RESUMO
Chromosome conformation capture technologies have revealed important insights into genome folding. Yet, how spatial genome architecture is related to gene expression and cell fate remains unclear. We comprehensively mapped 3D chromatin organization during mouse neural differentiation in vitro and in vivo, generating the highest-resolution Hi-C maps available to date. We found that transcription is correlated with chromatin insulation and long-range interactions, but dCas9-mediated activation is insufficient for creating TAD boundaries de novo. Additionally, we discovered long-range contacts between gene bodies of exon-rich, active genes in all cell types. During neural differentiation, contacts between active TADs become less pronounced while inactive TADs interact more strongly. An extensive Polycomb network in stem cells is disrupted, while dynamic interactions between neural transcription factors appear in vivo. Finally, cell type-specific enhancer-promoter contacts are established concomitant to gene expression. This work shows that multiple factors influence the dynamics of chromatin interactions in development.
Assuntos
Cromatina/metabolismo , Genoma , Neurogênese , Animais , Fator de Ligação a CCCTC , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Éxons , Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismoRESUMO
Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.
Assuntos
Proteínas Hedgehog , Medula Espinal , Humanos , Camundongos , Animais , Proteínas Hedgehog/genética , Medula Espinal/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/metabolismo , Epêndima/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismoRESUMO
For the past two decades, the emerging role of the endothelin (ET) axis in cancer has been extensively investigated, and its involvement in several mechanisms described as "hallmarks of cancer" has clearly highlighted its potential as a therapeutic target. Despite the growing interest in finding effective anticancer drugs, no breakthrough treatment has successfully made its way to the market. Recently, our team reported the development of a new immuno-positron emission tomography probe targeting the ET A receptor (ETA, one of the ET receptors) that allows the successful detection of ETA+ glioblastoma, paving the way for the elaboration of novel antibody-based strategies. In this study, we describe the synthesis of two PET/NIRF (positron emission tomography/near-infrared fluorescence) dually functionalized imaging agents, directed against ETA or ETB, that could be used to detect ET+ tumors and select patients that will be eligible for fluorescence-guided surgery. Both imaging modalities were brought together using a highly versatile tetrazine platform bearing the IRDye800CW fluorophore and desferrioxamine for 89Zr chelation. This so-called monomolecular multimodal imaging probe was then "clicked", via an inverse-electron-demand Diels-Alder reaction, to antibodies conjugated site-specifically with a trans-cyclooctene group. This approach has led to homogeneous and well-defined constructs that retained their high affinity and high specificity for their respective target, as shown by flow cytometry and NIRF in vivo imaging experiments in nude mice bearing CHO-ETA and CHO-ETB tumors. Ultimately, these bimodal immunoconjugates could be used to improve the outcomes of patients with ET+ tumors.
Assuntos
Glioblastoma , Imunoconjugados , Animais , Camundongos , Humanos , Receptores de Endotelina , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Imagem Óptica/métodos , Linhagem Celular TumoralRESUMO
BACKGROUND: The resistance of glioblastoma stem cells (GSCs) to treatment is one of the causes of glioblastoma (GBM) recurrence. Endothelin A receptor (ETA) overexpression in GSCs constitutes an attractive biomarker for targeting this cell subpopulation, as illustrated by several clinical trials evaluating the therapeutic efficacy of endothelin receptor antagonists against GBM. In this context, we have designed an immunoPET radioligand combining the chimeric antibody targeting ETA, chimeric-Rendomab A63 (xiRA63), with 89Zr isotope and evaluated the abilities of xiRA63 and its Fab (ThioFab-xiRA63) to detect ETA+ tumors in a mouse model xenografted orthotopically with patient-derived Gli7 GSCs. RESULTS: Radioligands were intravenously injected and imaged over time by µPET-CT imaging. Tissue biodistribution and pharmacokinetic parameters were analyzed, highlighting the ability of [89Zr]Zr-xiRA63 to pass across the brain tumor barrier and achieve better tumor uptake than [89Zr]Zr-ThioFab-xiRA63. CONCLUSIONS: This study shows the high potential of [89Zr]Zr-xiRA63 in specifically targeting ETA+ tumors, thus raising the possibility of detecting and treating ETA+ GSCs, which could improve the management of GBM patients.
Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Receptor de Endotelina A , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual , Anticorpos , Células-Tronco , Linhagem Celular Tumoral , ZircônioRESUMO
Glioblastoma multiforms (GBMs) are highly vascularized brain tumors containing a subpopulation of multipotent cancer stem cells. These cells closely interact with endothelial cells in neurovascular niches. In this study, we have uncovered a close link between the Notch1 pathway and the tumoral vascularization process of GBM stem cells. We observed that although the Notch1 receptor was activated, the typical target proteins (HES5, HEY1, and HEY2) were not or barely expressed in two explored GBM stem cell cultures. Notch1 signaling activation by expression of the intracellular form (NICD) in these cells was found to reduce their growth rate and migration, which was accompanied by the sharp reduction in neural stem cell transcription factor expression (ASCL1, OLIG2, and SOX2), while HEY1/2, KLF9, and SNAI2 transcription factors were upregulated. Expression of OLIG2 and growth were restored after termination of Notch1 stimulation. Remarkably, NICD expression induced the expression of pericyte cell markers (NG2, PDGFRß, and α-smooth muscle actin [αSMA]) in GBM stem cells. This was paralleled with the induction of several angiogenesis-related factors most notably cytokines (heparin binding epidermal growth factor [HB-EGF], IL8, and PLGF), matrix metalloproteinases (MMP9), and adhesion proteins (vascular cell adhesion molecule 1 [VCAM1], intercellular adhesion molecule 1 [ICAM1], and integrin alpha 9 [ITGA9]). In xenotransplantation experiments, contrasting with the infiltrative and poorly vascularized tumors obtained with control GBM stem cells, Notch1 stimulation resulted in poorly disseminating but highly vascularized grafts containing large vessels with lumen. Notch1-stimulated GBM cells expressed pericyte cell markers and closely associated with endothelial cells. These results reveal an important role for the Notch1 pathway in regulating GBM stem cell plasticity and angiogenic properties.
Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Células-Tronco Neoplásicas/patologia , Pericitos/patologia , Receptor Notch1/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pericitos/metabolismo , Transdução de Sinais , TransfecçãoRESUMO
Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-like G0 state (qG0), and it incorporates a tunable parameter to filter out less certain classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-art methods even while classifying more cell cycle states, including G0. We demonstrate that the ccAFv2 classifier is generalizable across cell types and all three germ layers by applying it to developing fetal cells. We showcased the versatility of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various normalization methods and gene identifiers. We provide methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover underlying biological signals. The classifier can be used either as an R package integrated with Seurat or a PyPI package integrated with scanpy. We proved that ccAFv2 has enhanced accuracy, flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular heterogeneity, and deciphering the molecular mechanisms by which proliferation and quiescence affect cellular processes.
RESUMO
Rationale: Glioblastoma (GBM) poses significant challenges regarding complete tumor removal due to its heterogeneity and invasiveness, emphasizing the need for effective therapeutic options. In the last two decades, fluorescence-guided surgery (FGS), employing fluorophores such as 5-aminolevulinic acid (5-ALA) to enhance tumor delineation, has gained attraction among neurosurgeons. However, some low-grade tumors do not show any accumulation of the tracers, and the lack of patient stratification represents an important limitation. Since 2000, endothelin axis has been extensively investigated for its role in cancer progression. More specifically, our team has identified endothelin A receptors (ETA), overexpressed in glioblastoma cancer stem cells, as a target of interest for GBM imaging. This study aims to evaluate the efficacy of a novel preclinical bimodal imaging agent, [89Zr]Zr-axiRA63-MOMIP, as a theranostic approach to: i) detect ETA + cells in an orthotopic model of human GBM, ii) achieve complete tumoral resection. Methods: Monomolecular multimodal imaging platform (MOMIP) - containing both a fluorophore (IRDye800CW) and a chelator for a positron-emitting radiometal (desferroxamine B, DFO) - was conjugated to the axiRA63 antibody targeting ETA receptors, overexpressed on the surface of GBM stem cells. Mice bearing orthotopic human GBM were imaged 48 h post injection of [89Zr]Zr-axiRA63-MOMIP via positron emission tomography (PET) and optical imaging. Subsequently, post-mortem proof-of-concept FGS was implemented as well as ex vivo analyses (H&E staining, autoradiography, serial block face imaging) on brains with resected or unresected tumor to assess the correlation between PET and fluorescence signals. Results: PET imaging of [89Zr]Zr-axiRA63-MOMIP enabled a clear detection of ETA + cells in an orthotopic model of human GBM. Intraoperative optical imaging allowed a near-complete tumor resection together with the visualization of a weak fluorescence signal, after a prolonged exposure time, that was attributed to residual tumor cells via H&E staining. Besides, a qualitative correlation between the signals of both modalities was observed. Conclusions: The use of [89Zr]Zr-axiRA63-MOMIP provides an effective theranostic approach to detect and treat GBM by surgery in a preclinical mouse model. Thanks to the high correlation between PET and fluorescence signal allowing patients stratification, this bimodal agent should have a great potential for clinical translation and should present a significant advantage over non-targeted fluorophores already used in the clinic.
Assuntos
Modelos Animais de Doenças , Glioblastoma , Imagem Óptica , Tomografia por Emissão de Pósitrons , Cirurgia Assistida por Computador , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Humanos , Camundongos , Cirurgia Assistida por Computador/métodos , Linhagem Celular Tumoral , Imagem Óptica/métodos , Receptor de Endotelina A/metabolismo , Nanomedicina Teranóstica/métodos , Zircônio , Corantes Fluorescentes , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/metabolismo , RadioisótoposRESUMO
The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.
Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma , Análise de Célula Única , Humanos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Camundongos , Animais , Glioma/metabolismo , Glioma/patologia , Células Endoteliais/metabolismo , Transcriptoma , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Masculino , FemininoRESUMO
Glioblastoma multiform (GBM) are devastating brain tumors containing a fraction of multipotent stem-like cells which are highly tumorigenic. These cells are resistant to treatments and are likely to be responsible for tumor recurrence. One approach to eliminate GBM stem-like cells would be to force their terminal differentiation. During development, neurons formation is controlled by neurogenic transcription factors such as Ngn1/2 and NeuroD1. We found that in comparison with oligodendrogenic genes, the expression of these neurogenic genes is low or absent in GBM tumors and derived cultures. We thus explored the effect of overexpressing these neurogenic genes in three CD133(+) Sox2(+) GBM stem-like cell cultures and the U87 glioma line. Introduction of Ngn2 in CD133(+) cultures induced massive cell death, proliferation arrest and a drastic reduction of neurosphere formation. Similar effects were observed with NeuroD1. Importantly, Ngn2 effects were accompanied by the downregulation of Olig2, Myc, Shh and upregulation of Dcx and NeuroD1 expression. The few surviving cells adopted a typical neuronal morphology and some of them generated action potentials. These cells appeared to be produced at the expense of GFAP(+) cells which were radically reduced after differentiation with Ngn2. In vivo, Ngn2-expressing cells were unable to form orthotopic tumors. In the U87 glioma line, Ngn2 could not induce neuronal differentiation although proliferation in vitro and tumoral growth in vivo were strongly reduced. By inducing cell death, cell cycle arrest or differentiation, this work supports further exploration of neurogenic proteins to oppose GBM stem-like and non-stem-like cell growth.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/farmacologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Fatores de Transcrição/farmacologia , Antígeno AC133 , Antígenos CD/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Morte Celular , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Fator de Transcrição 2 de Oligodendrócitos , Proteína Oncogênica p55(v-myc)/metabolismo , Peptídeos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transfecção , Células Tumorais CultivadasRESUMO
Glioblastomas (GBM) are heterogeneous tumors with high metabolic plasticity. Their poor prognosis is linked to the presence of glioblastoma stem cells (GSC), which support resistance to therapy, notably to temozolomide (TMZ). Mesenchymal stem cells (MSC) recruitment to GBM contributes to GSC chemoresistance, by mechanisms still poorly understood. Here, we provide evidence that MSCs transfer mitochondria to GSCs through tunneling nanotubes, which enhances GSCs resistance to TMZ. More precisely, our metabolomics analyses reveal that MSC mitochondria induce GSCs metabolic reprograming, with a nutrient shift from glucose to glutamine, a rewiring of the tricarboxylic acid cycle from glutaminolysis to reductive carboxylation and increase in orotate turnover as well as in pyrimidine and purine synthesis. Metabolomics analysis of GBM patient tissues at relapse after TMZ treatment documents increased concentrations of AMP, CMP, GMP, and UMP nucleotides and thus corroborate our in vitro analyses. Finally, we provide a mechanism whereby mitochondrial transfer from MSCs to GSCs contributes to GBM resistance to TMZ therapy, by demonstrating that inhibition of orotate production by Brequinar (BRQ) restores TMZ sensitivity in GSCs with acquired mitochondria. Altogether, these results identify a mechanism for GBM resistance to TMZ and reveal a metabolic dependency of chemoresistant GBM following the acquisition of exogenous mitochondria, which opens therapeutic perspectives based on synthetic lethality between TMZ and BRQ. Significance: Mitochondria acquired from MSCs enhance the chemoresistance of GBMs. The discovery that they also generate metabolic vulnerability in GSCs paves the way for novel therapeutic approaches.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Mesenquimais , Humanos , Glioblastoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Mitocôndrias , Células-Tronco NeoplásicasRESUMO
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular components involved in the GBM TME and their interactions for the development of more efficient therapies. In this review, we provide a comprehensive report of the GBM TME, which assembles the contributions of physicians and translational researchers working on brain tumor pathology and therapy in France. We propose a holistic view of the subject by delineating the specific features of the GBM TME at the cellular, molecular, and therapeutic levels.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Microambiente Tumoral/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologiaRESUMO
Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal promoter region is marked by allelic bivalent chromatin enriched in both H3K4me2 and H3K27me3, from early embryonic stages onwards. This is maintained in all somatic tissues, but brain. The bivalent domain is resolved upon neural commitment, during the developmental window in which paternal expression is activated. Our data indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain. This finding highlights a novel mechanism to control tissue-specific imprinting.
Assuntos
Alelos , Cromatina/metabolismo , Proteína Adaptadora GRB10 , Impressão Genômica , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/fisiologia , Diferenciação Celular , Células Cultivadas , Cromatina/genética , Ilhas de CpG , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/fisiologia , Complexo Repressor Polycomb 2 , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/fisiologiaRESUMO
Most of the signalling pathways involved in aging regulation have been recently found well conserved at various levels throughout the evolution. Taking this into account, a diversity of model organisms, including worms, rodents, and lemurs as well, allows to address different questions: how to understand the interactions between genetic and environmental factors while challenging theories of aging, to preserve hearing integrity, to fight against senescence of neural stem cells, or to explore brain fitness from gene expression to cognitive and social behavior? Here are the main issues that can be considered, stressing the complementarities of the models. The differentiation of aging physiological aspects from those induced by age-related pathologies will also be specified. By emphasizing recent ability of technologies to promote new aging insights, we discuss towards a better understanding of mechanisms governing aging.
Assuntos
Envelhecimento/fisiologia , Modelos Biológicos , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Senescência Celular , Cheirogaleidae , Cóclea/crescimento & desenvolvimento , Cóclea/fisiopatologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Longevidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Células-Tronco Neurais/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Presbiacusia/genética , Presbiacusia/fisiopatologiaRESUMO
Whereas neural stem cells and their niches have been extensively studied in the brain, little is known on these cells, their environment, and their function in the adult spinal cord. Adult spinal cord neural stem cells are located in a complex niche surrounding the central canal, and these cells expressed genes which are specifically expressed in the caudal central nervous system (CNS). In-depth characterization of these cells in vivo and in vitro will provide interesting clues on the possibility to utilize this endogenous cell pool to treat spinal cord damages. We describe here a procedure to derive and culture neural spinal cord stem cells from adult mice using the neurosphere method.
Assuntos
Células-Tronco Neurais , Envelhecimento , Animais , Diferenciação Celular , Camundongos , Medula Espinal , Traumatismos da Medula EspinalRESUMO
We demonstrated the presence of neural stem cells and/or progenitor cells in the adult human spinal cord. This chapter provides materials and methods to harvest high-quality samples of thoracolumbar, lumbar, and sacral adult human spinal cord and human dorsal root ganglia isolated from brain-dead patients who had agreed before passing to donate their bodies to science for therapeutic and scientific advances. The methods to culture precursor cells from the adult human spinal cord are also described.
Assuntos
Células-Tronco Neurais , Medula Espinal , Adulto , Técnicas de Cultura de Células , Separação Celular , Gânglios Espinais , HumanosRESUMO
Invasive growth along white matter (WM) tracts is one of the most prominent clinicopathological features of glioma and is also an important reason for surgical treatment failure in glioma patients. A full understanding of relevant clinical features and mechanisms is of great significance for finding new therapeutic targets and developing new treatment regimens and strategies. Herein, we review the imaging and histological characteristics of glioma patients with WM tracts invasion and summarize the possible molecular mechanism. On this basis, we further discuss the correlation between glioma molecular typing, radiotherapy and tumor treating fields (TTFields) and the invasion of glioma along WM tracts.
Assuntos
Glioma/complicações , Substância Branca/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Neurocirurgiões , Análise de SobrevidaRESUMO
BACKGROUND: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). RESULTS: Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. CONCLUSION: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.
Assuntos
Calcificação Fisiológica/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Cultura Primária de Células/métodos , Medula Espinal/irrigação sanguínea , Medula Espinal/metabolismo , Adulto , Adesão Celular/fisiologia , Separação Celular/métodos , Proteínas de Homeodomínio/sangue , Humanos , Proteínas de Filamentos Intermediários/sangue , Miócitos de Músculo Liso/citologia , Proteínas do Tecido Nervoso/sangue , Nestina , Medula Espinal/citologiaRESUMO
Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-ß1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.