Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Platelets ; 35(1): 2313359, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38353233

RESUMO

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Assuntos
Plaquetas , Transdução de Sinais , Humanos , Camundongos , Animais , Fenômenos Biomecânicos , Plaquetas/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Ativação Plaquetária , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Óxido Nítrico/metabolismo , Agregação Plaquetária
2.
Respir Res ; 24(1): 167, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349733

RESUMO

BACKGROUND: The origin of αSMA-positive myofibroblasts, key players within organ fibrosis, is still not fully elucidated. Pericytes have been discussed as myofibroblast progenitors in several organs including the lung. METHODS: Using tamoxifen-inducible PDGFRß-tdTomato mice (PDGFRß-CreERT2; R26tdTomato) lineage of lung pericytes was traced. To induce lung fibrosis, a single orotracheal dose of bleomycin was given. Lung tissue was investigated by immunofluorescence analyses, hydroxyproline collagen assay and RT-qPCR. RESULTS: Lineage tracing combined with immunofluorescence for nitric oxide-sensitive guanylyl cyclase (NO-GC) as marker for PDGFRß-positive pericytes allows differentiating two types of αSMA-expressing myofibroblasts in murine pulmonary fibrosis: (1) interstitial myofibroblasts that localize in the alveolar wall, derive from PDGFRß+ pericytes, express NO-GC and produce collagen 1. (2) intra-alveolar myofibroblasts which do not derive from pericytes (but express PDGFRß de novo after injury), are negative for NO-GC, have a large multipolar shape and appear to spread over several alveoli within the injured areas. Moreover, NO-GC expression is reduced during fibrosis, i.e., after pericyte-to-myofibroblast transition. CONCLUSION: In summary, αSMA/PDGFRß-positive myofibroblasts should not be addressed as a homogeneous target cell type within pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Pericitos/metabolismo , Miofibroblastos/metabolismo , Guanilato Ciclase/metabolismo , Fibrose , Colágeno/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511420

RESUMO

Pulmonary fibrosis is a chronic and progressive disease with limited therapeutic options. Nitric oxide (NO) is suggested to reduce the progression of pulmonary fibrosis via NO-sensitive guanylyl cyclase (NO-GC). The exact effects of NO-GC during pulmonary fibrosis are still elusive. Here, we used a NO-GC knockout mouse (GCKO) and examined fibrosis and inflammation after bleomycin treatment. Compared to wildtype (WT), GCKO mice showed an increased fibrotic reaction, as myofibroblast occurrence (p = 0.0007), collagen content (p = 0.0006), and mortality (p = 0.0009) were significantly increased. After fibrosis induction, lymphocyte accumulations were observed in the lungs of GCKO but not in WT littermates. In addition, the total number of immune cells, specifically lymphocytes (p = <0.0001) and neutrophils (p = 0.0047), were significantly higher in the bronchoalveolar lavage fluid (BALF) of GCKO animals compared to WT, indicating an increased inflammatory response in the absence of NO-GC. The pronounced fibrotic response in GCKO mice was paralleled by significantly increased levels of transforming growth factor ß (TGFß) in BALF (p = 0.0207), which correlated with the total number of immune cells. Taken together, our data show the effect of NO-GC deletion in the pathology of lung fibrosis and the effect on immune cells in BALF. In summary, our results show that NO-GC has anti-inflammatory and anti-fibrotic properties in the murine lung, very likely by attenuating TGFß-mediated effects.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Guanilil Ciclase Solúvel/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Pulmão/patologia , Camundongos Knockout , Líquido da Lavagem Broncoalveolar , Fator de Crescimento Transformador beta/metabolismo , Anti-Inflamatórios/uso terapêutico , Bleomicina/farmacologia , Camundongos Endogâmicos C57BL
4.
J Theor Biol ; 550: 111222, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35843440

RESUMO

BACKGROUND: The cyclic nucleotides cAMP and cGMP inhibit platelet activation. Different platelet signaling modules work together. We develop here a modelling framework to integrate different signaling modules and apply it to platelets. RESULTS: We introduce a novel standardized bilinear coupling mechanism allowing sub model debugging and standardization of coupling with optimal data driven modelling by methods from optimization. Besides cAMP signaling our model considers specific cGMP effects including external stimuli by drugs. Moreover, the output of the cGMP module serves as input for a modular model of VASP phosphorylation and for the activity of cAMP and cGMP pathways in platelets. Experimental data driven modeling allows us to design models with quantitative output. We use the condensed information about involved regulation and system responses for modeling drug effects and obtaining optimal experimental settings. Stepwise further validation of our model is given by direct experimental data. CONCLUSIONS: We present a general framework for model integration using modules and their stimulus responses. We demonstrate it by a multi-modular model for platelet signaling focusing on cGMP and VASP phosphorylation. Moreover, this allows to estimate drug action on any of the inhibitory cyclic nucleotide pathways (cGMP, cAMP) and is supported by experimental data.


Assuntos
Plaquetas , AMP Cíclico , GMP Cíclico , Nucleotídeos Cíclicos , Fosfoproteínas , Fosforilação
5.
Proc Natl Acad Sci U S A ; 116(44): 22237-22245, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611379

RESUMO

Gastrointestinal dysfunctions in individuals with autism spectrum disorder are poorly understood, although they are common among this group of patients. FOXP1 haploinsufficiency is characterized by autistic behavior, language impairment, and intellectual disability, but feeding difficulties and gastrointestinal problems have also been reported. Whether these are primary impairments, the result of altered eating behavior, or side effects of psychotropic medication remains unclear. To address this question, we investigated Foxp1+/- mice reflecting FOXP1 haploinsufficiency. These animals show decreased body weight and altered feeding behavior with reduced food and water intake. A pronounced muscular atrophy was detected in the esophagus and colon, caused by reduced muscle cell proliferation. Nitric oxide-induced relaxation of the lower esophageal sphincter was impaired and achalasia was confirmed in vivo by manometry. Foxp1 targets (Nexn, Rbms3, and Wls) identified in the brain were dysregulated in the adult Foxp1+/- esophagus. Total gastrointestinal transit was significantly prolonged due to impaired colonic contractility. Our results have uncovered a previously unknown dysfunction (achalasia and impaired gut motility) that explains the gastrointestinal disturbances in patients with FOXP1 syndrome, with potential wider relevance for autism.


Assuntos
Transtorno Autístico/genética , Acalasia Esofágica/genética , Fatores de Transcrição Forkhead/genética , Trânsito Gastrointestinal , Proteínas Repressoras/genética , Animais , Transtorno Autístico/fisiopatologia , Encéfalo/metabolismo , Proliferação de Células , Colo/metabolismo , Colo/patologia , Colo/fisiopatologia , Acalasia Esofágica/fisiopatologia , Esôfago/metabolismo , Esôfago/patologia , Esôfago/fisiopatologia , Comportamento Alimentar , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Síndrome , Transativadores/genética , Transativadores/metabolismo
6.
Int J Mol Sci ; 22(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430449

RESUMO

Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and ß1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and ß1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and ß1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.


Assuntos
Inflamação/genética , Óxido Nítrico/genética , Periodonto/metabolismo , Guanilil Ciclase Solúvel/genética , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , GMP Cíclico/genética , Regulação da Expressão Gênica/genética , Heme/genética , Humanos , Inflamação/patologia , Ferro/metabolismo , Osteoclastos/metabolismo , Oxirredução/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/patologia , Periodonto/patologia
7.
Proc Natl Acad Sci U S A ; 113(17): E2355-62, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071111

RESUMO

Asthma is defined by airway inflammation and hyperresponsiveness, and contributes to morbidity and mortality worldwide. Although bronchodilation is a cornerstone of treatment, current bronchodilators become ineffective with worsening asthma severity. We investigated an alternative pathway that involves activating the airway smooth muscle enzyme, soluble guanylate cyclase (sGC). Activating sGC by its natural stimulant nitric oxide (NO), or by pharmacologic sGC agonists BAY 41-2272 and BAY 60-2770, triggered bronchodilation in normal human lung slices and in mouse airways. Both BAY 41-2272 and BAY 60-2770 reversed airway hyperresponsiveness in mice with allergic asthma and restored normal lung function. The sGC from mouse asthmatic lungs displayed three hallmarks of oxidative damage that render it NO-insensitive, and identical changes to sGC occurred in human lung slices or in human airway smooth muscle cells when given chronic NO exposure to mimic the high NO in asthmatic lung. Our findings show how allergic inflammation in asthma may impede NO-based bronchodilation, and reveal that pharmacologic sGC agonists can achieve bronchodilation despite this loss.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Broncodilatadores/farmacologia , Guanilato Ciclase/efeitos dos fármacos , Hidrocarbonetos Fluorados/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antiasmáticos/uso terapêutico , Asma/enzimologia , Asma/fisiopatologia , Benzoatos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/enzimologia , Broncodilatadores/uso terapêutico , Técnicas de Cocultura , GMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Hidrocarbonetos Fluorados/uso terapêutico , Pulmão/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/efeitos dos fármacos , Músculo Liso/enzimologia , Óxido Nítrico/farmacologia , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Solubilidade , Traqueia/efeitos dos fármacos
8.
Pflugers Arch ; 470(4): 693-702, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29294149

RESUMO

Phosphodiesterase 3 (PDE3) exists in two isoforms (PDE3A and PDE3B) and is known to act as cGMP-inhibited cAMP-degrading PDE. Therefore, PDE3 may likely be involved in the interaction between the two second messenger pathways. NO-sensitive guanylyl cyclase (NO-GC) is the most important cytosolic generator of cGMP. Here, we investigated the effect of NO-GC deletion on PDE3A-mediated signaling in animals lacking NO-GC either globally (GCKO) or specifically in smooth muscle cells (SMC-GCKO). PDE3A expression is detected in murine aortic smooth muscle, platelets, and heart tissue. Expression and activity of PDE3A in aortae from GCKO and SMC-GCKO mice was reduced by approx. 50% compared to that in control animals. PDE3A downregulation can be linked to the reduction in NO-GC and is not an effect of the increased blood pressure levels resulting from NO-GC deletion. Despite the different PDE3A expression levels, smooth muscle relaxation induced by forskolin to stimulate cAMP signaling was similar in all genotypes. Basal and forskolin-stimulated cAMP levels in aortic tissue were not different between KO and control strains. However, the potency of milrinone, a selective inhibitor of PDE3A, to induce relaxation was higher in aortae from GCKO and SMC-GCKO than that in aorta from control animals. These data were corroborated by the effect of milrinone in vivo, which led to an increase in systolic blood pressure in both KO strains but not in control mice. We conclude that NO-GC modulates PDE3A expression and activity in SMC in vivo conceivably to preserve functional cAMP signaling.


Assuntos
Aorta/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Animais , Aorta/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Milrinona/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
Ann Rheum Dis ; 77(3): 459, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311148

RESUMO

OBJECTIVES: Stimulators of soluble guanylate cyclase (sGC) are currently investigated in clinical trials for the treatment of fibrosis in systemic sclerosis (SSc). In this study, we aim to investigate the role of protein kinases G (PKG) as downstream mediators of sGC-cyclic guanosine monophosphate (cGMP) in SSc. METHODS: Mice with combined knockout of PKG1 and 2 were challenged with bleomycin and treated with the sGC stimulator BAY 41-2272. Fibroblasts were treated with BAY 41-2272 and with the PKG inhibitor KT 5823. RESULTS: PKG1 and 2 are upregulated in SSc in a transforming growth factor-ß1 (TGFß1)-dependent manner, as an attempt to compensate for the decreased signalling through the sGC-cGMP-PKG pathway. Inhibition or knockout of PKG1 and 2 abrogates the inhibitory effects of sGC stimulation on fibroblast activation in a SMAD-independent, but extracellular signal-regulated kinase (ERK)-dependent manner. In vivo, sGC stimulation fails to prevent bleomycin-induced fibrosis in PKG1 and 2 knockout mice. CONCLUSIONS: Our data provide evidence that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFß signalling. TGFß1 promotes its profibrotic effects through inhibition of sGC-cGMP-PKG signalling, sGC stimulation exerts its antifibrotic effects by inhibition of TGFß1-induced ERK phosphorylation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fibroblastos/metabolismo , Escleroderma Sistêmico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Adulto , Idoso , Animais , Bleomicina/farmacologia , Western Blotting , Carbazóis/farmacologia , Técnicas de Cultura de Células , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose/metabolismo , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Pirazóis/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Escleroderma Sistêmico/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
10.
Nitric Oxide ; 77: 12-18, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29626542

RESUMO

Nitric oxide-sensitive guanylyl cyclase (NO-GC) has been shown to regulate a plethora of different functions in the body. These include, among many others, the fine-tuning of vascular tone, platelet reactivity and gastrointestinal motility. Evidence for the participation of NO-GC in these functions has been obtained from various species including humans, rodents, as well as insects. Clearly, individual cell types that express NO-GC contribute differentially to organ-specific NO/cGMP signaling in the body. Hence, identification of NO-GC-expressing cells and their individual involvement in NO/cGMP signaling constituted the focus of many studies over the last 40 years. Probably most information has been obtained from vascular smooth muscle cells and platelets, in which NO-GC is known to induce relaxation and inhibition of aggregation, respectively. Many other cell types that express the enzyme have been linked to certain functions, e.g. cardiomyocyte/inotropy or gastrointestinal smooth muscle cells/motility. However, in some cell types, e.g. myofibroblasts or pericytes, NO-GC expression is evident but individual functions of NO/cGMP signaling have yet to be assigned, whereas in other cell types, e.g. in erythrocytes, expression and role of NO-GC is still a matter of debate. This review discusses the current knowledge on 'less popular' cell types that express NO-GC (pericytes, myofibroblasts, cardiomyocytes, adipocytes, interstitial cells of Cajal, fibroblast-like cells and blood cells) and outlines possible further functions in cell types that have not gained strong attention so far.


Assuntos
Guanilil Ciclase Solúvel/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células Intersticiais de Cajal/citologia , Células Intersticiais de Cajal/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Transdução de Sinais
11.
Mol Pharmacol ; 92(4): 375-388, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28874607

RESUMO

Nitric oxide (NO) activates the NO-sensitive soluble guanylate cyclase (NO-GC, sGC) and triggers intracellular signaling pathways involving cGMP. For survival of cochlear hair cells and preservation of hearing, NO-mediated cascades have both protective and detrimental potential. Here we examine the cochlear function of mice lacking one of the two NO-sensitive guanylate cyclase isoforms [NO-GC1 knockout (KO) or NO-GC2 KO]. The deletion of NO-GC1 or NO-GC2 did not influence electromechanical outer hair cell (OHC) properties, as measured by distortion product otoacoustic emissions, neither before nor after noise exposure, nor were click- or noise-burst-evoked auditory brainstem response thresholds different from controls. Yet inner hair cell (IHC) ribbons and auditory nerve responses showed significantly less deterioration in NO-GC1 KO and NO-GC2 KO mice after noise exposure. Consistent with a selective role of NO-GC in IHCs, NO-GC ß1 mRNA was found in isolated IHCs but not in OHCs. Using transgenic mice expressing the fluorescence resonance energy transfer-based cGMP biosensor cGi500, NO-induced elevation of cGMP was detected in real-time in IHCs but not in OHCs. Pharmacologic long-term treatment with a NO-GC stimulator altered auditory nerve responses but did not affect OHC function and hearing thresholds. Interestingly, NO-GC stimulation exacerbated the loss of auditory nerve response in aged animals but attenuated the loss in younger animals. We propose NO-GC2 and, to some degree, NO-GC1 as targets for early pharmacologic prevention of auditory fiber loss (synaptopathy). Both isoforms provide selective benefits for hearing function by maintaining the functional integrity of auditory nerve fibers in early life rather than at old age.


Assuntos
Guanilato Ciclase/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Óxido Nítrico/metabolismo , Ruído/efeitos adversos , Receptores de Superfície Celular/metabolismo , Animais , Feminino , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Receptores de Superfície Celular/agonistas , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia
12.
Acta Neuropathol ; 134(2): 281-295, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28620692

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) in young adults that has serious negative socioeconomic effects. In addition to symptoms caused by CNS pathology, the majority of MS patients frequently exhibit gastrointestinal dysfunction, which was previously either explained by the presence of spinal cord lesions or not directly linked to the autoimmune etiology of the disease. Here, we studied the enteric nervous system (ENS) in a B cell- and antibody-dependent mouse model of MS by immunohistochemistry and electron microscopy at different stages of the disease. ENS degeneration was evident prior to the development of CNS lesions and the onset of neurological deficits in mice. The pathology was antibody mediated and caused a significant decrease in gastrointestinal motility, which was associated with ENS gliosis and neuronal loss. We identified autoantibodies against four potential target antigens derived from enteric glia and/or neurons by immunoprecipitation and mass spectrometry. Antibodies against three of the target antigens were also present in the plasma of MS patients as confirmed by ELISA. The analysis of human colon resectates provided evidence of gliosis and ENS degeneration in MS patients compared to non-MS controls. For the first time, this study establishes a pathomechanistic link between the well-established autoimmune attack on the CNS and ENS pathology in MS, which might provide a paradigm shift in our current understanding of the immunopathogenesis of the disease with broad diagnostic and therapeutic implications.


Assuntos
Autoanticorpos/sangue , Gastroenteropatias/etiologia , Esclerose Múltipla , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/ultraestrutura , Feminino , Adjuvante de Freund/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/complicações , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Músculo Liso/patologia , Músculo Liso/ultraestrutura , Proteína Básica da Mielina/imunologia , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Plexo Mientérico/patologia , Plexo Mientérico/ultraestrutura , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/toxicidade , Tubulina (Proteína)/metabolismo
13.
Basic Res Cardiol ; 111(4): 51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27342234

RESUMO

Stimulators of the soluble guanylyl cyclase (sGC) are emerging therapeutic agents in cardiovascular diseases. Genetic alterations of the GUCY1A3 gene, which encodes the α1 subunit of the sGC, are associated with coronary artery disease. Studies investigating sGC stimulators in subjects with CAD and carrying risk-related variants in sGC are, however, lacking. Here, we functionally investigate the impact of coding GUCY1A3 variants on sGC activity and the therapeutic potential of sGC stimulators in vitro. In addition to a known loss-of-function variant, eight coding variants in GUCY1A3 were cloned and expressed in HEK 293 cells. Protein levels and dimerization capability with the ß1 subunit were analysed by immunoblotting and co-immunoprecipitation, respectively. All α1 variants found in MI patients dimerized with the ß1 subunit. Protein levels were reduced by 72 % in one variant (p < 0.01). Enzymatic activity was analysed using cGMP radioimmunoassay after stimulation with a nitric oxide (NO) donor. Five variants displayed decreased cGMP production upon NO stimulation (p < 0.001). The addition of the sGC stimulator BAY 41-2272 increased cGMP formation in all of these variants (p < 0.01). Except for the variant leading to decreased protein level, cGMP amounts reached the wildtype NO-induced level after addition of BAY 41-2272. In conclusion, rare coding variants in GUCY1A3 lead to reduced cGMP formation which can be rescued by a sGC stimulator in vitro. These results might therefore represent the starting point for discovery of novel treatment strategies for patients at risk with coding GUCY1A3 variants.


Assuntos
Doença da Artéria Coronariana/genética , GMP Cíclico/biossíntese , Guanilil Ciclase Solúvel/genética , Adulto , Animais , GMP Cíclico/genética , Predisposição Genética para Doença/genética , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Pirazóis/farmacologia , Piridinas/farmacologia , Radioimunoensaio , Guanilil Ciclase Solúvel/metabolismo , Adulto Jovem
14.
Cell Commun Signal ; 14(1): 16, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27515066

RESUMO

BACKGROUND: Direct interaction between Red blood cells (RBCs) and platelets is known for a long time. The bleeding time is prolonged in anemic patients independent of their platelet count and could be corrected by transfusion of RBCs, which indicates that RBCs play an important role in hemostasis and platelet activation. However, in the last few years, opposing mechanisms of platelet inhibition by RBCs derived nitric oxide (NO) were proposed. The aim of our study was to identify whether RBCs could produce NO and activate soluble guanylate cyclase (sGC) in platelets. METHODS: To test whether RBCs could activate sGC under different conditions (whole blood, under hypoxia, or even loaded with NO), we used our well-established and highly sensitive models of NO-dependent sGC activation in platelets and activation of purified sGC. The activation of sGC was monitored by detecting the phosphorylation of Vasodilator Stimulated Phosphoprotein (VASP(S239)) by flow cytometry and Western blot. ANOVA followed by Bonferroni's test and Student's t-test were used as appropriate. RESULTS: We show that in the whole blood, RBCs prevent NO-mediated inhibition of ADP and TRAP6-induced platelet activation. Likewise, coincubation of RBCs with platelets results in strong inhibition of NO-induced sGC activation. Under hypoxic conditions, incubation of RBCs with NO donor leads to Hb-NO formation which inhibits sGC activation in platelets. Similarly, RBCs inhibit activation of purified sGC, even under conditions optimal for RBC-mediated generation of NO from nitrite. CONCLUSIONS: All our experiments demonstrate that RBCs act as strong NO scavengers and prevent NO-mediated inhibition of activated platelets. In all tested conditions, RBCs were not able to activate platelet or purified sGC.


Assuntos
Plaquetas/metabolismo , Eritrócitos/metabolismo , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Plaquetas/enzimologia , Humanos
15.
J Physiol ; 593(20): 4589-601, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26227063

RESUMO

In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon.


Assuntos
Colo/fisiologia , Células Intersticiais de Cajal/fisiologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Óxido Nítrico/fisiologia , Animais , Guanilato Ciclase/genética , Guanilato Ciclase/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais , Guanilil Ciclase Solúvel
16.
J Physiol ; 593(2): 403-14, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25630261

RESUMO

Oesophageal achalasia is a disease known to result from reduced relaxation of the lower oesophageal sphincter (LES). Nitric oxide (NO) is one of the main inhibitory transmitters. NO-sensitive guanylyl cyclase (NO-GC) acts as the key target of NO and, by the generation of cGMP, mediates nitrergic relaxation in the LES. To date, the exact mechanism of nitrergic LES relaxation is still insufficiently elucidated. To clarify the role of NO-GC in LES relaxation, we used cell-specific knockout (KO) mouse lines for NO-GC. These include mice lacking NO-GC in smooth muscle cells (SMC-GCKO), in interstitial cells of Cajal (ICC-GCKO) and in both SMC/ICC (SMC/ICC-GCKO). We applied oesophageal manometry to study the functionality of LES in vivo. Isometric force studies were performed to monitor LES responsiveness to exogenous NO and electric field stimulation of intrinsic nerves in vitro. Cell-specific expression/deletion of NO-GC was monitored by immunohistochemistry. Swallowing-induced LES relaxation is strongly reduced by deletion of NO-GC in ICC. Basal LES tone is affected by NO-GC deletion in either SMC or ICC. Lack of NO-GC in both cells leads to a complete interruption of NO-induced relaxation and, therefore, to an achalasia-like phenotype similar to that seen in global GCKO mice. Our data indicate that regulation of basal LES tone is based on a dual mechanism mediated by NO-GC in SMC and ICC whereas swallow-induced LES relaxation is mainly regulated by nitrergic mechanisms in ICC.


Assuntos
Esfíncter Esofágico Inferior/metabolismo , Guanilato Ciclase/metabolismo , Células Intersticiais de Cajal/metabolismo , Relaxamento Muscular , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Esfíncter Esofágico Inferior/citologia , Esfíncter Esofágico Inferior/fisiologia , Guanilato Ciclase/genética , Células Intersticiais de Cajal/fisiologia , Contração Isométrica , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Guanilil Ciclase Solúvel
17.
Angiogenesis ; 18(3): 245-54, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25795218

RESUMO

Nitric oxide (NO) acts as essential regulator of vasculogenesis and angiogenesis and is critical for arteriogenesis. Whether NO's effects in vivo are mediated through NO-sensitive guanylyl cyclase (NO-GC) and thus by cGMP-dependent mechanisms has been only poorly addressed. Mice lacking NO-GC globally or specifically in smooth muscle cells (SMC) or endothelial cells (EC) were subjected to two established models for arteriogenesis and angiogenesis, namely hindlimb ischemia and oxygen-induced retinopathy. Our data clearly show the involvement of NO-GC in the recovery of blood flow after hindlimb ischemia, and this effect could be attributed to NO-GC in SMC. In the retina, global deletion of NO-GC led to reduced oxygen-induced vessel loss and hypoxia-induced capillary regrowth, whereas pathological neovascularization was increased. These effects were also seen in mice with SMC-specific NO-GC deletion but not in animals lacking NO-GC in EC. Intriguingly, NO-GC was found to be strongly expressed in retinal pericytes. Our data prove the involvement of NO-GC in growth and plasticity of hindlimb and retinal vasculature after ischemic/hypoxic insult.


Assuntos
Guanilato Ciclase/metabolismo , Neovascularização Patológica , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , GMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Éxons , Guanilato Ciclase/genética , Membro Posterior/irrigação sanguínea , Hipóxia/patologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Oxigênio/química , Pericitos/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Retina/metabolismo , Retina/patologia , Doenças Retinianas/patologia , Transdução de Sinais , Guanilil Ciclase Solúvel , Fatores de Tempo
18.
J Pharmacol Exp Ther ; 354(3): 406-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26157043

RESUMO

Analyses of several mouse models imply that the phosphodiesterase 5 (PDE5) inhibitor sildenafil (SIL), via increasing cGMP, affords protection against angiotensin II (Ang II)-stimulated cardiac remodeling. However, it is unclear which cell types are involved in these beneficial effects, because Ang II may exert its adverse effects by modulating multiple renovascular and cardiac functions via Ang II type 1 receptors (AT1Rs). To test the hypothesis that SIL/cGMP inhibit cardiac stress provoked by amplified Ang II/AT1R directly in cardiomyocytes (CMs), we studied transgenic mice with CM-specific overexpression of the AT1R under the control of the α-myosin heavy chain promoter (αMHC-AT1R(tg/+)). The extent of cardiac growth was assessed in the absence or presence of SIL and defined by referring changes in heart weight to body weight or tibia length. Hypertrophic marker genes, extracellular matrix-regulating factors, and expression patterns of fibrosis markers were examined in αMHC-AT1R(tg/+) ventricles (with or without SIL) and corroborated by investigating different components of the natriuretic peptide/PDE5/cGMP pathway as well as cardiac functions. cGMP levels in heart lysates and intact CMs were measured by competitive immunoassays and Förster resonance energy transfer. We found higher cardiac and CM cGMP levels and upregulation of the cGMP-dependent protein kinase type I with AT1R overexpression. However, even a prolonged SIL treatment regimen did not limit the progressive CM growth, fibrosis, or decline in cardiac functions in the αMHC-AT1R(tg/+) model, suggesting that SIL does not interfere with the pathogenic actions of amplified AT1R signaling in CMs. Hence, the cardiac/noncardiac cells involved in the cross-talk between SIL-sensitive PDE activity and Ang II/AT1R still need to be identified.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/prevenção & controle , Fibrose/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Angiotensina II/metabolismo , Animais , Cardiomegalia/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fibrose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Purinas/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Citrato de Sildenafila , Regulação para Cima/efeitos dos fármacos
19.
Ann Rheum Dis ; 74(7): 1408-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24567525

RESUMO

OBJECTIVES: We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor ß (TGFß) signalling that mediates the antifibrotic effects of the sGC. METHODS: Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFß. sGC knockout fibroblasts were isolated from sGCI(fl/fl) mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-ß1 receptor. RESULTS: sGC stimulation inhibited TGFß-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFß-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFß target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFß-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFß target gene expression, confirming that non-canonical TGFß pathways mediate the antifibrotic sGC activity. CONCLUSIONS: We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFß signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Assuntos
Fibroblastos/patologia , Guanilato Ciclase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Células Cultivadas , Colágeno/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/prevenção & controle , Guanilato Ciclase/deficiência , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Proteínas Smad/metabolismo , Guanilil Ciclase Solúvel , Fator de Crescimento Transformador beta/metabolismo
20.
Am J Physiol Gastrointest Liver Physiol ; 307(1): G98-106, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24833707

RESUMO

Nitric oxide (NO) is a major inhibitory neurotransmitter in the gastrointestinal (GI) tract. Its main effector, NO-sensitive guanylyl cyclase (NO-GC), is expressed in several GI cell types, including smooth muscle cells (SMC), interstitial cells of Cajal (ICC), and fibroblast-like cells. Up to date, the interplay between neurons and these cells to initiate a nitrergic inhibitory junction potential (IJP) is unclear. Here, we investigate the origin of the nitrergic IJP in murine fundus and colon. IJPs were determined in fundus and colon SMC of mice lacking NO-GC globally (GCKO) and specifically in SMC (SM-GCKO), ICC (ICC-GCKO), and both SMC/ICC (SM/ICC-GCKO). Nitrergic IJP was abolished in ICC-GCKO fundus and reduced in SM-GCKO fundus. In the colon, the amplitude of nitrergic IJP was reduced in ICC-GCKO, whereas nitrergic IJP in SM-GCKO was reduced in duration. These results were corroborated by loss of the nitrergic IJP in global GCKO. In conclusion, our results prove the obligatory role of NO-GC in ICC for the initiation of an IJP. NO-GC in SMC appears to enhance the nitrergic IJP, resulting in a stronger and prolonged hyperpolarization in fundus and colon SMC, respectively. Thus NO-GC in both cell types is mandatory to induce a full nitrergic IJP. Our data from the colon clearly reveal the nitrergic IJP to be biphasic, resulting from individual inputs of ICC and SMC.


Assuntos
Colo/inervação , Fundo Gástrico/inervação , Células Intersticiais de Cajal/metabolismo , Inibição Neural , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico/metabolismo , Transmissão Sináptica , Animais , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa