Modificados
13.
Xenotransplantation ; 30(4): e12816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37548030

RESUMO

Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.


Assuntos
Anticorpos , Rejeição de Enxerto , Humanos , Animais , Suínos , Transplante Heterólogo , Rejeição de Enxerto/prevenção & controle , Transplante Homólogo , Proteínas do Sistema Complemento , Anti-Inflamatórios
14.
Xenotransplantation ; 30(6): e12832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37870485

RESUMO

Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.


Assuntos
Queimaduras , Transplante de Pele , Animais , Queimaduras/terapia , Rejeição de Enxerto , Sobrevivência de Enxerto , Imunoglobulina G , Imunoglobulina M , Saimiri , Suínos , Transplante Heterólogo
15.
Xenotransplantation ; 30(2): e12795, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36820525

RESUMO

With pig kidney xenotransplantation nearing clinical reality, it is imperative to measure pig kidney function in the graft recipients. Our aims were (i) to compare inulin clearance after a short intravenous (IV) bolus with steady-state inulin IV infusion, (ii) to use this method to measure the glomerular filtration rate (GFR), and (iii) to determine the tubular secretory function using cefoxitin in a pig-to-baboon renal transplant model. A short IV infusion of inulin and cefoxitin were followed by a maintenance IV infusion of inulin over 5 h in seven healthy baboons, three healthy pigs, and five baboons after bilateral native nephrectomy and intra-abdominal pig renal transplantation. Blood and urine samples were collected. Serum and urinary inulin and serum cefoxitin concentrations measured by validated assays were used to calculate GFR and renal secretion. GFR calculated were similar by both methods. The body weight normalized total body clearance of inulin was similar in pigs and baboons despite differences in absolute clearances. Pig kidney transplanted into baboons provided similar clearance in baboons when normalized to baboon body weight and sustained filtration and secretory functions. The study documented that pig kidneys support the physiologic needs of baboons and are likely to support human recipients as well.


Assuntos
Transplante de Rim , Animais , Suínos , Humanos , Papio , Inulina , Cefoxitina , Transplante Heterólogo , Rim
16.
J Med Ethics ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949649

RESUMO

This manuscript reports on a landmark symposium on the ethical, legal and technical challenges of xenotransplantation in the UK. King's College London, with endorsement from the British Transplantation Society (BTS), and the European Society of Organ Transplantation (ESOT), brought together a group of experts in xenotransplantation science, ethics and law to discuss the ethical, regulatory and technical challenges surrounding translating xenotransplantation into the clinical setting. The symposium was the first of its kind in the UK for 20 years. This paper summarises the content of the expert lectures showcasing the progress which has been made in xenotransplantation including-the history of xenotransplantation, advances in gene edited animals and progress towards clinical xenotransplantation. We then set out the ethical and legal issues still to be resolved. Finally, we report the themes of the roundtable discussion highlighting areas of consensus and controversy. While the detail of the legal discussion was directed towards the UK, the principles and summary reported here are intended to be applicable to any jurisdiction seeking to implement clinical xenotransplantation.

17.
Nurs Health Sci ; 25(1): 161-170, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36335558

RESUMO

There is a global shortage of organs for transplantation and despite many governments making significant changes to their organ donation systems, there are not enough kidneys available to meet the demand. This has led scientists and clinicians to explore alternative means of meeting this organ shortfall. One of the alternatives to human organ transplantation is xenotransplantation, which is the transplantation of organs, tissues, or cells between different species. The resurgence of interest in xenotransplantation and recent scientific breakthroughs suggest that genetically engineered pigs may soon present a realistic alternative as sources of kidneys for clinical transplantation. It is therefore important for healthcare professionals to understand what is involved in xenotransplantation and its future implications for their clinical practices. First, we explore the insufficiency of different organ donation systems to meet the kidney shortage. Second, we provide a background and a summary of the progress made so far in xenotransplantation research. Third, we discuss some of the scientific, technological, ethical, and public health issues associated with xenotransplantation. Finally, we summarize the literature on the attitudes of healthcare professionals toward xenotransplantation.


Assuntos
Obtenção de Tecidos e Órgãos , Animais , Humanos , Suínos , Transplante Heterólogo , Atitude , Saúde Pública , Rim
18.
Xenotransplantation ; 29(1): e12728, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001421

RESUMO

Three excellent presentations at an industry-sponsored symposium at the (virtual) congress of the combined IXA/CTRMS (September 23-25, 2021) were directed to the value and limitations of the pig-to-nonhuman primate (NHP) kidney transplantation model. Daniel Firl and James Markmann provided a meta-analysis comparing the results of kidney allotransplantation and xenotransplantation in NHPs during the past 25 years. Remarkably, the authors had identified 73 published reports that included 910 individual experiments. Although recipient survival after allotransplantation was longer, the superiority over the survival of xenografts was less than anticipated. Given the excellent short- and medium-term results of clinical kidney allotransplantation today, these data provide hope that the results of clinical pig kidney xenotransplantation may prove significantly better than in NHPs. The authors identified several factors that were shown to statistically influence the success or failure of xenotransplantation. Jean Kwun provided valuable information relating to the longstanding question of whether the survival of a pig organ would be jeopardized if transplanted into an allosensitized recipient. He demonstrated that pig kidney transplantation in an HLA-sensitized patient may be at a disadvantage, although multiple genetic engineering of the organ-source pig significantly delayed rejection. In the initial clinical trials, therefore, it would seem wise to exclude any patient with evidence of anti-HLA antibodies. Andrew Adams reported longer survival (>1 year) of Rhesus monkeys with life-supporting pig kidney grafts than has been achieved previously. Although not consistently achieved, these excellent results were obtained with an anti-CD154mAb-based regimen after CD4+ T cell and partial CD20+ B cell depletion. Factors that might have contributed to this success, including the phenotype of the pig, the species of the recipient, the recipient's anti-pig antibody level, and the immunosuppressive regimen, were discussed. Importantly, pig kidney function appeared to be normal in long-term surviving monkeys. Each study contributed to our goal of introducing xenotransplantation into the clinic.


Assuntos
Transplante de Rim , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto , Humanos , Transplante de Rim/métodos , Primatas , Suínos , Transplante Heterólogo/métodos
19.
Xenotransplantation ; 29(2): e12723, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967057

RESUMO

Keith Reemtsma was a pioneer in xenotransplantation, the Honorary Founding President of the International Xenotransplantation Association (in 1998), and a wonderful personality. It is a privilege to be invited to give this lecture in his memory. If he were alive today, he would be delighted to see the progress that has been made in pig organ transplantation into nonhuman primate recipients. This progress has largely resulted from two major advances: (i) the increasing availability of pigs with multiple genetic manipulations aimed at protecting the cells of the organ from the primate immune response and (ii) the introduction of novel immunosuppressive agents that block the CD40/CD154 costimulation pathway. There is strong evidence from numerous in vitro studies that the transplantation of a triple-knockout pig organ, particularly if expressing several human protective proteins, into a patient is likely to be significantly more successful than if that same organ is transplanted into a nonhuman primate recipient. With this fact in mind, and in view of the advances currently being made, the time has surely come when we need to consider moving from the laboratory to the clinic. However, there are still questions we need to definitively resolve: (i) What exact genetic modifications do we need in the organ-source pig? (ii) What exact immunosuppressive regimen will we choose? (iii) How will we monitor the immune response and diagnose and treat rejection? and (iv) How do we plan to prevent or treat potential infectious complications? Furthermore, when these matters have been resolved, which patients will be offered a pig organ in the first trial? We have suggested that patients who are very unlikely to survive until a suitable deceased human donor kidney becomes available are those who should be considered for the initial trials. Assessing public attitudes to xenotransplantation is also important before embarking on a clinical trial. I suggest that progress is much more likely to be made from a small clinical trial than if we persist in carrying out experiments in an animal model that no longer mimics the clinical situation.


Assuntos
Transplante de Rim , Transplantes , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/uso terapêutico , Transplante de Rim/métodos , Suínos , Transplante Heterólogo/métodos
20.
Xenotransplantation ; 29(3): e12743, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297098

RESUMO

Successful organ transplantation between species is now possible, using genetic modifications. This article aims to provide a comprehensive overview of the differences and similarities in kidney function between humans, primates, and pigs, in preparation for pig-allograft to human xenotransplantation. The kidney, as the principal defender of body homeostasis, acts as a sensor, effector, and regulator of physiologic feedback systems. Considerations are made for anticipated effects on each system when a pig kidney is placed into a human recipient. Discussion topics include anatomy, global kidney function, sodium and water handling, kidney hormone production and response to circulating hormones, acid-base balance, and calcium and phosphorus handling. Based on available data, pig kidneys are anticipated to be compatible with human physiology, despite a few barriers.


Assuntos
Sobrevivência de Enxerto , Transplantes , Animais , Animais Geneticamente Modificados , Rejeição de Enxerto/genética , Rim , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa