Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Microbiol ; 23(10): 5733-5749, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33350006

RESUMO

A substantial amount of below-ground carbon (C) is suggested to be associated with fungi, which may significantly affect the soil C balance in forested ecosystems. Ergosterol from in-growth mesh bags and litterbags was used to estimate fungal biomass production and community composition in drained peatland forests with differing fertility. Extramatrical mycelia (EMM) biomass production was generally higher in the nutrient-poor site, increased with deeper water table level and decreased along the length of the recovery time. EMM biomass production was of the same magnitude as in mineral-soil forests. Saprotrophic fungal biomass production was higher in the nutrient-rich site. Both ectomycorrhizal (ECM) and saprotrophic fungal community composition changed according to site fertility and water table level. ECM fungal community composition with different exploration types may explain the differences in fungal biomass production between peatland forests. Melanin-rich Hyaloscypha may indicate decreased turnover of biomass in nutrient-rich young peatland forest. Genera Lactarius and Laccaria may be important in nutrient rich and Piloderma in the nutrient-poor conditions, respectively. Furthermore, Paxillus involutus and Cortinarius sp. may be important generalists in all sites and responsible for EMM biomass production during the first summer months. Saprotrophs showed a functionally more diverse fungal community in the nutrient-rich site.


Assuntos
Água Subterrânea , Micorrizas , Biomassa , Ecossistema , Fertilidade , Florestas , Fungos , Solo , Microbiologia do Solo , Água
2.
Glob Chang Biol ; 25(5): 1852-1867, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767385

RESUMO

Globally 40-70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions. To define the factors that control wood respiration rate of Norway spruce and to produce a model that adequately describes the decomposition process of this species as a function of time, we used an unprecedentedly diverse analytical approach, which included measurements of respiration, fungal community sequencing, N2 fixation rate, nifH copy number, 14 C-dating as well as N%, δ13 C and C% values of wood. Our results suggest that climate change will accelerate C flux from deadwood in boreal conditions, due to the observed strong temperature dependency of deadwood respiration. At the research site, the annual C flux from deadwood would increase by 27% from the current 117 g C/kg wood with the projected climate warming (RCP4.5). The second most important control on respiration rate was the stage of wood decomposition; at early stages of decomposition low nitrogen content and low wood moisture limited fungal activity while reduced wood resource quality decreased the respiration rate at the final stages of decomposition. Wood decomposition process was best described by a Sigmoidal model, where after 116 years of wood decomposition mass loss of 95% was reached. Our results on deadwood decomposition are important for C budget calculations in ecosystem and climate change models. We observed for the first time that the temperature dependency of N2 fixation, which has a major role at providing N for wood-inhabiting fungi, was not constant but varied between wood density classes due to source supply and wood quality. This has significant consequences on projecting N2 fixation rates for deadwood in changing climate.


Assuntos
Ciclo do Carbono , Florestas , Fungos/fisiologia , Picea , Temperatura , Madeira/metabolismo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Fungos/classificação , Fungos/genética , Nitrogênio/análise , Nitrogênio/metabolismo , Noruega , Madeira/química , Madeira/microbiologia
3.
Glob Chang Biol ; 25(6): 1995-2008, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30854735

RESUMO

Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2 ) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Aquecimento Global , Regiões Árticas , Dióxido de Carbono/análise , Ecossistema , Água Subterrânea , Fotossíntese , Solo , Áreas Alagadas
4.
J Sci Food Agric ; 99(4): 1492-1500, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30129042

RESUMO

BACKGROUND: Nitrite and hexamine are used as silage additives because of their adverse effects on Clostridia and Clostridia spores. The effect of sodium nitrite and sodium nitrite/hexamine mixtures on silage quality was investigated. A white lupin-wheat mixture was treated with sodium nitrite (NaHe0) (900 g t-1 forage), or mixtures of sodium nitrite (900 g t-1 ) and hexamine. The application rate of hexamine was 300 g t-1 (NaHe300) or 600 g t-1 (NaHe600). Additional treatments were the untreated control (Con), and formic acid (FA) applied at a rate of 4 L t-1 (1000 g kg-1 ). RESULTS: Additives improved silage quality noticeably only by reducing silage ammonia content compared with the control. The addition of hexamine to a sodium nitrite solution did not improve silage quality compared with the solution containing sodium nitrite alone. The increasing addition of hexamine resulted in linearly rising pH values (P < 0.001) and decreasing amounts of lactic acid (P < 0.01). Sodium nitrite based additives were more effective than formic acid in preventing butyric acid formation. Additives did not restrict the growth of Saccharomyces cerevisiae compared to the control. CONCLUSION: The addition of hexamine did not improve silage quality compared with a solution of sodium nitrite. © 2018 Society of Chemical Industry.


Assuntos
Clostridium/metabolismo , Aditivos Alimentares/análise , Lupinus/microbiologia , Metenamina/análise , Nitritos/análise , Saccharomyces cerevisiae/metabolismo , Silagem/análise , Triticum/microbiologia , Clostridium/crescimento & desenvolvimento , Fermentação , Aditivos Alimentares/metabolismo , Manipulação de Alimentos , Lupinus/química , Lupinus/metabolismo , Metenamina/metabolismo , Nitritos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Silagem/microbiologia , Triticum/química , Triticum/metabolismo
5.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180368

RESUMO

Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA-based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities.IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment is also a source of methane, an important greenhouse gas. Methane emission in peatlands is regulated by methane production and oxidation catalyzed by methanogens and methanotrophs, respectively. Methane-cycling microbial communities have been documented in natural peatlands. However, less is known of their response to peat mining and of the recovery of the community after restoration. Mining exerts an adverse impact on potential methane production and oxidation rates and on methanogenic and methanotrophic population abundances. Peat mining also induced a shift in the methane-cycling microbial community composition. Nevertheless, with the return of Sphagnum spp. in the restored site after 15 years, methanogenic and methanotrophic activity and population abundance recovered well. The recovery, however, was not fully reflected in the community composition, suggesting that >15 years are needed to reverse mining-induced effects.


Assuntos
Metano/metabolismo , Microbiota/fisiologia , Mineração , Microbiologia do Solo , Solo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ecossistema , Euryarchaeota/genética , Euryarchaeota/metabolismo , Microbiota/genética , Fixação de Nitrogênio , Oxirredução , Oxigenases , Filogenia , Sphagnopsida/metabolismo , Áreas Alagadas
6.
New Phytol ; 218(2): 738-751, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29493776

RESUMO

Root-colonizing fungi can form mycorrhizal or endophytic associations with plant roots, the type of association depending on the host. We investigated the differences and similarities of the fungal communities of three boreal ericoid plants and one coniferous tree, and identified the community structure of fungi utilizing photosynthates from the plants studied. The fungal communities of roots and soils of Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris and Pinus sylvestris were studied in an 18-month-long experiment where the plants were grown individually in natural substrate. Photosynthates utilizing fungi were detected with DNA stable-isotope probing using 13 CO2 (13 C-DNA-SIP). The results indicated that the plants studied provide different ecological niches preferred by different fungal species. Those fungi which dominated the community in washed roots had also the highest 13 C-uptake. In addition, a common root endophyte without confirmed mycorrhizal status also obtained 13 C from all the plants, indicating close plant-association of this fungal species. We detect several fungal species inhabiting the roots of both ericoid mycorrhizal and ectomycorrhizal plants. Our results highlight that the ecological role of co-occurrence of fungi with different life styles (e.g. mycorrhizal or endophytic) in plant root systems should be further investigated.


Assuntos
Ericaceae/microbiologia , Pinus sylvestris/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Contagem de Colônia Microbiana , Análise de Componente Principal , Solo , Especificidade da Espécie
7.
Glob Chang Biol ; 24(3): 944-956, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28994163

RESUMO

Climate change affects peatlands directly through increased air temperatures and indirectly through changes in water-table level (WL). The interactions of these two still remain poorly known. We determined experimentally the separate and interactive effects of temperature and WL regime on factors of relevance for the inputs to the carbon cycle: plant community composition, phenology, biomass production, and shoot:root allocation in two wet boreal sedge-dominated fens, "southern" at 62°N and "northern" at 68°Ν. Warming (1.5°C higher average daily air temperature) was induced with open-top chambers and WL drawdown (WLD; 3-7 cm on average) by shallow ditches. Total biomass production varied from 250 to 520 g/m2 , with belowground production comprising 25%-63%. Warming was associated with minor effects on phenology and negligible effects on community composition, biomass production, and allocation. WLD clearly affected the contribution of different plant functional types (PFTs) in the community and the biomass they produced: shrubs benefited while forbs and mosses suffered. These responses did not depend on the warming treatment. Following WLD, aboveground biomass production decreased mainly due to reduced growth of mosses in the southern fen. Aboveground vascular plant biomass production remained unchanged but the contribution of different PFTs changed. The observed changes were also reflected in plant phenology, with different PFTs showing different responses. Belowground production increased following WLD in the northern fen only, but an increase in the contributions of shrubs and forbs was observed in both sites, while sedge contribution decreased. Moderate warming alone seems not able to drive significant changes in plant productivity or community composition in these wet ecosystems. However, if warming is accompanied by even modest WL drawdown, changes should be expected in the relative contribution of PFTs, which could lead to profound changes in the function of fens. Consequently, hydrological scenarios are of utmost importance when estimating their future function.


Assuntos
Biomassa , Mudança Climática , Áreas Alagadas , Regiões Árticas , Hidrologia , Desenvolvimento Vegetal , Plantas/classificação , Temperatura
8.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913414

RESUMO

Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE: Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands.


Assuntos
Acidobacteria/metabolismo , Bactérias Anaeróbias/metabolismo , Dióxido de Carbono/metabolismo , Celobiose/metabolismo , Firmicutes/metabolismo , Metano/metabolismo , Proteobactérias/metabolismo , Anaerobiose/fisiologia , Fermentação/fisiologia , Microbiota/fisiologia , Taiga , Áreas Alagadas
9.
Proc Natl Acad Sci U S A ; 111(2): 734-9, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379382

RESUMO

Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation.


Assuntos
Alphaproteobacteria/metabolismo , Ciclo do Carbono/fisiologia , Metano/metabolismo , Ciclo do Nitrogênio/fisiologia , Microbiologia do Solo , Sphagnopsida/crescimento & desenvolvimento , Sphagnopsida/microbiologia , Análise de Variância , Isótopos de Carbono/metabolismo , Finlândia , Isótopos de Nitrogênio/metabolismo , Sphagnopsida/metabolismo
10.
Appl Microbiol Biotechnol ; 100(5): 2401-15, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26541333

RESUMO

Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.


Assuntos
Biota , Hospitais Veterinários , Trametes/metabolismo , Drogas Veterinárias/metabolismo , Águas Residuárias/microbiologia , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Animais , Reatores Biológicos/microbiologia , Biotransformação , Águas Residuárias/química
11.
Environ Monit Assess ; 188(4): 228, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26979172

RESUMO

Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting.


Assuntos
Monitoramento Ambiental , Agricultura Florestal/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Finlândia , Agricultura Florestal/estatística & dados numéricos , Florestas , Ferro , Solo/química , Árvores
12.
Environ Technol ; 36(1-4): 214-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25413116

RESUMO

Robust start-up of the anaerobic ammonium oxidation (anammox) process from non-anammox-specific seeding material was achieved by using an inoculation with sludge-treating industrial [Formula: see text]-, organics- and N-rich yeast factory wastewater. N-rich reject water was treated at 20°C, which is significantly lower than optimum treatment temperature. Increasing the frequency of biomass fluidization (from 1-2 times per day to 4-5 times per day) through feeding the reactor with higher flow rate resulted in an improved total nitrogen removal rate (from 100 to 500 g m(-3)d(-1)) and increased anammox bacteria activity. As a result of polymerase chain reaction (PCR) tests, uncultured planctomycetes clone 07260064(4)-2-M13-_A01 (GenBank: JX852965) was identified from the biomass taken from the reactor. The presence of anammox bacteria after cultivation in the reactor was confirmed by quantitative PCR (qPCR); an increase in quantity up to ∼2×10(6) copies g VSS(-1) during operation could be seen in qPCR. Statistical modelling of chemical parameters revealed the roles of several optimized parameters needed for a stable process.


Assuntos
Compostos de Amônio/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Esgotos/microbiologia , Leveduras/metabolismo , Anaerobiose/fisiologia , Meios de Cultura/química
13.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36725205

RESUMO

A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture.


Assuntos
Microbiota , Solo , Argila , Casca de Planta , Microbiologia do Solo , Bactérias/genética , Carbono , Água
14.
Sci Total Environ ; 858(Pt 2): 159683, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336060

RESUMO

Climate change may affect the carbon sink function of peatlands through warming and drying. Fine-root biomass production (FRBP) of sedge fens, a widespread peatland habitat, is important in this context, since most of the biomass is below ground in these ecosystems. We examined the response of fine-root biomass production, depth distribution (10 cm intervals down to 60 cm), chemical characteristics, and decomposition along with other main litter types (sedge leaves, Sphagnum moss shoots) to an average May-to-October warming of 1.7 °C above ambient daily mean temperature and drying of 2-8 cm below ambient soil water-table level (WL) in two sedge fens situated in Northern and Southern Boreal zones. Warming was induced with open top chambers and drying with shallow ditching. Finally, we simulated short-term organic matter (OM) accumulation using net primary production and mass loss data. Total FRBP, and FRBP in deeper layers, was clearly higher in southern than northern fen. Drying significantly increased, and warming marginally increased, total FRBP, while warming significantly increased, and drying marginally increased, the proportional share of FRBP in deeper layers. Drying, especially, modified root chemistry as the relative proportions of fats, wax, lipids, lignin and other aromatics increased while the proportion of polysaccharides decreased. Warming did not affect the decomposition of any litter types, while drying reduced the decomposition of sedge leaf litter. Although drying increased OM accumulation from root litter at both fens, total OM accumulation decreased at the southern fen, while the northern fen with overall lower values showed no such pattern. Our results suggest that in warmer and/or modestly drier conditions, sedge fen FRBP will increase and/or be allocated to deeper soil layers. These changes along with the altered litter inputs may sustain the soil carbon sink function through OM accumulation, unless the WL falls below a tipping point.


Assuntos
Ecossistema , Sphagnopsida , Biomassa , Mudança Climática , Solo/química
15.
Appl Environ Microbiol ; 78(17): 6386-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22752167

RESUMO

We addressed how restoration of forestry-drained peatlands affects CH(4)-cycling microbes. Despite similar community compositions, the abundance of methanogens and methanotrophs was lower in restored than in natural sites and correlated with CH(4) emission. Poor establishment of methanogens may thus explain low CH(4) emissions on restored peatlands even 10 to 12 years after restoration.


Assuntos
Biota , Metano/metabolismo , Microbiologia do Solo , Metagenoma , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Tempo
16.
Mycorrhiza ; 22(6): 409-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22005782

RESUMO

Tricholoma matsutake is an economically important ectomycorrhizal fungus of coniferous woodlands. Mycologists suspect that this fungus is also capable of saprotrophic feeding. In order to evaluate this hypothesis, enzyme and chemical assays were performed in the field and laboratory. From a natural population of T. matsutake in southern Finland, samples of soil-mycelium aggregate (shiro) were taken from sites of sporocarp formation and nearby control (PCR-negative) spots. Soil organic carbon and activity rates of hemicellulolytic enzymes were measured. The productivity of T. matsutake was related to the amount of utilizable organic carbon in the shiro, where the activity of xylosidase was significantly higher than in the control sample. In the laboratory, sterile pieces of bark from the roots of Scots pine were inoculated with T. matsutake and the activity rates of two hemicellulolytic enzymes (xylosidase and glucuronidase) were assayed. Furthermore, a liquid culture system showed how T. matsutake can utilize hemicellulose as its sole carbon source. Results linked and quantified the general relationship between enzymes secreted by T. matsutake and the degradation of hemicellulose. Our findings suggest that T. matsutake lives mainly as an ectomycorrhizal symbiont but can also feed as a saprotroph. A flexible trophic ecology confers T. matsutake with a clear advantage in a heterogeneous environment and during sporocarp formation.


Assuntos
Micorrizas/fisiologia , Pinus sylvestris/microbiologia , Tricholoma/fisiologia , Carbono/análise , Finlândia , Carpóforos/enzimologia , Carpóforos/crescimento & desenvolvimento , Carpóforos/isolamento & purificação , Carpóforos/fisiologia , Glucuronidase/metabolismo , Micorrizas/enzimologia , Micorrizas/crescimento & desenvolvimento , Micorrizas/isolamento & purificação , Nitrogênio/análise , Raízes de Plantas/microbiologia , Polissacarídeos/metabolismo , Solo/química , Simbiose , Tricholoma/enzimologia , Tricholoma/crescimento & desenvolvimento , Tricholoma/isolamento & purificação , Xilosidases/metabolismo
17.
Appl Environ Microbiol ; 77(24): 8523-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21984247

RESUMO

Fungal and actinobacterial communities were analyzed together with soil chemistry and enzyme activities in order to profile the microbial diversity associated with the economically important mushroom Tricholoma matsutake. Samples of mycelium-soil aggregation (shiro) were collected from three experimental sites where sporocarps naturally formed. PCR was used to confirm the presence and absence of matsutake in soil samples. PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting and direct sequencing were used to identify fungi and actinobacteria in the mineral and organic soil layers separately. Soil enzyme activities and hemicellulotic carbohydrates were analyzed in a productive experimental site. Soil chemistry was investigated in both organic and mineral soil layers at all three experimental sites. Matsutake dominated in the shiro but also coexisted with a high diversity of fungi and actinobacteria. Tomentollopsis sp. in the organic layer above the shiro and Piloderma sp. in the shiro correlated positively with the presence of T. matsutake in all experimental sites. A Thermomonosporaceae bacterium and Nocardia sp. correlated positively with the presence of T. matsutake, and Streptomyces sp. was a common cohabitant in the shiro, although these operational taxonomic units (OTUs) did not occur at all sites. Significantly higher enzyme activity levels were detected in shiro soil. These enzymes are involved in the mobilization of carbon from organic matter decomposition. Matsutake was not associated with a particular soil chemistry compared to that of nearby sites where the fungus does not occur. The presence of a significant hemicellulose pool and the enzymes to degrade it indicates the potential for obtaining carbon from the soil rather than tree roots.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biota , Fungos/classificação , Fungos/isolamento & purificação , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , Finlândia , Fungos/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Árvores
18.
J Environ Qual ; 50(1): 172-184, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33084047

RESUMO

Declining carbon (C) content in agricultural soils threatens soil fertility and makes soil prone to erosion, which could be rectified with organic soil amendments. In a 4-yr field trial, we made a single application of three different organic sludges from the pulp and paper industry and studied their effects on cereal yield, soil C content, and fungal and bacterial composition. In laboratory rainfall simulations, we also studied the effects of the soil amendments on susceptibility to erosion and nutrient mobilization of a clay-textured soil by measuring the quality of percolation water passing through 40-cm intact soil monoliths during 2-d rainfall simulations over four consecutive years after application. A nutrient-poor fiber sludge reduced wheat yield in the first growing season, but there were no other significant effects on cereal yield or grain quality. An input of ∼8 Mg ha-1 C with the soil amendments had only minor effects on soil C content after 4 yr, likely because of fast microbe-mediated turnover. The amendments clearly changed the fungal and bacterial community composition. All amendments significantly reduced suspended solids (SS) and total phosphorus (TP) concentrations in percolation water. The effect declined with time, but the reduction in SS and TP was still >25% 4 yr after application. We attributed the lower tendency for particle detachment in rain simulations to direct interactions of soil minerals with the added particulate organic matter and microbe-derived compounds that stabilize soil aggregates. In soils with low organic matter content, pulp and paper industry by-products can be a viable measure for erosion mitigation.


Assuntos
Esgotos , Solo , Agricultura , Fósforo , Chuva
19.
Ecology ; 91(8): 2356-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20836457

RESUMO

Peatlands are a major natural source of atmospheric methane (CH4). Emissions from Sphagnum-dominated mires are lower than those measured from other mire types. This observation may partly be due to methanotrophic (i.e., methane-consuming) bacteria associated with Sphagnum. Twenty-three of the 41 Sphagnum species in Finland can be found in the peatland at Lakkasuo. To better understand the Sphagnum-methanotroph system, we tested the following hypotheses: (1) all these Sphagnum species support methanotrophic bacteria; (2) water level is the key environmental determinant for differences in methanotrophy across habitats; (3) under dry conditions, Sphagnum species will not host methanotrophic bacteria; and (4) methanotrophs can move from one Sphagnum shoot to another in an aquatic environment. To address hypotheses 1 and 2, we measured the water table and CH4 oxidation for all Sphagnum species at Lakkasuo in 1-5 replicates for each species. Using this systematic approach, we included Sphagnum spp. with narrow and broad ecological tolerances. To estimate the potential contribution of CH4 to moss carbon, we measured the uptake of delta13C supplied as CH4 or as carbon dioxide dissolved in water. To test hypotheses 2-4, we transplanted inactive moss patches to active sites and measured their methanotroph communities before and after transplantation. All 23 Sphagnum species showed methanotrophic activity, confirming hypothesis 1. We found that water level was the key environmental factor regulating methanotrophy in Sphagnum (hypothesis 2). Mosses that previously exhibited no CH4 oxidation became active when transplanted to an environment in which the microbes in the control mosses were actively oxidizing CH4 (hypothesis 4). Newly active transplants possessed a Methylocystis signature also found in the control Sphagnum spp. Inactive transplants also supported a Methylocystis signature in common with active transplants and control mosses, which rejects hypothesis 3. Our results imply a loose symbiosis between Sphagnum spp. and methanotrophic bacteria that accounts for potentially 10-30% of Sphagnum carbon.


Assuntos
Ecossistema , Metano/metabolismo , Sphagnopsida/fisiologia , Regiões Árticas , Oxirredução , Proteínas de Schizosaccharomyces pombe/química , Estações do Ano , Solo
20.
Ecology ; 91(2): 370-6, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20392002

RESUMO

Feedback to climate warming from the carbon balance of terrestrial ecosystems depends critically on the temperature sensitivity of soil organic carbon (SOC) decomposition. Still, the temperature sensitivity is not known for the majority of the SOC, which is tens or hundreds of years old. This old fraction is paradoxically concluded to be more, less, or equally sensitive compared to the younger fraction. Here, we present results that explain these inconsistencies. We show that the temperature sensitivity of decomposition increases remarkably from the youngest annually cycling fraction (Q10 < 2) to a decadally cycling one (Q10 = 4.2-6.9) but decreases again to a centennially cycling fraction (Q10 = 2.4-2.8) in boreal forest soil. Compared to the method used for current global estimates (temperature sensitivity of all SOC equal to that of the total heterotrophic soil respiration), the soils studied will lose 30-45% more carbon in response to climate warming during the next few decades, if there is no change in carbon input. Carbon input, derivative of plant productivity, would have to increase by 100-120%, as compared to the earlier estimated 70-80%, in order to compensate for the accelerated decomposition.


Assuntos
Carbono/química , Solo/análise , Temperatura , Árvores , Regiões Árticas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa