Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurooncol ; 136(1): 63-71, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29081036

RESUMO

Glioblastoma multiforme (GBM) is the most common and highly malignant primary brain tumor, which is virtually incurable due to its therapeutic resistance to radiation and chemotherapy. To develop novel therapeutic approaches for treatment of GBM, we examined the role of miR-378 on tumor growth, angiogenesis, and radiation response in ectopic and orthotopic U87 glioblastoma models. Cell and tumor growth rates, in vitro and in vivo radiation sensitivities, and tumor vascular density were evaluated in U87-GFP and U87-miR-378 tumor lines. Ectopic tumor response to radiation was evaluated under normal blood flow and clamp hypoxic conditions. Results show that in vitro, miR-378 expression moderately increased cell growth rate and plating efficiency, but did not alter radiation sensitivity. U87-miR-378 tumors exhibited a higher transplantation take rate than U87-GFP tumors. In vivo, under oxygenated condition, subcutaneous U87-miR-378 tumors receiving 25 Gy showed a tendency for longer tumor growth delay (TGD) than control U87-GFP tumors. In contrast, under hypoxic condition, U87-miR-378 xenografts exhibited substantially shorter TGD than U87-GFP tumors, indicating that under normal blood flow conditions, U87-miR-378 tumors were substantially more oxygenated than U87-GFP tumors. Intracranial multi-photon laser-scanning microscopy demonstrated increased vascular density of U87-miR-378 versus control U87-GFP tumors. Finally, miR-378 increased TGD following 12 Gy irradiation in U87 intracranial xenografts, and significantly prolonged survival of U87-miR-378 tumor-bearing mice (P = 0.04). In conclusion, higher miR-378 expression in U87-miR-378 cells promotes tumor growth, angiogenesis, radiation-induced TGD, and prolongs survival of orthotopic tumor-bearing hosts. Regulation of VEGFR2 by miR-378 significantly increased vascular density and oxygenation in U87 xenografts.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Tolerância a Radiação , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Xenoenxertos/efeitos da radiação , Humanos , Masculino , Camundongos Nus , Neovascularização Patológica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
Proc Natl Acad Sci U S A ; 110(31): 12774-9, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23861493

RESUMO

Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers--CD34, neuropilin 1, and human kinase insert domain-containing receptor--and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.


Assuntos
Prótese Vascular , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neovascularização Fisiológica , Engenharia Tecidual , Animais , Células Endoteliais/transplante , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos SCID , Transplante Heterólogo , Doenças Vasculares/terapia
3.
J Am Chem Soc ; 137(31): 9832-42, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26149349

RESUMO

Micelles have been employed to encapsulate the supramolecular assembly of quantum dots with palladium(II) porphyrins for the quantification of O2 levels in aqueous media and in vivo. Förster resonance energy transfer from the quantum dot (QD) to the palladium porphyrin provides a means for signal transduction under both one- and two-photon excitation. The palladium porphyrins are sensitive to O2 concentrations in the range of 0-160 Torr. The micelle-encapsulated QD-porphyrin assemblies have been employed for in vivo multiphoton imaging and lifetime-based oxygen measurements in mice with chronic dorsal skinfold chambers or cranial windows. Our results establish the utility of the QD-micelle approach for in vivo biological sensing applications.


Assuntos
Técnicas de Química Analítica/instrumentação , Metaloporfirinas/química , Micelas , Oxigênio/análise , Fótons , Pontos Quânticos/química , Animais , Cápsulas , Camundongos , Modelos Moleculares , Conformação Molecular , Imagem Molecular , Paládio/química
4.
Circ Res ; 113(4): 365-71, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23801067

RESUMO

RATIONALE: Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. OBJECTIVE: To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer-based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. METHODS AND RESULTS: Mouse lines with smooth muscle-specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase-activatable expression cassette driven by the cytomegalovirus early enhancer/chicken ß-actin/ß-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were < 100 nmol/L, whereas stimulation with cGMP-elevating agents such as 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO) or the natriuretic peptides, atrial natriuretic peptide, and C-type natriuretic peptide evoked fluorescence resonance energy transfer changes corresponding to cGMP peak concentrations of ≈ 3 µmol/L. However, different types of smooth muscle cells had different sensitivities of their cGMP responses to DEA/NO, atrial natriuretic peptide, and C-type natriuretic peptide. Robust nitric oxide-induced cGMP transients with peak concentrations of ≈ 1 to > 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide-stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. CONCLUSIONS: These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs.


Assuntos
Sistema Cardiovascular/química , GMP Cíclico/análise , GMP Cíclico/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos Transgênicos/genética , Transdução de Sinais/genética , Animais , Técnicas Biossensoriais/métodos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Modelos Animais , Músculo Liso/química , Músculo Liso Vascular/química
5.
Opt Express ; 18(10): 10538-50, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20588906

RESUMO

In this paper, we present a method to determine, for the first time, the ratio of forward-propagating second harmonic (SHG) signal to back-propagating SHG signal (F/B) in vivo on the surface of intact tissue samples without any biopsy or tissue sectioning, using only epidetection (i.e., via a single objective lens). This method has the additional benefit of using the confocal detection apparatus already contained within common commercially available two-photon laser-scanning microscopes, and hence can allow the measurement of the SHG F/B ratio in vivo with minimal purchase of new equipment.


Assuntos
Aumento da Imagem/instrumentação , Lentes , Microscopia Confocal/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
J Mater Chem B ; 8(42): 9668-9678, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33000843

RESUMO

Biomass-derived nanocarbons (BNCs) have attracted significant research interests due to their promising economic and environmental benefits. Following their extensive uses in physical and chemical research domains, BNCs are now growing in biological applications. However, their practical biological applications are still in their infancy, requiring critical evaluations and strategic directions, which are provided in this review. The carbonization of biomass sources and major types of BNCs are introduced, encompassing carbon nanodots, nanofibres, nanotubes, and graphenes. Next, essential biological uses of BNCs, antibacterial/antibiofilm materials (nanofibres and nanodots) and bioimaging agents (predominantly nanodots), are summarized. Furthermore, the future potential of BNCs, for designing wound dressing/healing materials, water and air disinfection platforms, and microbial electrochemical systems, is discussed. We reach the conclusion that a crucial challenge is the structural control of BNCs. Furthermore, a key knowledge gap for realizing practical biological applications is the lack of systematic comparisons of BNCs with nanocarbons of synthetic origin in the current literature. Although we did not attempt to perform an exhaustive literature survey, the evaluation of the existing results indicates that BNCs are promising as easily accessible materials for various biomedically and environmentally relevant applications.


Assuntos
Carbono/química , Nanoestruturas/química , Animais , Antibacterianos/química , Biomassa , Humanos , Nanotecnologia/métodos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Plantas/química
7.
Opt Express ; 16(3): 1846-59, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-18542263

RESUMO

We utilize the polarization and directionality of light emitted by fibrillar collagen via second harmonic generation to determine structural relationships between collagen in mouse mammary tumor models and the healthy mammary fat pad. In spite of the aberrations in collagen production and degradation that are the hallmarks of tumor stroma, we find that the characteristic angle of SHG scatterers within collagen fibrils, and the spatial extent over which they are appropriately ordered for SHG production, are the same in tumor and healthy collagen. This suggests that the SHGproducing subpopulation of collagen is unaffected by the altered collagen synthesis of the tumor stroma, and protected from its aberrant degradative environment.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Colágeno/ultraestrutura , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias Mamárias Experimentais/diagnóstico , Neoplasias Mamárias Experimentais/metabolismo , Microscopia de Polarização/métodos , Células Estromais/patologia , Animais , Linhagem Celular Tumoral , Camundongos
8.
Cancer Discov ; 6(8): 852-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246539

RESUMO

UNLABELLED: It remains unclear how obesity worsens treatment outcomes in patients with pancreatic ductal adenocarcinoma (PDAC). In normal pancreas, obesity promotes inflammation and fibrosis. We found in mouse models of PDAC that obesity also promotes desmoplasia associated with accelerated tumor growth and impaired delivery/efficacy of chemotherapeutics through reduced perfusion. Genetic and pharmacologic inhibition of angiotensin-II type-1 receptor reverses obesity-augmented desmoplasia and tumor growth and improves response to chemotherapy. Augmented activation of pancreatic stellate cells (PSC) in obesity is induced by tumor-associated neutrophils (TAN) recruited by adipocyte-secreted IL1ß. PSCs further secrete IL1ß, and inactivation of PSCs reduces IL1ß expression and TAN recruitment. Furthermore, depletion of TANs, IL1ß inhibition, or inactivation of PSCs prevents obesity-accelerated tumor growth. In patients with pancreatic cancer, we confirmed that obesity is associated with increased desmoplasia and reduced response to chemotherapy. We conclude that cross-talk between adipocytes, TANs, and PSCs exacerbates desmoplasia and promotes tumor progression in obesity. SIGNIFICANCE: Considering the current obesity pandemic, unraveling the mechanisms underlying obesity-induced cancer progression is an urgent need. We found that the aggravation of desmoplasia is a key mechanism of obesity-promoted PDAC progression. Importantly, we discovered that clinically available antifibrotic/inflammatory agents can improve the treatment response of PDAC in obese hosts. Cancer Discov; 6(8); 852-69. ©2016 AACR.See related commentary by Bronte and Tortora, p. 821This article is highlighted in the In This Issue feature, p. 803.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inflamação/etiologia , Inflamação/patologia , Obesidade/complicações , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Receptor Tipo 1 de Angiotensina/metabolismo , Tecido Adiposo/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Índice de Massa Corporal , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Terapia Combinada , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fibrose , Predisposição Genética para Doença , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Obesidade/etiologia , Neoplasias Pancreáticas/etiologia , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral , Microambiente Tumoral
9.
Front Physiol ; 5: 394, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352809

RESUMO

Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca(2+), and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to "watch" biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism.

10.
Nat Commun ; 4: 2516, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24084631

RESUMO

Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-ß1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors -inexpensive drugs with decades of safe use - could be rapidly repurposed as cancer therapeutics.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensinas/antagonistas & inibidores , Antineoplásicos/farmacologia , Losartan/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Angiotensinas/metabolismo , Animais , Hipóxia Celular , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Ácido Hialurônico/metabolismo , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/patologia , Mecanotransdução Celular , Camundongos , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/patologia , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Estresse Mecânico , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias Pancreáticas
11.
Intravital ; 1(1)2012.
Artigo em Inglês | MEDLINE | ID: mdl-24353926

RESUMO

The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa