Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38597890

RESUMO

MOTIVATION: The rapid increase of bio-medical literature makes it harder and harder for scientists to keep pace with the discoveries on which they build their studies. Therefore, computational tools have become more widespread, among which network analysis plays a crucial role in several life-science contexts. Nevertheless, building correct and complete networks about some user-defined biomedical topics on top of the available literature is still challenging. RESULTS: We introduce NetMe 2.0, a web-based platform that automatically extracts relevant biomedical entities and their relations from a set of input texts-i.e. in the form of full-text or abstract of PubMed Central's papers, free texts, or PDFs uploaded by users-and models them as a BioMedical Knowledge Graph (BKG). NetMe 2.0 also implements an innovative Retrieval Augmented Generation module (Graph-RAG) that works on top of the relationships modeled by the BKG and allows the distilling of well-formed sentences that explain their content. The experimental results show that NetMe 2.0 can infer comprehensive and reliable biological networks with significant Precision-Recall metrics when compared to state-of-the-art approaches. AVAILABILITY AND IMPLEMENTATION: https://netme.click/.


Assuntos
Internet , Software , Mineração de Dados/métodos , Biologia Computacional/métodos , PubMed
2.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35753694

RESUMO

MOTIVATION: The study of the Human Virome remains challenging nowadays. Viral metagenomics, through high-throughput sequencing data, is the best choice for virus discovery. The metagenomics approach is culture-independent and sequence-independent, helping search for either known or novel viruses. Though it is estimated that more than 40% of the viruses found in metagenomics analysis are not recognizable, we decided to analyze several tools to identify and discover viruses in RNA-seq samples. RESULTS: We have analyzed eight Virus Tools for the identification of viruses in RNA-seq data. These tools were compared using a synthetic dataset of 30 viruses and a real one. Our analysis shows that no tool succeeds in recognizing all the viruses in the datasets. So we can conclude that each of these tools has pros and cons, and their choice depends on the application domain. AVAILABILITY: Synthetic data used through the review and raw results of their analysis can be found at https://zenodo.org/record/6426147. FASTQ files of real data can be found in GEO (https://www.ncbi.nlm.nih.gov/gds) or ENA (https://www.ebi.ac.uk/ena/browser/home). Raw results of their analysis can be downloaded from https://zenodo.org/record/6425917.


Assuntos
Vírus , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica , Vírus/genética
3.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084249

RESUMO

SUMMARY: The discovery of differential gene-gene correlations across phenotypical groups can help identify the activation/deactivation of critical biological processes underlying specific conditions. The presented R package, provided with a count and design matrix, extract networks of group-specific interactions that can be interactively explored through a shiny user-friendly interface. For each gene-gene link, differential statistical significance is provided through robust linear regression with an interaction term. AVAILABILITY AND IMPLEMENTATION: DEGGs is implemented in R and available on GitHub at https://github.com/elisabettasciacca/DEGGs. The package is also under submission on Bioconductor.


Assuntos
Aplicativos Móveis , Software , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Lineares
4.
Brief Bioinform ; 21(6): 1987-1998, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740918

RESUMO

Next-Generation Sequencing (NGS) is a high-throughput technology widely applied to genome sequencing and transcriptome profiling. RNA-Seq uses NGS to reveal RNA identities and quantities in a given sample. However, it produces a huge amount of raw data that need to be preprocessed with fast and effective computational methods. RNA-Seq can look at different populations of RNAs, including ncRNAs. Indeed, in the last few years, several ncRNAs pipelines have been developed for ncRNAs analysis from RNA-Seq experiments. In this paper, we analyze eight recent pipelines (iSmaRT, iSRAP, miARma-Seq, Oasis 2, SPORTS1.0, sRNAnalyzer, sRNApipe, sRNA workbench) which allows the analysis not only of single specific classes of ncRNAs but also of more than one ncRNA classes. Our systematic performance evaluation aims at guiding users to select the appropriate pipeline for processing each ncRNA class, focusing on three key points: (i) accuracy in ncRNAs identification, (ii) accuracy in read count estimation and (iii) deployment and ease of use.


Assuntos
Benchmarking , RNA não Traduzido , RNA-Seq , Sequência de Bases , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA , RNA não Traduzido/genética , Análise de Sequência de RNA/métodos , Software , Sequenciamento do Exoma
5.
PLoS Comput Biol ; 17(6): e1009069, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166365

RESUMO

Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues' physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. Here we propose PHENSIM, a computational tool using a systems biology approach to simulate how cell phenotypes are affected by the activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways. Our tool's applications include predicting the outcome of drug administration, knockdown experiments, gene transduction, and exposure to exosomal cargo. Importantly, PHENSIM enables the user to make inferences on well-defined cell lines and includes pathway maps from three different model organisms. To assess our approach's reliability, we built a benchmark from transcriptomics data gathered from NCBI GEO and performed four case studies on known biological experiments. Our results show high prediction accuracy, thus highlighting the capabilities of this methodology. PHENSIM standalone Java application is available at https://github.com/alaimos/phensim, along with all data and source codes for benchmarking. A web-based user interface is accessible at https://phensim.tech/.


Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares , Fenótipo , Software , Antineoplásicos/farmacologia , Benchmarking , Biologia Celular , Linhagem Celular , Linhagem Celular Tumoral , Biologia Computacional , Simulação por Computador , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , MAP Quinase Quinase Quinases/genética , Metformina/farmacologia , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Mutações Sintéticas Letais , Biologia de Sistemas , Fator de Necrose Tumoral alfa/genética
6.
Adv Exp Med Biol ; 1361: 119-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230686

RESUMO

The wealth of knowledge and multi-omics data available in drug research has allowed the rise of several computational methods in the drug discovery field, resulting in a novel and exciting strategy called drug repurposing. Drug repurposing consists in finding new applications for existing drugs. Numerous computational methods perform a high-level integration of different knowledge sources to facilitate the discovery of unknown mechanisms. In this chapter, we present a survey of data resources and computational tools available for drug repositioning.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos
7.
Adv Exp Med Biol ; 1361: 143-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230687

RESUMO

With the advent of OMICs technologies, several bioinformatics methods have been developed to infer biological knowledge from such data. Pathway analysis methodologies help integrate multi-OMICs data and find altered function in known metabolic and signaling pathways. As widely known, such alterations promote the cancer cells' progression and the maintenance of the malignant state. In this chapter, we provide (i) a comprehensive description of the primary data sources for omics data, cancer "omics" projects, and precision oncology knowledge bases; (ii) a survey of the main biological pathway databases; (iii) and a global view of the principal pathway analysis tools and methodologies, describing their main characteristics and shortcomings highlighting their potential applications in cancer research and precision oncology.


Assuntos
Neoplasias , Biologia Computacional/métodos , Genômica , Humanos , Oncologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Medicina de Precisão/métodos
8.
Adv Exp Med Biol ; 1361: 177-198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230689

RESUMO

A broad ecosystem of resources, databases, and systems to analyze cancer variations is present in the literature. These are a strategic element in the interpretation of NGS experiments. However, the intrinsic wealth of data from RNA-seq, ChipSeq, and DNA-seq can be fully exploited only with the proper skill and knowledge. In this chapter, we survey relevant literature concerning databases, annotators, and variant prioritization tools.


Assuntos
Ecossistema , Neoplasias , Biologia Computacional , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Software , Sequenciamento do Exoma
9.
BMC Bioinformatics ; 22(1): 298, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082707

RESUMO

BACKGROUND: RNA-Seq is a well-established technology extensively used for transcriptome profiling, allowing the analysis of coding and non-coding RNA molecules. However, this technology produces a vast amount of data requiring sophisticated computational approaches for their analysis than other traditional technologies such as Real-Time PCR or microarrays, strongly discouraging non-expert users. For this reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data. Although interesting, these present several limitations and their usage require a technical background, which may be uncommon in small research laboratories. Therefore, the application of these technologies in such contexts is still limited and causes a clear bottleneck in knowledge advancement. RESULTS: Motivated by these considerations, we have developed RNAdetector, a new free cross-platform and user-friendly RNA-Seq data analysis software that can be used locally or in cloud environments through an easy-to-use Graphical User Interface allowing the analysis of coding and non-coding RNAs from RNA-Seq datasets of any sequenced biological species. CONCLUSIONS: RNAdetector is a new software that fills an essential gap between the needs of biomedical and research labs to process RNA-Seq data and their common lack of technical background in performing such analysis, which usually relies on outsourcing such steps to third party bioinformatics facilities or using expensive commercial software.


Assuntos
Computação em Nuvem , Análise de Dados , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq , Análise de Sequência de RNA , Software
10.
Nucleic Acids Res ; 46(D1): D354-D359, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29036351

RESUMO

miRandola (http://mirandola.iit.cnr.it/) is a database of extracellular non-coding RNAs (ncRNAs) that was initially published in 2012, foreseeing the relevance of ncRNAs as non-invasive biomarkers. An increasing amount of experimental evidence shows that ncRNAs are frequently dysregulated in diseases. Further, ncRNAs have been discovered in different extracellular forms, such as exosomes, which circulate in human body fluids. Thus, miRandola 2017 is an effort to update and collect the accumulating information on extracellular ncRNAs that is spread across scientific publications and different databases. Data are manually curated from 314 articles that describe miRNAs, long non-coding RNAs and circular RNAs. Fourteen organisms are now included in the database, and associations of ncRNAs with 25 drugs, 47 sample types and 197 diseases. miRandola also classifies extracellular RNAs based on their extracellular form: Argonaute2 protein, exosome, microvesicle, microparticle, membrane vesicle, high density lipoprotein and circulating. We also implemented a new web interface to improve the user experience.


Assuntos
Bases de Dados Genéticas , Bases de Conhecimento , RNA não Traduzido , Biomarcadores , Ácidos Nucleicos Livres , Curadoria de Dados , Humanos , MicroRNAs , RNA , RNA Circular , RNA Longo não Codificante , Interface Usuário-Computador
11.
BMC Bioinformatics ; 20(Suppl 9): 366, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757212

RESUMO

BACKGROUND: Several large public repositories of microarray datasets and RNA-seq data are available. Two prominent examples include ArrayExpress and NCBI GEO. Unfortunately, there is no easy way to import and manipulate data from such resources, because the data is stored in large files, requiring large bandwidth to download and special purpose data manipulation tools to extract subsets relevant for the specific analysis. RESULTS: TACITuS is a web-based system that supports rapid query access to high-throughput microarray and NGS repositories. The system is equipped with modules capable of managing large files, storing them in a cloud environment and extracting subsets of data in an easy and efficient way. The system also supports the ability to import data into Galaxy for further analysis. CONCLUSIONS: TACITuS automates most of the pre-processing needed to analyze high-throughput microarray and NGS data from large publicly-available repositories. The system implements several modules to manage large files in an easy and efficient way. Furthermore, it is capable deal with Galaxy environment allowing users to analyze data through a user-friendly interface.


Assuntos
Big Data , Coleta de Dados , Software , Transcriptoma/genética , Linhagem Celular Tumoral , Bases de Dados Genéticas , Humanos , Interface Usuário-Computador
12.
Brief Bioinform ; 18(6): 1071-1081, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677959

RESUMO

Posttranscriptional cross talk and communication between genes mediated by microRNA response element (MREs) yield large regulatory competing endogenous RNA (ceRNA) networks. Their inference may improve the understanding of pathologies and shed new light on biological mechanisms. A variety of RNA: messenger RNA, transcribed pseudogenes, noncoding RNA, circular RNA and proteins related to RNA-induced silencing complex complex interacting with RNA transfer and ribosomal RNA have been experimentally proved to be ceRNAs. We retrace the ceRNA hypothesis of posttranscriptional regulation from its original formulation [Salmena L, Poliseno L, Tay Y, et al. Cell 2011;146:353-8] to the most recent experimental and computational validations. We experimentally analyze the methods in literature [Li J-H, Liu S, Zhou H, et al. Nucleic Acids Res 2013;42:D92-7; Sumazin P, Yang X, Chiu H-S, et al. Cell 2011;147:370-81; Sarver AL, Subramanian S. Bioinformation 2012;8:731-3] comparing them with a general machine learning approach, called ceRNA predIction Algorithm, evaluating the performance in predicting novel MRE-based ceRNAs.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA/genética , Redes Reguladoras de Genes , Humanos , RNA Circular , Elementos de Resposta
13.
BMC Bioinformatics ; 19(Suppl 7): 188, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-30066650

RESUMO

BACKGROUND: The analysis of tissue-specific protein interaction networks and their functional enrichment in pathological and normal tissues provides insights on the etiology of diseases. The Pan-cancer proteomic project, in The Cancer Genome Atlas, collects protein expressions in human cancers and it is a reference resource for the functional study of cancers. However, established protocols to infer interaction networks from protein expressions are still missing. RESULTS: We have developed a methodology called Inference Network Based on iRefIndex Analysis (INBIA) to accurately correlate proteomic inferred relations to protein-protein interaction (PPI) networks. INBIA makes use of 14 network inference methods on protein expressions related to 16 cancer types. It uses as reference model the iRefIndex human PPI network. Predictions are validated through non-interacting and tissue specific PPI networks resources. The first, Negatome, takes into account likely non-interacting proteins by combining both structure properties and literature mining. The latter, TissueNet and GIANT, report experimentally verified PPIs in more than 50 human tissues. The reliability of the proposed methodology is assessed by comparing INBIA with PERA, a tool which infers protein interaction networks from Pathway Commons, by both functional and topological analysis. CONCLUSION: Results show that INBIA is a valuable approach to predict proteomic interactions in pathological conditions starting from the current knowledge of human protein interactions.


Assuntos
Algoritmos , Proteômica/métodos , Humanos , Mutação/genética , Neoplasias/metabolismo , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
14.
Nucleic Acids Res ; 44(13): 6298-308, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27298257

RESUMO

RNA editing is a finely tuned, dynamic mechanism for post-transcriptional gene regulation that has been thoroughly investigated in the last decade. Nevertheless, RNA editing in non-coding RNA, such as microRNA (miRNA), have caused great debate and have called for deeper investigation. Until recently, in fact, inadequate methodologies and experimental contexts have been unable to provide detailed insights for further elucidation of RNA editing affecting miRNAs, especially in cancer.In this work, we leverage on recent innovative bioinformatics approaches applied to a more informative experimental context in order to analyze the variations in miRNA seed region editing activity during a time course of a hypoxia-exposed breast cancer cell line. By investigating its behavior in a dynamic context, we found that miRNA editing events in the seed region are not depended on miRNA expression, unprecedentedly providing insights on the targetome shifts derived from these modifications. This reveals that miRNA editing acts under the influence of environmentally induced stimuli.Our results show a miRNA editing activity trend aligning with cellular pathways closely associated to hypoxia, such as the VEGF and PI3K/Akt pathways, providing important novel insights on this poorly elucidated phenomenon.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Proteína Oncogênica v-akt/genética , Edição de RNA/genética , Fator A de Crescimento do Endotélio Vascular/genética , Hipóxia Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Interação Gene-Ambiente , Humanos , Células MCF-7 , MicroRNAs/biossíntese , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais
15.
Nucleic Acids Res ; 42(9): 5416-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24627222

RESUMO

RNAi is a powerful tool for the regulation of gene expression. It is widely and successfully employed in functional studies and is now emerging as a promising therapeutic approach. Several RNAi-based clinical trials suggest encouraging results in the treatment of a variety of diseases, including cancer. Here we present miR-Synth, a computational resource for the design of synthetic microRNAs able to target multiple genes in multiple sites. The proposed strategy constitutes a valid alternative to the use of siRNA, allowing the employment of a fewer number of molecules for the inhibition of multiple targets. This may represent a great advantage in designing therapies for diseases caused by crucial cellular pathways altered by multiple dysregulated genes. The system has been successfully validated on two of the most prominent genes associated to lung cancer, c-MET and Epidermal Growth Factor Receptor (EGFR). (See http://microrna.osumc.edu/mir-synth).


Assuntos
Técnicas de Silenciamento de Genes , MicroRNAs/genética , Software , Regiões 3' não Traduzidas , Sequência de Bases , Receptores ErbB/biossíntese , Receptores ErbB/genética , Expressão Gênica , Genes Reporter , Células HEK293 , Células HeLa , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Proteínas Proto-Oncogênicas c-met/biossíntese , Proteínas Proto-Oncogênicas c-met/genética , Interferência de RNA
16.
BMC Genomics ; 15 Suppl 3: S4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077952

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as biomarkers for diseases including cardiovascular diseases and cancer. Released miRNAs do not necessarily reflect the abundance of miRNAs in the cell of origin. It is claimed that release of miRNAs from cells into blood and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. Moreover, miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. In particular, the use of drugs should be taken into consideration while analyzing plasma miRNA levels as drug treatment. This may impair their employment as biomarkers. DESCRIPTION: We enriched our manually curated extracellular/circulating microRNAs database, miRandola, by providing (i) a systematic comparison of expression profiles of cellular and extracellular miRNAs, (ii) a miRNA targets enrichment analysis procedure, (iii) information on drugs and their effect on miRNA expression, obtained by applying a natural language processing algorithm to abstracts obtained from PubMed. CONCLUSIONS: This allows users to improve the knowledge about the function, diagnostic potential, and the drug effects on cellular and circulating miRNAs.


Assuntos
Biologia Computacional/métodos , Genômica/métodos , MicroRNAs/genética , Bancos de Espécimes Biológicos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Humanos , Armazenamento e Recuperação da Informação , MicroRNAs/metabolismo , Interface Usuário-Computador , Navegador
17.
Bioinformatics ; 29(16): 2004-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23720490

RESUMO

MOTIVATION: The identification of drug-target interaction (DTI) represents a costly and time-consuming step in drug discovery and design. Computational methods capable of predicting reliable DTI play an important role in the field. Recently, recommendation methods relying on network-based inference (NBI) have been proposed. However, such approaches implement naive topology-based inference and do not take into account important features within the drug-target domain. RESULTS: In this article, we present a new NBI method, called domain tuned-hybrid (DT-Hybrid), which extends a well-established recommendation technique by domain-based knowledge including drug and target similarity. DT-Hybrid has been extensively tested using the last version of an experimentally validated DTI database obtained from DrugBank. Comparison with other recently proposed NBI methods clearly shows that DT-Hybrid is capable of predicting more reliable DTIs. AVAILABILITY: DT-Hybrid has been developed in R and it is available, along with all the results on the predictions, through an R package at the following URL: http://sites.google.com/site/ehybridalgo/.


Assuntos
Descoberta de Drogas , Estrutura Terciária de Proteína/efeitos dos fármacos , Algoritmos , Bases de Dados de Produtos Farmacêuticos , Proteínas/efeitos dos fármacos
18.
PLoS One ; 19(4): e0301591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593144

RESUMO

Multi-layer Complex networks are commonly used for modeling and analysing biological entities. This paper presents the advantage of using COMBO (Combining Multi Bio Omics) to suggest a new role of the chromosomal aberration as a cancer driver factor. Exploiting the heterogeneous multi-layer networks, COMBO integrates gene expression and DNA-methylation data in order to identify complex bilateral relationships between transcriptome and epigenome. We evaluated the multi-layer networks generated by COMBO on different TCGA cancer datasets (COAD, BLCA, BRCA, CESC, STAD) focusing on the effect of a specific chromosomal numerical aberration, broad gain in chromosome 20, on different cancer histotypes. In addition, the effect of chromosome 8q amplification was tested in the same TCGA cancer dataset. The results demonstrate the ability of COMBO to identify the chromosome 20 amplification cancer driver force in the different TCGA Pan Cancer project datasets.


Assuntos
Aberrações Cromossômicas , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Metilação de DNA , Transcriptoma , Epigenoma
19.
Front Genet ; 15: 1285305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645485

RESUMO

Background: In the precision medicine era, identifying predictive factors to select patients most likely to benefit from treatment with immunological agents is a crucial and open challenge in oncology. Methods: This paper presents a pan-cancer analysis of Tumor Mutational Burden (TMB). We developed a novel computational pipeline, TMBcalc, to calculate the TMB. Our methodology can identify small and reliable gene signatures to estimate TMB from custom targeted-sequencing panels. For this purpose, our pipeline has been trained on top of 17 cancer types data obtained from TCGA. Results: Our results show that TMB, computed through the identified signature, strongly correlates with TMB obtained from whole-exome sequencing (WES). Conclusion: We have rigorously analyzed the effectiveness of our methodology on top of several independent datasets. In particular we conducted a comprehensive testing on: (i) 126 samples sourced from the TCGA database; few independent whole-exome sequencing (WES) datasets linked to colon, breast, and liver cancers, all acquired from the EGA and the ICGC Data Portal. This rigorous evaluation clearly highlights the robustness and practicality of our approach, positioning it as a promising avenue for driving substantial progress within the realm of clinical practice.

20.
Nanoscale ; 16(10): 5137-5148, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305723

RESUMO

Recent discoveries have revealed that mature miRNAs could form highly ordered structures similar to aptamers, suggesting diverse functions beyond mRNA recognition and degradation. This study focuses on understanding the secondary structures of human miR-26b-5p (UUCAAGUAAUUCAGGAUAGGU) using circular dichroism (CD) and chiroptical probes; in particular, four achiral porphyrins were utilized to both act as chiroptical probes and influence miRNA thermodynamic stability. Various spectroscopic techniques, including UV-Vis, fluorescence, resonance light scattering (RLS), electronic circular dichroism (ECD), and CD melting, were employed to study their interactions. UV-Vis titration revealed that meso-tetrakis(4-N-methylpyridyl) porphyrin (H2T4) and meso-tetrakis(4-carboxyphenylspermine) porphyrin (H2TCPPSpm4) formed complexes with distinct binding stoichiometries up to 6 : 1 and 3 : 1 ratios, respectively, and these results were supported by RLS and fluorescence, while the zinc(II) derivative porphyrin ZnT4 exhibited a weaker interaction. ZnTCPPSpm4 formed aggregates in PBS with higher organization in the presence of miRNA. CD titrations displayed an induced CD signal in the Soret region for every porphyrin investigated, indicating that they can be used as chiroptical probes for miR-26b-5p. Lastly, CD melting experiments revealed that at a 1 : 1 ratio, porphyrins did not significantly affect miRNA stability, except for H2TCPPSpm4. However, at a 3 : 1 ratio, all porphyrins, except ZnTCPPSpm4, exhibited a strong destabilizing effect on miRNA secondary structures. These findings shed light on the structural versatility of miR-26b-5p and highlight the potential of porphyrins as chiroptical probes and modulators of miRNA stability.


Assuntos
MicroRNAs , Porfirinas , Humanos , Porfirinas/química , Zinco , Oligonucleotídeos , Dicroísmo Circular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa